石墨烯中缺陷结构的电子学性质的STM/STS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2004年石墨烯被解理获得以来,其独特的二维结构和电子学性质,引起了世界范围内广泛的关注。石墨烯具有广阔的应用前景,如量子计算机,燃料电池,传感器,等等。缺陷的存在,比如畴界,皱褶以及点缺陷等,会从结构上以及电子学性质上对石墨烯产生巨大的影响。本文中,我们将从结构和电子学行为两方面,来研究石墨烯中自发产生的和人为引入的缺陷结构。
     第一章是石墨烯简介,简单介绍了石墨烯的结构及其独特的电子学性质,以及制备方法,常用的表征手段。这里,我们还简要地介绍了实验中使用的扫描隧道显微镜/谱(scanning tunneling microscopy/spectroscopy, STM/STS)的发明,发展和工作原理。
     第二章,利用STM/STS研究了化学气象沉积(chemical vapor deposition, CVD)方法制备并转移到SiO2/Si衬底上的单层石墨烯中有序和无序畴界(grain boundaries, GBs)。研究中发现了两种有序畴界结构,分别为(3,1)|(1,3)畴界(由五元环和七元环交替连接而成)和(2,0)|(2,0)畴界(由五元环对和八元环交替连接而成),并结合第一性原理计算,首次从实验上证明了在有序的石墨烯畴界中存在范霍夫奇异性(van Hove singularities, VHSs)。我们的研究还表明,由于VHSs的存在,有序畴界结构能显著的提高石墨烯的电导。据此,提出了一种基于石墨烯的器件结构,就是内嵌有序石墨烯畴界的纳米条带,可以极大地改善其电输运行为。另外,我们还从实验上证明了,无序的畴界与有序畴界是恰恰相反的,前者的存在对输运是有害的。主要原因在于有序畴界中具有沿着畴界方向没有位置依赖关系的VHS态,而无序畴界中存在的局域的缺陷态是具有位置依赖性的,他们的存在会对电子产生散射,阻碍其传输。我们的结果表明,如果将畴界的有序度考虑进来,就能解释前人输运测量实验中得到的关于畴界的电导的矛盾结果了。
     第三章,研究了石墨烯中存在应力的两种结构,并研究了应力对其电子学性质的调制效应。通过STM/STS的研究,发现了石墨烯中的(1,0)位错(dislocation)和皱褶结构,分别为本征的和衬底引起的应力结构。结合第一性原理的计算,(1,0)位错的存在已经使得石墨烯的能带结构发生了巨大的变化,导致了VHS态的出现。并且由于应力的存在,实验观测到在畴界中打开的能隙。在另外一种石墨烯的皱褶结构中,通过对其结构和电子态的研究,发现了朗道能量化,同时根据其表观高度特征,我们提出了三重折叠皱褶的结构模型。
     第四章中,采用低压CVD方法,调制生长过程的各气体组分的比例,得到了具有不同化学存在形式和不同掺杂原子浓度的N掺杂的单层石墨烯。通过XPS研究,证明了N原子的存在形式有石墨型,吡咯型以及吡啶型三种构型。利用STM/STS的微观研究,确定了石墨型和吡啶型N缺陷的存在及其原子结构,电子学性质以及掺杂效果。石墨型N和吡啶型N缺陷分别具有电子型和空穴型的掺杂效应。通过对不同N掺杂类型的石墨烯样品的霍尔效应(Hall effect)测量,得到了电子型掺杂和空穴型掺杂的石墨烯,并且与微观测量结果一致。通过单一元素掺杂得到了不同掺杂类型的石墨烯。采用这种方法得到样品中,石墨型与吡啶型N缺陷会各自形成独立地畴。同时,采用液态吡啶源,使用常压CVD方法也制备出了单层氮掺杂石墨烯,并观察到了石墨型和吡啶型N缺陷的存在。不同的是,二者是可以距离得很近,而不是形成独立地畴。
     第五章,采用氩离子溅射的方法,在绝缘体衬底上的石墨烯表面成功制备出了单空位、双空位、四空位及其他一些点缺陷结构。基于STM研究我们发现,经过优化溅射参数以后,得到的大多数的缺陷结构都是单空位,而其中超过80%的单空位都是具有相同的取向,也就是说,缺失原子都是来源于同一套子格子的。通过STS研究,我们确定了空位结构的电子学性质。
After first time being isolated experimentally in2004, graphene, a two-dimensional (2D) honeycomb structure of pure sp2carbon, with a linear dispersion near the Dirac cones, has attracted tremendous attention. Graphene has been considered to possibly replace Si as the next generation super material, with wide applications. Defects, such as dislocations, grain boundaries (GBs), wrinkles and point defects, could significantly impact the structure and electronic properties of graphene. In this thesis, we focus on the structural and electronic behaviors of the defective structures in graphene, which are both spontaneously or artificially induced in graphene, studied by scanning tunneling microscope (STM).
