石墨烯纳米结构中弹道输运相关物理现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯纳米结构中的弹道输运蕴含着丰富而有趣的物理现象.其中的负微分电阻效应, Goos-Ha¨nchen (GH)位移,隧穿群时延,回旋共振等具有广泛的应用价值.石墨烯中双势垒共振遂穿二极管这一负微分电阻基本模型还没有研究,如何获得电子束横向宽度量级的GH位移尚待解决,个体群时延的二维定义并不完备,如何测量任意费米能的集体群时延需要研究,回旋共振的非磁调控尚不明了.为了解决这些问题,本文对若干石墨烯弹道纳米结构的以上现象进行了较为深入的理论研究.
     通过在旋转的赝自旋空间中计算I-V特性曲线,我们研究了石墨烯双势垒共振隧穿二极管的负微分电阻效应,发现其最低工作窗口几乎与结构参数无关,而仅由背栅近独立地控制.我们指出该现象的双极输运物理机制及其在某些负微分电阻器件中的潜在应用价值.我们还发现,空穴-电子输运、Klein隧穿和共振隧穿的竞争是该结构产生负微分电阻的物理机制,合适的结构参数是负微分电阻特征出现的必要条件,而可调能隙可以近指数地增大电流峰谷比.
     我们指出了电子束横向宽度在其空间分离中扮演的重要角色,报道了石墨烯双势垒结构中通过准束缚态增强获得的具有极小半高宽的巨GH位移.我们指出了该性质可用于设计具有广泛可调性和高能量分辨率的谷或自旋电子束分离器,并发现能隙可以进一步地增强分离器的可调性和分辨率.
     我们揭示了GH位移对二维群时延的本征贡献,提出了利用弱磁自旋进动实验中诱导电导差来测量石墨烯中集体群时延和内秉GH项的方法,该方法对几乎任意费米能量均有效.我们还指出了联系群时延和渡越时间的是非零的自干涉时延.
     我们使用圆盘形顶栅电势来调制石墨烯的Landau能级和回旋共振.我们发现顶栅电势可诱导束缚态在扩展的Landau型和局域的量子点型间相互转换,这使得在一定的电势范围内,回旋共振频率可以通过顶栅电势近线性地调制.我们指出这一特性可以用作光子的近线性控制频率过滤器.
Rich and interesting physical phenomena arise with ballistic transport in graphenenanoscale structures. Among them, negative diferential resistance (NDR) efect, Goos-Ha¨nchen (GH) shift, tunneling group delay, and cyclotron resonances between Landaulevels have extensive applications in electronic devices. However, a basic NDR model,double barrier resonant tunneling diode has not been touched in graphene; how to obtaingiant GH shift larger than the transverse width of an electron beam is to be settled;the widely adopted definition of two dimensional group delay is not complete, how tomeasure the collective group delay at arbitrary Fermi energy is to be resolved; and howto modulate cyclotron resonances by electrostatic method is not clear. To solve theseproblems, in this thesis we theoretically study these phenomena in several graphenebased nanoscale structures.
     We investigate the NDR in graphene double barrier resonant tunneling diodes bycalculating the I-V characteristic in a rotated pseudospin space. We demonstrate that,the lowest NDR operation window is almost structural parameters-free and can be nearlysolely controlled by the back gate. We indicate that, this remarkable phenomenon stemsfrom the ambipolar transport in graphene and may be applied in operation window-dominated NDR devices. We have also found that, the competition between hole-to-electron transport, Klein tunneling, and resonant tunneling is the physical mechanismfor such a NDR structure. We also show that, appropriate structural parameters arenecessary for the NDR feature, and a tunable band gap can enhance exponentially thepeak-to-valley current ratio.
     We indicate that the transverse electron beam width plays a critical role in theirspatial splitter. We report giant GH shifts with magnitudes up to the order of transverseelectron beam width and rather small full-widths-at-half-maximum for electron beamstunneling through graphene double barrier structures, which we attribute to the quasi-bound states in the structure. We indicate that these features may be utilized to designvalley and spin beam splitters with wide tunability and high energy resolution. We alsofind that, an induced energy gap can increase the tunability and resolution of the splitters.
     We reveal the intrinsic contribution of GH shift in the two dimensional group delay.We suggest that, for almost arbitrary Fermi energy, the collective group delay and it inherent GH component can be probed by an induced conductance diference in spinprecession experiments under weak magnetic fields. We also indicate that, it is a nonzeroself-interference delay that relates the group delay and dwell time in graphene.
     We apply a circle top gate to modulate the Landau levels and cyclotron resonancesin graphene. We find that, the top gate induced potential can induce switchs betweenextended Landau-type bound states and localized quantum dot-type ones. As a result,the cyclotron resonance frequency can be tuned almost linearly by the top gate withinspecific ranges. This phenomenon can be applied as a near linearly controllable photonfrequency splitter.
引文
[1] Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6(3):183–191.
    [2] Geim A K, MacDonald A H. Graphene: Exploring Carbon Flatland. Physics Today,2007,60(8):35–41.
    [3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Diracfermions in graphene. Nature (London),2005,438(7065):197–200.
    [4] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchabletransparent electrodes. Nature (London),2009,457(7230):706–710.
    [5] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films oncopper foils. Science,2009,324(5932):1312–1314.
    [6] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbonnanotubes to form graphene nanoribbons. Nature (London),2009,458(7240):872–876.
    [7] Sinitskii A, Fursina A A, Kosynkin D V, et al. Electronic transport in monolayer graphenenanoribbons produced by chemical unzipping of carbon nanotubes. Applied Physics Letters,2009,95(25):253108.
    [8] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature(London),2009,458(7240):877–880.
    [9] Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:2D electron gas properties and aroute toward graphene-based nanoelectronics. The Journal of Physical Chemistry B,2004,108(52):19912–19916.
    [10] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxialgraphene. Science,2006,312(5777):1191–1196.
    [11] Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmosphericpressure graphitization of silicon carbide. Nature Materials,2009,8(3):203–207.
    [12] Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers.Physical Review Letters,2006,97(18):187401.
    [13] Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon cou-pling, doping and nonadiabatic efects. Solid State Communications,2007,143(1):47–57.
    [14] Beenakker C W J. Colloquium: Andreev reflection and Klein tunneling in graphene. Reviewsof Modern Physics,2008,80(4):1337.
    [15] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene.Reviews of Modern Physics,2009,81(1):109.
    [16] Peres N M R. Colloquium: The transport properties of graphene: An introduction. Reviewsof Modern Physics,2010,82(3):2673.
    [17] Das Sarma S, Adam S, Hwang E H, et al. Electronic transport in two-dimensional graphene.Reviews of Modern Physics,2011,83(2):407–470.
    [18] Goerbig M. Electronic properties of graphene in a strong magnetic field. Reviews of ModernPhysics,2011,83(4):1193.
    [19] Kotov V N, Uchoa B, Pereira V M, et al. Electron-electron interactions in graphene: Currentstatus and perspectives. Reviews of Modern Physics,2012,84(3):1067.
    [20] Novoselov K, Geim A K, Morozov S, et al. Electric field efect in atomically thin carbonfilms. Science,2004,306(5696):666–669.
    [21] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall efectand Berry’s phase in graphene. Nature (London),2005,438(7065):201–204.
    [22] Wallace P. The band theory of graphite. Physical Review,1947,71(9):622.
    [23] McClure J. Band structure of graphite and de Haas-van Alphen efect. Physical Review,1957,108(3):612.
    [24] Slonczewski J, Weiss P. Band structure of graphite. Physical Review,1958,109(2):272.
    [25] Semenof G W. Condensed-Matter Simulation of a Three-Dimensional Anomaly. PhysicalReview Letters,1984,53(26):2449–2452.
    [26] Zhou S, Gweon G H, Graf J, et al. First direct observation of Dirac fermions in graphite.Nature Physics,2006,2(9):595–599.