     In chapter1, we give a brief introduction of the structure, properties, preparation method and characterization of graphene. Also, the main characterization method used in this thesis, scanning tunneling microscope (STM), is simply mentioned from this invention, improvement and working principle.
     In chapter2, using STM, we find the relative disordered GBs and two types of ordered GBs in single layer graphene on the300nm SiO2/Si substrate prepared by chemical vapor deposition (CVD). Two types of ordered GBs, named (3,1)|(1,3) GB and (2,0)|(2,0) GB, formed by successive pentagon-heptagon rings and pentagon-octagon-pentagon rings, respectively, are found and detailed studies on the electronic properties with-atomic precision. Joint with the first-principles calculation, for the first time, we present the direct experimental evidence of the existence of the van Hove singularities (VHSs) in ordered graphene, which can greatly enhance the conductivity of graphene. Then, we propose a promising structure of graphene nanoribbons (GNRs) embedding with a proper ordered GB to fabricate functional devices with enhanced conductivity. The relative disordered GBs are shown quite opposite results, which are detrimental to the conductance of graphene. Our experimental results shed light to understanding the contradictory transport measurement results about GBs if the order degree of GBs is taken into account.
     In chapter3, we study two types of strained structures and their electronic properties. Firstly, the (1,0) dislocation, a pentagon-heptagon pair, is observed in graphene by STM. The (1,0) dislocation shows intrinsic out-of-plane distortion, with a3D size of2.1nm×2.4nm×3.3A. The electronic properties of VHS states are determined, combined with theoretical calculations. Gap opening due to the strain in the (1,0) dislocations is observed. The other strained structure is a triple-folded graphene. Landau quantization is found, with a linear relation between the energies of the LLs and sgn(n)(|n|(|n|+1))1/2. Combined with the apparent height of the structure, a model of a triple-folded graphene structure is proposed.
     In chapter4, by controlling the ratio of the source gases, we obtain N-doped graphene with different chemical forms and concentrations of the N dopants prepared by low pressure-CVD. Characterized by XPS, the chemical forms of the N dopants are determined to be graphitic, pyrrolic and pyridinic. After STM studies combined with the theoretical calculations, we confirm the structures, electronic properties and doping effects of the different N dopants. Typically, the graphitic N is with n-type doping effect, while the pyridinic N with p-type doping effect. After the Hall Effect measurements of the N-doped graphene with different N dopant ratios, we obtain both n-type graphene and p-type graphene. Therefore, we controllably tune the graphene doping level with only single element of N. The graphitic and pyridinic N defects are formed isolated domains by each, with n-type or p-type doping level. With liquid pyridine by atmospheric pressure-CVD, we obtained single layer N-doped graphene, too. Using STM/STS, the graphitic and pyridinic N defects are also found, which can locate very close to each other in the graphene sheet, without forming isolated domains with one kind of pure N defects.
     In chapter5, after Ar+sputtering, we obtain monovacancies, divacancies, tetravacancies and other point defects in graphene on an insulator substrate. During the local probe of STM, we find most the defects are monovacancies with our optimized sputtering parameters. Most interestingly, more than80%of the monovacancies are located at the same sublattices. The electronic properties of the monovacancies are also resolved.
引文
Bae, S., H. Hyeongkeun Kim, et al. (2010). "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature nanotech.5:574-578.
    Binnig, G., H. Rohrer, et al. (1982). "Surface Studies by Scanning Tunneling Microscopy." Physical Review Letters 49:57-61.
    Binnig, G., H. Rohrer, et al. (1983). "7 X 7 Reconstruction on Si(111) Resolved in Real Space." Physical Review Letters 50(2):120-123.
    Brar, V. W., R. Decker, et al. (2011). "Gate-controlled ionization and screening of cobalt adatoms on a graphene surface." Nature Physics 7:43-47.
    Castro Neto, A. H., N. M. R. Peres, et al. (2009). "The electronic properties of graphene." Rev. Mod. Phys.81(1):109-162.
    Coraux, J., A. T. N'Diaye, et al. (2008). "Structural coherency of graphene on Ir(111)." Nano Lett 8(2): 565-570.
    Das, A., S. Pisana, et al. (2008). "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nat Nanotechnol 3(4):210-215.
    Dean, C. R., L. Wang, et al. (2013). "Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices." Nature 497(7451):598-602.
    Eigler, D. M. and E. K. Schweizer (1990). "Positioning single atoms with a scanning tunnelling microscope." Nature 244:524-526.
    Elias, D. C., R. V. Gorbachev, et al. (2011). "Dirac cones reshaped by interaction effects in suspended graphene." Nature Physics 7:701-704.
    Feldman, B. E., B. Krauss, et al. (2012). "Unconventional sequence of fractional quantum Hall states in suspended graphene." Science 337(6099):1196-1199.
    Feng, W., S. Lei, et al. (2011). "Periodically Modulated Electronic Properties of the Epitaxial Monolayer Graphene on Ru(0001)." The Journal of Physical Chemistry C 115(50): 24858-24864.
    Gao, L., J. R. Guest, et al. (2010). "Epitaxial graphene on Cu(111)." Nano Lett 10(9):3512-3516.
    Gao, L., W. Ren, et al. (2010). "Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition." Applied Physics Letters 97(18):183109.
    Geim, A. K. and K. S. Novoselov (2007). "The rise of graphene." Nature Materials 6:183-191.
    Goncher, S. J., L. Zhao, et al. (2013). "Substrate level control of the local doping in graphene." Nano Lett 13(4):1386-1392.
    Graf, D., F. Molitor, et al. (2007). "Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene." Nano Lett 7(2):238-242.
    Grantab, R., V. B. Shenoy, et al. (2010). "Anomalous strength characteristics of tilt grain boundaries in graphene." Science 330(6006):946-948.
    Guillemette, J., S. S. Sabri, et al. (2013). "Quantum Hall Effect in Hydrogenated Graphene." Physical Review Letters 110(17).
    Guo, D., T. Kondo, et al. (2012). "Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field." Nat Commun 3:1068.
    Gupta, A., G. Chen, et al. (2006). "Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films." Nano Lett 6(12):2667-2673.
    Hashimoto, A., K. Suenaga, et al. (2004). "Direct evidence for atomic defects in graphene layers." Nature 430(7002):867-870.
    Hibino, H., H. Kageshima, et al. (2010). "Graphene Growth on Silicon Carbide." NTT Technical Review 8(8):1-6.
    Ho, W. (2002). "Single-molecule chemistry." The Journal of Chemical Physics 117(24):11033.
    Hou, J. G., Y. Jinlong, et al. (2001). "Topology of twodimensional C60 domains." Nature 409: 304-305.
    Huang, H., W. Chen, et al. (2008). "Bottom-up Growth of Epitaxial Graphene on 6H-SiC(0001)." ACS Nano 2(12):2513-2518.
    Huang, P. Y, C. S. Ruiz-Vargas, et al. (2011). "Grains and grain boundaries in single-layer graphene atomic patchwork quilts." Nature 469(7330):389-392.
    Hunt, B., J. D. Sanchez-Yamagishi, et al. (2013). "Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure." Science 340:1427-1430.
    Kalbac, M., A. Reina-Cecco, et al. (2010). "The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene." ACS NANO 4(10):6055-6063.
    Kim, K., Z. Lee, et al. (2011). "Grain Boundary Mapping in Polycrystalline Graphene." ACS Nano 5: 2142-2146.
    Koepke, J. C., J. D. Wood, et al. (2013). "Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries:A Scanning Tunneling Microscopy Study." ACS Nano 7:75-86.
    Lahiri, J., Y. Lin, et al. (2010). "An extended defect in graphene as a metallic wire." Nature Nanotechnology 5:326-329.
    Lauffer, P., K. V. Emtsev, et al. (2008). "Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy." Physical Review B 77(15).
    Lee, C., X. Wei, et al. (2008). "Measurement of the elastic properties and intrinsic strength of monolayer graphene." Science 321(5887):385-388.
    Lee, G. H., R. C. Cooper, et al. (2013). "High-strength chemical-vapor-deposited graphene and grain boundaries." Science 340(6136):1073-1076.
    Lehtinen, O., S. Kurasch, et al. (2013). "Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation." Nat Commun 4.
    Li, G., A. Luican-Mayer, et al. (2013). "Evolution of Landau levels into edge states in graphene." Nat Commun 4:1744.
    Li, X., W. Cai, et al. (2009). "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324(5932):1312-1314.
    Li, X., R. Zhang, et al. (2012). "Stretchable and highly sensitive graphene-on-polymer strain sensors." Sci Rep 2:870.
    Li, X., Y. Zhu, et al. (2009). "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes." Nano Lett 9:4359-4363.
    Li, Z., P. Wu, et al. (2011). "Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources." ACS NANO 5(4):3385-3390.
    Liu, L., H. Zhou, et al. (2012). "A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene." Journal of Materials Chemistry 22(4): 1498.
    Lucchese, M. M., F. Stavale, et al. (2010). "Quantifying ion-induced defects and Raman relaxation length in graphene." Carbon 48(5):1592-1597.