    [27] Miao F, Wijeratne S, Zhang Y, et al. Phase-coherent transport in graphene quantum billiards.Science,2007,317(5844):1530–1533.
    [28] Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene.Nature Nanotechnology,2008,3(8):491–495.
    [29] Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox ingraphene. Nature Physics,2006,2(9):620–625.
    [30] Cheianov V V, Fal’ko V I. Selective transmission of Dirac electrons and ballistic magnetore-sistance of np junctions in graphene. Physical Review B,2006,74(4):041403.
    [31] Low T, Appenzeller J. Electronic transport properties of a tilted graphene p-n junction. Phys-ical Review B,2009,80(15):155406.
    [32] Young A F, Kim P. Quantum interference and Klein tunnelling in graphene heterojunctions.Nature Physics,2009,5(3):222–226.
    [33] Stander N, Huard B, Goldhaber-Gordon D. Evidence for Klein tunneling in graphene p-njunctions. Physical Review Letters,2009,102(2):26807.
    [34] Tworzyd o J, Trauzettel B, Titov M, et al. Sub-Poissonian shot noise in graphene. PhysicalReview Letters,2006,96(24):246802.
    [35] Danneau R, Wu F, Craciun M, et al. Shot noise in ballistic graphene. Physical Review Letters,2008,100(19):196802.
    [36] Han M Y,O¨zyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons.Physical Review Letters,2007,98(20):206805.
    [37] Li G, Andrei E Y. Observation of Landau levels of Dirac fermions in graphite. Nature Physics,2007,3:623.
    [38] Novoselov K, McCann E, Morozov S, et al. Unconventional quantum Hall efect and Berry’sphase of2π in bilayer graphene. Nature Physics,2006,2(3):177–180.
    [39] Ando T, Fowler A B, Stern F. Electronic properties of two-dimensional systems. Reviews ofModern Physics,1982,54:437–672.
    [40] Miller D L, Kubista K D, Rutter G M, et al. Observing the quantization of zero mass carriersin graphene. Science,2009,324(5929):924–927.
    [41] Jiang Z, Henriksen E, Tung L, et al. Infrared spectroscopy of Landau levels of graphene.Physical Review Letters,2007,98(19):197403.
    [42] Henriksen E, Cadden-Zimansky P, Jiang Z, et al. Interaction-induced shift of the cy-clotron resonance of graphene using infrared spectroscopy. Physical Review Letters,2010,104(6):67404.
    [43] Shizuya K. Many-body corrections to cyclotron resonance in monolayer and bilayergraphene. Physical Review B,2010,81(7):075407.
    [44] Huard B, Sulpizio J, Stander N, et al. Transport measurements across a tunable potentialbarrier in graphene. Physical Review Letters,2007,98(23):236803.
    [45] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene deviceson SiO2. Nature Nanotechnology,2008,3(4):206.
    [46] Lee E J, Balasubramanian K, Weitz R T, et al. Contact and edge efects in graphene devices.Nature Nanotechnology,2008,3(8):486–490.
    [47] Blanter Y M, Martin I. Transport through normal-metal-graphene contacts. Physical ReviewB,2007,76(15):155433.
    [48] Giovannetti G, Khomyakov P, Brocks G, et al. Doping graphene with metal contacts. PhysicalReview Letters,2008,101(2):26803.
    [49] Huard B, Stander N, Sulpizio J, et al. Evidence of the role of contacts on the observedelectron-hole asymmetry in graphene. Physical Review B,2008,78(12):121402.
    [50] Cayssol J, Huard B, Goldhaber-Gordon D. Contact resistance and shot noise in graphenetransistors. Physical Review B,2008,79:075428.
    [51] Golizadeh-Mojarad R, Datta S. Efect of contact induced states on minimum conductivity ingraphene. Physical Review B,2009,79(8):085410.
    [52] Wu Y, Perebeinos V, Lin Y m, et al. Quantum behavior of graphene transistors near thescaling limit. Nano Letters,2012,12(3):1417–1423.