    Maassen, T., J. van den Berg, et al. (2013). "Localized States Influence Spin Transport in Epitaxial Graphene." Physical Review Letters 110(6).
    Maassen, T., J. J. van den Berg, et al. (2012). "Long spin relaxation times in wafer scale epitaxial graphene on SiC(OOO1)." Nano Lett 12(3):1498-1502.
    Malard, L. M., M. A. Pimenta, et al. (2009). "Raman spectroscopy in graphene." Physics Reports 473(5-6):51-87.
    Manoharan, H. C., C. P. Lutz, et al. (2000). "Quantum mirages formed by coherent projection of electronic structure." Nature 403:512-515.
    Meyer, J. C., A. K. Geim, et al. (2007). "The structure of suspended graphene sheets." Nature 446(7131):60-63.
    Nazin, G, Y. Zhang, et al. (2010). "Visualization of charge transport through Landau levels in graphene." Nature Physics 6:870-874.
    Nemes-Incze, P., P. Vancsd, et al. (2013). "Electronic states of disordered grain boundaries in graphene prepared by chemical vapor deposition." Carbon 64:178-186.
    Novoselov, K. S., A. K. Geim, et al. (2004). "Electric field effect in atomically thin carbon films." Science 306(5696):666-669.
    Novoselov, K. S., Z. Jiang, et al. (2007). "Room-Temperature Quantum Hall Effect in Graphene." Science 315:1379.
    Oznuluer, T., E. Pince, et al. (2011). "Synthesis of graphene on gold." Applied Physics Letters 98(181: 183101.
    Pan, S., Q. Fu, et al. (2009). "Design and control of electron transport properties of single molecules." Proc Natl Acad Sci U S A 106(36):15259-15263.
    Parret, R., M. Paillet, et al. (2012). "In Situ Raman Probing of Graphene over a Broad Doping Range upon Rubidium Vapor Exposure." ACS NANO 7(1):165-173.
    Pimenta, M. A., G Dresselhaus, et al. (2007). "Studying disorder in graphite-based systems by Raman spectroscopy." Phys Chem Chem Phys 9(11):1276-1291.
    Ponomarenko, L. A., R. V. Gorbachev, et al. (2013). "Cloning of Dirac fermions in graphene superlattices." Nature 497(7451):594-597.
    Rasool, H. I., C. Ophus, et al. (2013). "Measurement of the intrinsic strength of crystalline and polycrystalline graphene." Nat Commun 4.
    Reina, A., X. Jia, et al. (2009). "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition." Nano Lett 9:30-35.
    Schedin, F., A. K. Geim, et al. (2007). "Detection of individual gas molecules adsorbed on graphene." Nat Mater 6(9):652-655.
    Shim, J., C. H. Lui, et al. (2012). "Water-gated charge doping of graphene induced by mica substrates." Nano Lett 12(2):648-654.
    Sun, Z., Z. Yan, et al. (2010). "Growth of graphene from solid carbon sources." Nature 468(7323): 549-552.
    Sutter, E., P. Albrecht, et al. (2009). "Graphene growth on polycrystalline Ru thin films." Applied Physics Letters 95(13):133109.
    Tapaszto, L., P. Nemes-Incze, et al. (2012). "Mapping the electronic properties of individual graphene grain boundaries." Applied Physics Letters 100(5):053114.
    Tombros, N., C. Jozsa, et al. (2007). "Electronic spin transport and spin precession in single graphene layers at room temperature." Nature 448(7153):571-574.
    Tsen, A. W., L. Brown, et al. (2012). "Tailoring electrical transport across grain boundaries in polycrystalline graphene." Science 336(6085):1143-1146.
    Ugeda, M. M., D. Fernandez-Torre, et al. (2011). "Point Defects on Graphene on Metals." Physical Review Letters 107(11).
    Wallace, P. (1947). "The Band Theory of Graphite." Physical Review 71(9):622-634.
    Wang, H., G Wang, et al. (2012). "Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation." J Am Chem Soc 134(8): 3627-3630.
    Wang, Y., V. W. Brar, et al. (2012). "Mapping Dirac quasiparticles near a single Coulomb impurity on graphene." Nature Physics 8:653-657.
    Wang, Y., D. Wong, et al. (2013). "Observing atomic collapse resonances in artificial nuclei on graphene." Science 340(6133):734-737.
    Warner, J. H., E. R. Margine, et al. (2012). "Dislocation-driven deformations in graphene." Science 337(6091):209-212.
    Xu, K., P. Cao, et al. (2010). "Graphene visualizes the first water adlayers on mica at ambient conditions." Science 329(5996):1188-1191.
    Xu, S. C., B. Y. Man, et al. (2013). "Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition." CrystEng Comm 15(10):1840.