    [53] Fang T, Konar A, Xing H, et al. Carrier statistics and quantum capacitance of graphene sheetsand ribbons. Applied Physics Letters,2007,91(9):092109.
    [54] Fernandez-Rossier J, Palacios J, Brey L. Electronic structure of gated graphene and grapheneribbons. Physical Review B,2007,75(20):205441.
    [55] Xia J, Chen F, Li J, et al. Measurement of the quantum capacitance of graphene. NatureNanotechnology,2009,4(8):505–509.
    [56] Kim S, Jo I, Dillen D C, et al. Direct measurement of the Fermi energy in graphene using adouble-layer heterostructure. Physical Review Letters,2012,108(11):116404.
    [57] Zhou S, Gweon G H, Fedorov A, et al. Substrate-induced bandgap opening in epitaxialgraphene. Nature Materials,2007,6(10):770–775.
    [58] Varchon F, Feng R, Hass J, et al. Electronic structure of epitaxial graphene layers on SiC:efect of the substrate. Physical Review Letters,2007,99(12):126805.
    [59] Emtsev K V, Seyller T, Speck F, et al. Initial stages of the graphite-SiC (0001) interfaceformation studied by photoelectron spectroscopy. Proceedings of Materials science forum,volume556. Trans Tech Publ,2007.525–528.
    [60] Haberer D, Vyalikh D, Taioli S, et al. Tunable band gap in hydrogenated quasi-free-standinggraphene. Nano Letters,2010,10(9):3360–3366.
    [61] Haldane F. Model for a quantum Hall efect without Landau levels: Condensed-matter real-ization of the “parity anomaly’’. Physical Review Letters,1988,61(18):2015–2018.
    [62] Kane C, Mele E. Quantum spin Hall efect in graphene. Physical Review Letters,2005,95(22):226801.
    [63] Goldman V, Tsui D, Cunningham J. Observation of intrinsic bistability in resonant tunnelingstructures. Physical Review Letters,1987,58(12):1256–1259.
    [64] Sollner T C L G, Goodhue W D, Tannenwald P E, et al. Resonant tunneling through quantumwells at frequencies up to2.5THz. Applied Physics Letters,1983,43(6):588–590.
    [65] Bonnefoi A R, Collins R T, McGill T C, et al. Resonant tunneling in GaAs/AlAs het-erostructures grown by metalorganic chemical vapor deposition. Applied Physics Letters,1985,46(3):285–287.
    [66] Mizuta H, Tanoue T. The Physics and Applications of Resonant Tunneling Diodes. Cam-bridge: Cambridge University Press,1995.
    [67] Do V N, Nguyen V H, Dollfus P, et al. Electronic transport and spin-polarization efects ofrelativisticlike particles in mesoscopic graphene structures. Journal of Applied Physics,2008,104(6):063708.
    [68] Wang Z F, Li Q, Shi Q W, et al. Chiral selective tunneling induced negative diferentialresistance in zigzag graphene nanoribbon: A theoretical study. Applied Physics Letters,2008,92(13):133114.
    [69] Ren H, Li Q X, Luo Y, et al. Graphene nanoribbon as a negative diferential resistance device.Applied Physics Letters,2009,94(17):173110.
    [70] Nguyen V H, Bournel A, Dollfus P. Large peak-to-valley ratio of negative-diferential-conductance in graphene p-n junctions. Journal of Applied Physics,2011,109(9):093706.
    [71] Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative diferential resistance ingraphene nanoribbon superlattices. Physical Review B,2011,84(12):125453.
    [72] Wu Y, Farmer D B, Zhu W, et al. Three-Terminal Graphene Negative Diferential ResistanceDevices. ACS Nano,2012,6(3):2610–2616.
    [73] Dragoman D, Dragoman M. Negative diferential resistance of electrons in graphene barrier.Applied Physics Letters,2007,90(14):143111.
    [74] Do V N. Comment on “Negative diferential conductance of electrons in graphene barrier’’[Appl. Phys. Lett.90,143111(2007)]. Applied Physics Letters,2008,92(21):216101.