    Xue, J., J. Sanchez-Yamagishi, et al. (2011). "Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride." Nature Materials 10:282-285.
    Yan, J., Y. Zhang, et al. (2007). "Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene." Physical Review Letters 98(16):166802.
    Yang, W., G Chen, et al. (2013). "Epitaxial growth of single-domain graphene on hexagonal boron nitride." Nature Materials 12:792-797.
    Yankowitz, M., J. Xue, et al. (2012). "Emergence of superlattice Dirac points in graphene on hexagonal boron nitride." Nature physics 8:382-386.
    Young, A. F., C. R. Dean, et al. (2012). "Spin and valley quantum Hall ferromagnetism in graphene." Nature Physics.
    Yu, Q., L. A. Jauregui, et al. (2011). "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition." Nature Materials 10: 443-449.
    Yu, Q., J. Lian, et al. (2008). "Graphene segregated on Ni surfaces and transferred to insulators." Applied Physics Letters 93(11):113103.
    Zhang, Y, V. W. Brar, et al. (2009). "Origin of spatial charge inhomogeneity in graphene." Nature Physics 5:722-726.
    Zhang, Y, V. W. Brar, et al. (2008). "Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene." Nature Phys.4(8):627-630.
    Zhao, A., Q. Li, et al. (2005). "Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding." Science 309(5740):1542-1544.
    Zhao, L., R. He, et al. (2011). "Visualizing individual nitrogen dopants in monolayer graphene." Science 333(6045):999-1003.
    Albrecht, T. R., H. A. Mizes, et al. (1988). "Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects." Applied Physics Letters 52(5): 362.
    Alexandre, S. S., A. D. Lucio, et al. (2012). "Correlated magnetic states in extended one-dimensional defects in graphene." Nano Lett.12(10):5097-5102.
    Botello-Mendez, A. R., X. Declerck, et al. (2011). "One-dimensional extended lines of divacancy defects in graphene." Nanoscale 3(7):2868-2872.
    Brihuega, I., P. Mallet, et al. (2012). "Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis." Physical Review Letters 109(19).
    Cappelluti, E. and L. Pietronero (1996). "Nonadiabatic superconductivity:The role of van Hove singularities." Physical Review B 53(2):932-944.
    Castro Neto, A. H., N. M. R. Peres, et al. (2009). "The electronic properties of graphene." Rev. Mod. Phys.81(1):109-162.
    Cervenka, J., M. I. Katsnelson, et al. (2009). "Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects." Nature Physics 5:840-844.
    Charlier, J.-C. and S. Roche (2007). "Electronic and transport properties of nanotubes." Rev. Mod. Phys.79(2):677-732.
    Clark, K. W., X.-G. Zhang, et al. (2013). "Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene." ACS Nano 7:7956-7966.
    Dai, Q. Q., Y. F. Zhu, et al. (2013). "Electronic and Magnetic Engineering in Zigzag Graphene Nanoribbons Having a Topological Line Defect at Different Positions with or without Strain." The Journal of Physical Chemistry C 117(9):4791-4799.
    Duong, D. L., G. H. Han, et al. (2012). "Probing graphene grain boundaries with optical microscopy." Nature 490(7419):235-239.
    Fei, Z., A. S. Rodin, et al. (2013). "Electronic and plasmonic phenomena at graphene grain boundaries." Nature Nanotechnology 8:281-285.
    Gan, Y., W. Chu, et al. (2003). "STM investigation on interaction between superstructure and grain boundary in graphite." Surface Science 539(1-3):120-128.
    Gofron, K., J. Campuzano, et al. (1994). "Observation of an "Extended" Van Hove Singularity in YBa2Cu4O8 by Ultrahigh Energy Resolution Angle-Resolved Photoemission." Physical Review Letters 73(24):3302-3305.
    Grantab, R., V. B. Shenoy, et al. (2010). "Anomalous strength characteristics of tilt grain boundaries in graphene." Science 330(6006):946-948.
    Gunlycke, D. and C. T. White (2011). "Graphene Valley Filter Using a Line Defect." Physical Review Letters 106(13).
    Hao, F., D. Fang, et al. (2011). "Mechanical and thermal transport properties of graphene with defects." Applied Physics Letters 99(4):041901.
    Huang, P. Y., C. S. Ruiz-Vargas, et al. (2011). "Grains and grain boundaries in single-layer graphene atomic patchwork quilts." Nature 469(7330):389-392.
    Khomyakov, P. A., G Giovannetti, et al. (2009). "First-principles study of the interaction and charge transfer between graphene and metals." Physical review B 79:195425.