    [75] Fang H, Wang R Z, Chen S Y, et al. Strain-induced negative diferential resistance in armchair-edge graphene nanoribbons. Applied Physics Letters,2011,98(8):082108.
    [76] Do V N, Dollfus P. Negative diferential resistance in zigzag-edge graphene nanoribbonjunctions. Journal of Applied Physics,2010,107(6):063705.
    [77] Nguyen V H, Mazzamuto F, Saint-Martin J, et al. Giant efect of negative diferentialconductance in graphene nanoribbon p-n hetero-junctions. Applied Physics Letters,2011,99(4):042105.
    [78] Goos F, Ha¨nchen H. Ein neuer und fundamentaler Versuch zur Totalreflexion. Annalen derPhysik,1947,436(7-8):333–346.
    [79] Goos F, Ha¨nchen H. Neumessung des Strahlversetzungsefektes bei Totalreflexion. Annalender Physik,1949,440(3-5):251–252.
    [80] Wilson D W, Glytsis E, Gaylord T. Electron waveguiding characteristics and ballistic cur-rent capacity of semiconductor quantum slabs. IEEE Journal of Quantum Electronics,1993,29(5):1364.
    [81] Beenakker C W J, Sepkhanov R A, Akhmerov A R, et al. Quantum Goos-Ha¨nchen Efect inGraphene. Physical Review Letters,2009,102(14):146804.
    [82] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interferenceand Difraction of Light. Oxford: Pergamon Press,1964.
    [83] Artmann K. Berechnung der Seitenversetzung des totalreflektierten Strahles. Annalen derPhysik,1948,437(1-2):87–102.
    [84] Zhai F, Ma Y, Chang K. Valley beam splitter based on strained graphene. New Journal ofPhysics,2011,13(8):083029.
    [85] Chen X, Lu X J, Wang Y, et al. Controllable Goos-Ha¨nchen shifts and spin beam splitterfor ballistic electrons in a parabolic quantum well under a uniform magnetic field. PhysicalReview B,2011,83(19):195409.
    [86] Chen X, Tao J W, Ban Y. Goos-Ha¨nchen-like shifts for Dirac fermions in monolayer graphenebarrier. The European Physical Journal B,2011,79(2):203–208.
    [87] Matulis A, Masir M R, Peeters F M. Application of optical beams to electrons in graphene.Physical Review B,2011,83(11):115458.
    [88] Li C F, Wang Q. Prediction of simultaneously large and opposite generalized Goos-Ha¨nchenshifts for TE and TM light beams in an asymmetric double-prism configuration. PhysicalReview E,2004,69(5):055601.
    [89] Yuan L, Xiang L, Kong Y, et al. Goos-Ha¨nchen efect of spin electron beams in a paralleldouble δ-barrier magnetic nanostructure. The European Physical Journal B,2012,85(1):1–5.
    [90] Hauge E H, St vneng J A. Tunneling times: a critical review. Reviews of Modern Physics,1989,61(4):917.
    [91] Landauer R, Martin T. Barrier interaction time in tunneling. Reviews of Modern Physics,1994,66(1):217.
    [92] Wigner E P. Lower Limit for the Energy Derivative of the Scattering Phase Shift. PhysicalReview,1955,98(1):145.
    [93] Smith F T. Lifetime Matrix in Collision Theory. Physical Review,1960,118(1):349.
    [94] Bu¨ttiker M. Larmor precession and the traversal time for tunneling. Physical Review B,1983,27(10):6178.
    [95] Winful H G. Delay Time and the Hartman Efect in Quantum Tunneling. Physical ReviewLetters,2003,91(26):260401.
    [96] Hartman T E. Tunneling of a Wave Packet. Journal of Applied Physics,1962,33(12):3427–3433.
    [97] Tsuchiya M, Matsusue T, Sakaki H. Tunneling escape rate of electrons from quantum well indouble-barrier heterostructures. Physical Review Letters,1987,59(20):2356.