    Kim, K., Z. Lee, et al. (2011). "Grain Boundary Mapping in Polycrystalline Graphene." ACS Nano 5: 2142-2146.
    Kim, P., T. W. Odom, et al. (1999). "Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes:
    Van Hove Singularities and End States." Physical Review Letters 82(6):1225-1228.
    Kindermann, M. (2010). "Scaling and Interaction-Assisted Transport in Graphene with One-Dimensional Defects." Physical Review Letters 105(21).
    Klimov, N. N., S. Jung, et al. (2012). "Electromechanical properties of graphene drumheads." Science 336(6088):1557-1561.
    Koepke, J. C., J. D. Wood, et al. (2013). "Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries:A Scanning Tunneling Microscopy Study." ACS Nano 7:75-86.
    Kumar, S. B. and J. Guo (2012). "Strain-induced conductance modulation in graphene grain boundary." Nano Lett 12(3):1362-1366.
    Lahiri, J., Y. Lin, et al. (2010). "An extended defect in graphene as a metallic wire." Nature Nanotechnology 5:326-329.
    Li, G, A. Luican, et al. (2010). "Observation of Van Hove singularities in twisted graphene layers." Nature Physics 6:109-113.
    Liu, T.-H., G. Gajewski, et al. (2011). "Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations." Carbon 49(7):2306-2317.
    Liu, Y. and B. I. Yakobson (2010). "Cones, pringles, and grain boundary landscapes in graphene topology." Nano Lett 10(6):2178-2183.
    Lopes dos Santos, J. M. B., N. M. R. Peres, et al. (2007). "Graphene Bilayer with a Twist:Electronic Structure." Physical Review Letters 99(25).
    Lui, C. H., L. Liu, et al. (2009). "Ultraflat graphene." Nature 462(7271):339-341.
    Luican, A., G Li, et al. (2011). "Single-Layer Behavior and Its Breakdown in Twisted Graphene Layers." Physical Review Letters 106(12).
    McChesney, J. L., A. Bostwick, et al. (2010). "Extended van Hove Singularity and Superconducting Instability in Doped Graphene." Physical Review Letters 104(13).
    Mesaros, A., S. Papanikolaou, et al. (2010). "Electronic states of graphene grain boundaries." Physical Review B 82(20).
    Mintmire, J. W. and C. T. White (1998). "Universal Density of States for Carbon Nanotubes." Physical Review Letters 81(12):2506-2509.
    Nemes-Incze, P., P. Vancso, et al. (2013). "Electronic states of disordered grain boundaries in graphene prepared by chemical vapor deposition." Carbon 64:178-186.
    Odom, T. W., J.-L. Huang, et al. (2000). "Structure and Electronic Properties of Carbon Nanotubes." X. Phys. Chem. B 104:2794-2809.
    Piriou, A., N. Jenkins, et al. (2011). "First direct observation of the Van Hove singularity in the tunnelling spectra of cuprates." Nat Commun 2:221.
    Pong, W.-T., J. Bendall, et al. (2007). "Observation and investigation of graphite superlattice boundaries by scanning tunneling microscopy." Surface Science 601(2):498-509.
    Rasool, H. I., C. Ophus, et al. (2013). "Measurement of the intrinsic strength of crystalline and polycrystalline graphene." Nat Commun 4:2811.
    Simonis, P., C. Goffaux, et al. (2002). "STM study of a grain boundary in graphite." Surface Science 511:319-322.
    Son, Y. W., M. L. Cohen, et al. (2006). "Half-metallic graphene nanoribbons." Nature 444(7117): 347-349.
    Tapaszt6, L., P. Nemes-Incze, et al. (2012). "Mapping the electronic properties of individual graphene grain boundaries." Applied Physics Letters 100(5):053114.
    Tsen, A. W., L. Brown, et al. (2012). "Tailoring electrical transport across grain boundaries in polycrystalline graphene." Science 336(6085):1143-1146.
    Van Tuan, D., J. Kotakoski, et al. (2013). "Scaling properties of charge transport in polycrystalline graphene." Nano Lett 13(4):1730-1735.
    Vancso, P., G. I. Mark, et al. (2013). "Electronic transport through ordered and disordered graphene grain boundaries." Carbon 64:101-110.
    Venkataraman, L. and C. M. Lieber (1999). "Molybdenum Selenide Molecular Wires as One-Dimensional Conductors." Phys. Rev. Lett.83:5334-5337.
    Wei, Y., J. Wu, et al. (2012). "The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene." Nature Materials 11:759-763.
    Wildoer, J. G., L. C. Venema, et al. (1998). "Electronicstructureof atomically resolved carbonnanotubes." Nature 391:59-62.
    Yan, W., W. Y. He, et al. (2013). "Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer." Nat Commun 4:2159.
    Yan, W., M. Liu, et al. (2012). "Angle-Dependent van Hove Singularities in a Slightly Twisted Graphene Bilayer." Physical Review Letters 109(12).
    Yazyev, O. V. and S. G. Louie (2010). "Electronic transport in polycrystalline graphene." Nature Materials 9:806-809.
    Yazyev, O. V. and S. G. Louie (2010). "Topological defects in graphene:Dislocations and grain boundaries." Physical Review B 81(19).
    Yu, Q., L. A. Jauregui, et al. (2011). "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition." Nature Materials 10: 443-449.
    Zhang, J. and J. Zhao (2013). "Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries." Carbon 55:151-159.
    Zhang, J., J. Zhao, et al. (2012). "Intrinsic Strength and Failure Behaviors of Graphene Grain Boundaries." ACS Nano 6:2704-2711.
    Zou, X., J. Shang, et al. (2013). "Terahertz Conductivity of Twisted Bilayer Graphene." Physical Review Letters 110(6).
    Benedict, L. X., N. G Chopra, et al. (1998). "Microscopic determination of the interlayer binding energy in graphite." Chemical Physics Letters 286:490-496.
    Bird, L. P. and P. Lambin (2013). "Grain boundaries in graphene grown by chemical vapor deposition." New Journal of Physics 15(3):035024.
    Carpio, A., L. L. Bonilla, et al. (2008). "Dislocations in graphene." New Journal of Physics 10(5): 053021.
    Castro Neto, A. H., N. M. R. Peres, et al. (2009). "The electronic properties of graphene." Rev. Mod. Phys.81(1):109-162.
    Cocco, G., E. Cadelano, et al. (2010). "Gap opening in graphene by shear strain." Physical Review B 81(24).
    Coraux, J., A. T. N'Diaye, et al. (2008). "Structural coherency of graphene on Ir(111)." Nano Lett 8(2): 565-570.
    Gargiulo, F. and O. V. Yazyev (2014). "Topological aspects of charge-carrier transmission across grain boundaries in graphene." Nano Lett 14(1):250-254.
    Guinea, F., M. I. Katsnelson, et al. (2010). "Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering." Nature Physics 6(1):30-33.
    Hashimoto, A., K. Suenaga, et al. (2004). "Direct evidence for atomic defects in graphene layers." Nature 430(7002):867-870.
    Huang, P. Y., C. S. Ruiz-Vargas, et al. (2011). "Grains and grain boundaries in single-layer graphene atomic patchwork quilts." Nature 469(7330):389-392.
    Kim, K., Z. Lee, et al. (2011). "Multiply folded graphene." Physical Review B 83(24):245433.
    Kim, K., Z. Lee, et al. (2011). "Grain Boundary Mapping in Polycrystalline Graphene." ACS Nano 5: 2142-2146.
    Lehtinen, O., S. Kurasch, et al. (2013). "Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation." Nat Commun 4.
    Levy, N,, S. A. Burke, et al. (2010). "Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles." Science 329(5991):544-547.
    Li, G. and E. Y. Andrei (2007). "Observation of Landau levels of Dirac fermions in graphite." Nature Physics 3(9):623-627.
    Liu, T.-H., C.-W. Pao, et al. (2012). "Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations." Carbon 50(10):3465-3472.
    Liu, Y, Y. Y. Li, et al. (2014). "Tuning Dirac states by strain in the topological insulator Bi2Se3." Nature Physics 10:294-299.
    Liu, Y. and B. I. Yakobson (2010). "Cones, pringles, and grain boundary landscapes in graphene topology." Nano Lett 10(6):2178-2183.
    Low, T. and F. Guinea (2010). "Strain-induced pseudomagnetic field for novel graphene electronics." Nano Lett 10(9):3551-3554.
    Lu, J., A. H. Neto, et al. (2012). "Transforming Moire blisters into geometric graphene nano-bubbles." Nat Commun 3:823.
    Lui, C. H., L. Liu, et al. (2009). "Ultraflat graphene." Nature 462(7271):339-341.
    Meng, L., W.-Y. He, et al. (2013). "Strain-induced one-dimensional Landau level quantization in corrugated graphene." Physical Review B 87(20).
    Naumov, I. I. and A. M. Bratkovsky (2011). "Gap opening in graphene by simple periodic inhomogeneous strain." Physical Review B 84(24).
    Vancso, P., G I. Mark, et al. (2013). "Electronic transport through ordered and disordered graphene grain boundaries." Carbon 64:101-110.
    Wang, S. and R. Wang (2013). "The core structure and pseudo-magnetic field of the dislocation in graphene." EPL (Europhysics Letters) 104(2):26002.