    [98] Harada N, Kuroda S. Lifetime of resonant state in a resonant tunneling system. JapaneseJournal of Applied Physics,1986,25(11):L871–L873.
    [99] Eckle P, Pfeifer A N, Cirelli C, et al. Attosecond ionization and tunneling delay time mea-surements in Helium. Science,2008,322(5907):1525.
    [100] Shafir D, Soifer H, Bruner B D, et al. Resolving the time when an electron exits a tunnellingbarrier. Nature (London),2012,485:343.
    [101] Sepkhanov R A, Medvedyeva M V, Beenakker C W J. Hartman efect and spin precession ingraphene. Physical Review B,2009,80(24):245433.
    [102] Landauer R. Spatial variation of currents and fields due to localized scatterers in metallicconduction. IBM Journal of Research and Development,1957,1(3):223–231.
    [103] Bu¨ttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula withapplication to small rings. Physical Review B,1985,31(10):6207.
    [104] Zhai F, Chang K. Valley filtering in graphene with a Dirac gap. Physical Review B,2012,85(15):155415.
    [105] Andreev A V. Magnetoconductance of carbon nanotube p-n Junctions. Physical ReviewLetters,2007,99(24):247204.
    [106] Sonin E B. Efect of Klein tunneling on conductance and shot noise in ballistic graphene.Physical Review B,2009,79(19):195438.
    [107] De Martino A, Dell’Anna L, Egger R. Magnetic confinement of massless Dirac fermions ingraphene. Physical Review Letters,2007,98(6):066802.
    [108] Song Y, Guo Y. Electrically induced bound state switches and near-linearly tunable op-tical transitions in graphene under a magnetic field. Journal of Applied Physics,2011,109(10):104306–104306.
    [109] Ando T. Theory of electronic states and transport in carbon nanotubes. Journal of the PhysicalSociety of Japan,2005,74:777.
    [110] Sadowski M, Martinez G, Potemski M, et al. Landau level spectroscopy of ultrathin graphitelayers. Physical Review Letters,2006,97(26):266405.
    [111] Middleton W, Van Valkenburg M E. Reference data for engineers: radio, electronics, com-puters and communications. Boston, Oxford: Newnes,2002.
    [112] Abdel-All A, Elshafie A, Elhawary M. DC electric-field efect in bulk and thin-filmGe5As38Te57chalcogenide glass. Vacuum,2000,59(4):845–853.
    [113] McGinness J, Corry P, Proctor P. Amorphous semiconductor switching in melanins. Science,1974,183(4127):853–855.
    [114] Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organicpolymers: Halogen derivatives of polyacetylene,(CH)x. Journal of the Chemical Society,Chemical Communications,1977,0(16):578–580.
    [115] Javey A, Kim H, Brink M, et al. High-κ dielectrics for advanced carbon-nanotube transistorsand logic gates. Nat Mater,2002,1(4):241–246.
    [116] Grassi R, Low T, Gnudi A, et al. Contact-induced negative diferential resistance in short-channel graphene FETs. IEEE Transactions on Electron Devices,2013,60(1):140–146.
    [117] Russo S, Craciun M F, Yamamoto M, et al. Double-gated graphene-based devices. NewJournal of Physics,2009,11:095018.
    [118] Low T, Hong S, Appenzeller J, et al. Conductance Asymmetry of Graphene p-n Junction.IEEE Transactions on Electron Devices,2009,56(6):1292–1299.
    [119] Song Y, Wu H C, Guo Y. Giant Goos-Ha¨nchen shift in graphene double-barrier structures.Applied Physics Letters,2012,100(25):253116.
    [120] Chen H Y, Apalkov V, Chakraborty T. Fock-Darwin states of Dirac electrons in graphene-based artificial atoms. Physical Review Letters,2007,98(18):186803.
    [121] Racec P N, Stoica T, Popescu C, et al. Physics of optimal resonant tunneling. Physical ReviewB,1997,56(7):3595–3597.
    [122] Meric I, Han M Y, Young A F, et al. Current saturation in zero-bandgap, top-gated graphenefield-efect transistors. Nature Nanotechnology,2008,3(11):654–659.
    [123] Chow D H, McGill T C. Negative diferential resistances from Hg1xCdxTe-CdTe singlequantum barrier heterostructures. Applied Physics Letters,1986,48(21):1485–1487.
    [124] Chow D H, McGill T C, Sou I K, et al. Observation of negative diferential resistance from asingle barrier heterostructure. Applied Physics Letters,1988,52(1):54–56.
    [125] Beresford R, Luo L F, Wang W I. Negative diferential resistance in AlGaSb/InAs single-barrier heterostructures at room temperature. Applied Physics Letters,1989,54(19):1899–1901.
    [126] So¨derstro¨m J R, Chow D H, McGill T C. Demonstration of large peak-to-valley currentratios in InAs/AlGaSb/InAs single-barrier heterostructures. Applied Physics Letters,1989,55(13):1348–1350.
    [127] Briers R, Leroy O, Shkerdin G. Bounded beam interaction with thin inclusions: Characteriza-tion by phase diferences at Rayleigh angle incidence. The Journal of the Acoustical Societyof America,2000,108(4):1622–1630.
    [128] Renard R H. Total reflection: A new evaluation of the Goos-Ha¨nchen shift. Journal of theOptical Society of America,1964,54(10):1190–1196.
    [129] Carter J L, Hora H. Total reflection of matter waves: The Goos-Ha¨nchen efect for grazingincidence. Journal of the Optical Society of America,1971,61(12):1640–1645.
    [130] Miller S C, Ashby N. Shifts of electron beam position due to total reflection at a barrier.Physical Review Letters,1972,29(11):740–743.
    [131] Chen X, Li C F, Ban Y. Tunable lateral displacement and spin beam splitter for ballisticelectrons in two-dimensional magnetic-electric nanostructures. Physical Review B,2008,77(7):073307.
    [132] Fradkin D M, Kashuba R J. Spatial displacement of electrons due to multiple total reflections.Physical Review D,1974,9(10):2775–2788.
    [133] Fradkin D M, Kashuba R J. Position-operator method for evaluating the shift of a totallyreflected electron. Physical Review D,1974,10(4):1137–1145.
    [134] Huang J, Duan Z, Ling H Y, et al. Goos-Ha¨nchen-like shifts in atom optics. Physical ReviewA,2008,77(6):063608.
    [135] Haan V O, Plomp J, Rekveldt T M, et al. Observation of the Goos-Ha¨nchen shift with neu-trons. Physical Review Letters,2010,104(1):010401.
    [136] Zhao L, Yelin S F. Proposal for graphene-based coherent bufers and memories. PhysicalReview B,2010,81(11):115441.
    [137] Sharma M, Ghosh S. Electron transport and Goos–Ha¨nchen shift in graphene with electricand magnetic barriers: optical analogy and band structure. Journal of Physics: CondensedMatter,2011,23(5):055501.
    [138] Krstajic′P M, Vasilopoulos P. Ballistic transport through graphene nanostructures of velocityand potential barriers. Journal of Physics: Condensed Matter,2011,23(13):135302.
    [139] Wu Z, Zhai F, Peeters F M, et al. Valley-dependent Brewster angles and Goos-Ha¨nchen efectin strained graphene. Physical Review Letters,2011,106(17):176802.
    [140] Li C F. Negative lateral shift of a light beam transmitted through a dielectric slab and inter-action of boundary efects. Physical Review Letters,2003,91(13):133903.
    [141] Chen X, Tao J W. Design of electron wave filters in monolayer graphene by tunable trans-mission gap. Applied Physics Letters,2009,94(26):262102.
    [142] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interferenceand difraction of light. Oxford: Pergamon Press,1964.
    [143] Bernardini A. Stationary phase method and delay times for relativistic and non-relativistictunneling particles. Annals of Physics,2009,324(6):1303.
    [144] Wu Z, Chang K, Liu J T, et al. The Hartman efect in graphene. Journal of Applied Physics,2009,105(4):043702.
    [145] Dragoman D, Dragoman M. There is no Hartman efect in graphene structures. Journal ofApplied Physics,2010,107(5):054306.
    [146] Esmailpour M, Esmailpour A, Asgari R, et al. Efect of a gap opening on the conductance ofgraphene superlattices. Solid State Communications,2010,150(13-14):655.
    [147] Gong Y, Guo Y. Dwell time in graphene-based magnetic barrier nanostructures. Journal ofApplied Physics,2009,106(6):064317.
    [148] Xu X, Cao J. Dwell time in one-dimensional graphene asymmetrical barrier. Physica B,2012,407(3):281.
    [149] Liu J T, Su F H, Wang H, et al. Optical field modulation on the group delay of chiral tunnelingin graphene. New Journal of Physics,2012,14(1):013012.
    [150] Sattari F, Faizabadi E. Tunneling time and Hartman efect in a ferromagnetic graphene super-lattice. AIP Advances,2012,2(1):012123.
    [151] Faizabadi E, Sattari F. Rashba spin-orbit efect on tunneling time in graphene superlattice.Journal of Applied Physics,2012,111(9):093724.
    [152] Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession insingle graphene layers at room temperature. Nature (London),2007,448(7153):571.
    [153] Steinberg A M, Chiao R Y. Tunneling delay times in one and two dimensions. PhysicalReview A,1994,49(5):3283–3295.
    [154] Li C F. Comment on “Photonic tunneling time in frustrated total internal reflection’’. PhysicalReview A,2002,65(6):066101.
    [155] Baz’ A I. Lifetime of intermediate states. Soviet Journal of Nuclear Physics,1967,4:182.
    [156] Baz’ A I. A quantum mechanical calculation of collision time. Soviet Journal of NuclearPhysics,1967,5:161.
    [157] Rybachenko V F. Time of penetration of a particle through a potential barrier. Soviet Journalof Nuclear Physics,1967,5:635.
    [158] Leavens C, Aers G. Extension to arbitrary barriers of the Buttiker-Landauer characteristicbarrier interaction times. Solid State Communications,1987,63(12):1101.
    [159] Qi X L, Zhang S C. Topological insulators and superconductors. Reviews of Modern Physics,2011,83(4):1057.
    [160] Ramezani Masir M, Vasilopoulos P, Peeters F M. Fabry-Pe′rot resonances in graphene mi-crostructures: Influence of a magnetic field. Physical Review B,2010,82(11):115417.
    [161] Deacon R S, Chuang K C, Nicholas R J, et al. Cyclotron resonance study of the electron andhole velocity in graphene monolayers. Physical Review B,2007,76(8):081406.
    [162] Sadowski M L, Martinez G, Potemski M, et al. Magneto-spectroscopy of epitaxial graphene.International Journal of Modern Physics B,2007,21(08-09):1145–1154.
    [163] Ramezani Masir M, Matulis A, Peeters F M. Quasibound states of Schro¨dinger and Diracelectrons in a magnetic quantum dot. Physical Review B,2009,79(15):155451.
    [164] Lee C M, Lee R C H, Ruan W Y, et al. Low-lying spectra of massless Dirac electron inmagnetic dot and ring. Applied Physics Letters,2010,96(21):212101.
    [165] Gorbachev R V, Mayorov A S, Savchenko A K, et al. Conductance of p-n-p GrapheneStructures with “Air-Bridge’’ Top Gates. Nano Letters,2008,8(7):1995–1999.
    [166] Matulis A, Peeters F M. Quasibound states of quantum dots in single and bilayer graphene.Physical Review B,2008,77(11):115423.
    [167] Song Y, Guo Y. Bound states in a hybrid magnetic-electric quantum dot. Journal of AppliedPhysics,2010,108(6):064306.
    [168] Macucci M, Hess K, Iafrate G J. Electronic energy spectrum and the concept of capacitancein quantum dots. Physical Review B,1993,48(23):17354–17363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700