    Warner, J. H., E. R. Margine, et al. (2012). "Dislocation-driven deformations in graphene." Science 337(6091):209-212.
    Wei, Y., J. Wu, et al. (2012). "The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene." Nature Materials 11:759-763.
    Xu, K., P. Cao, et al. (2009). "Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers." Nano Lett 9(12):4446-4451.
    Yan, H., Y. Sun, et al. (2012). "Observation of Landau-level-like quantization at 77 K along a strained-induced graphene ridge." Physical Review B 85(3).
    Yan, W., W. Y. He, et al. (2013). "Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer." Nat Commun 4:2159.
    Yazyev, O. V. and S. G Louie (2010). "Electronic transport in polycrystalline graphene." Nature Materials 9:806-809.
    Yazyev, O. V. and S. G. Louie (2010). "Topological defects in graphene:Dislocations and grain boundaries." Physical Review B 81(19).
    Yuan, S., R. Roldan, et al. (2011). "Landau level spectrum of ABA-and ABC-stacked trilayer graphene." Physical Review B 84(12).
    Zhang, D.-B., G. Seifert, et al. (2014). "Strain-Induced Pseudomagnetic Fields in Twisted Graphene Nanoribbons." Physical Review Letters 112(9).
    Zhang, J. and J. Zhao (2013). "Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries." Carbon 55:151-159.
    Zhang, Y, V. W. Brar, et al. (2009). "Origin of spatial charge inhomogeneity in graphene." Nature Physics 5:722-726.
    Zhang, Y, V. W. Brar, et al. (2008). "Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene." Nature Phys.4(8):627-630.
    Zhang, Y, T. Gao, et al. (2011). "Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy." ACS Nano 5(5):4014-4022.
    Zhou, S. Y, G. H. Gweon, et al. (2006). "First direct observation of Dirac fermions in graphite." Nature Physics 2(9):595-599.
    Ao, Z. M., A. D. Hernandez-Nieves, et al. (2012). "The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene." Phys Chem Chem Phys 14(4):1463-1467.
    Brenner, K. and R. Murali (2011). "In situ doping of graphene by exfoliation in a nitrogen ambient." Applied Physics Letters 98(11):113115.
    Cancado, L. G., K. Takai, et al. (2006). "General equation for the determination of the crystallite size L[sub a] of nanographite by Raman spectroscopy." Applied Physics Letters 88(16):163106.
    Cao, H., X. Zhou, et al. (2013). "Low-temperature preparation of nitrogen-doped graphene for supercapacitors." Carbon 56:218-223.
    Castro Neto, A. H., N. M. R. Peres, et al. (2009). "The electronic properties of graphene." Reviews of Modern Physics 81(1):109-162.
    Cho, Y. J., H. S. Kim, et al. (2011). "Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes." The Journal of Physical Chemistry C 115(19):9451-9457.
    Das, A., S. Pisana, et al. (2008). "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nature Nanotechnology 3(4):210-215.
    Das, A., S. Pisana, et al. (2008). "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor." Nat Nanotechnol 3(4):210-215.
    Deng, D., X. Pan, et al. (2011). "Toward N-Doped Graphene via Solvothermal Synthesis." Chemistry of Materials 23(5):1188-1193.
    Ferrari, A. C. (2007). "Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects." Solid State Communications 143(1-2):47-57.
    Gao, H., L. Song, et al. (2012). "A simple method to synthesize continuous large area nitrogen-doped graphene." Carbon 50(12):4476-4482.
    Geim, A. K. and K. S. Novoselov (2007). "The rise of graphene." Nature materials 6:183-191.
    Goncher, S. J., L. Zhao, et al. (2013). "Substrate level control of-the local doping in graphene." Nano Lett 13(4):1386-1392.
    Graf, D., F. Molitor, et al. (2007). "Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene." Nano Lett 7(2):5.
    Guo, B., Q. Liu, et al. (2010). "Controllable N-Doping of Graphene." Nano Lett 10(12):4975-4980.
    Gupta, A., G. Chen, et al. (2006). "Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films." Nano Lett 6(12):2667-2673.
    He, K. T., J. D. Wood, et al. (2012). "Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica." Nano Lett 12(6):2665-2672.
    Jalili, S. and R. Vaziri (2011). "Study of the electronic properties of Li-intercalated nitrogen doped graphite." Molecular Physics 109(5):687-694.
    Jin, Z., J. Yao, et al. (2011). "Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets." ACS NANO 5(5):4112-4117.
    Joucken, F., Y. Tison, et al. (2012). "Localized state and charge transfer in nitrogen-doped graphene." Physical Review B 85(16):161408.
    Koepke, J. C., J. D. Wood, et al. (2013). "Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries:A Scanning Tunneling Microscopy Study." ACS Nano 7:75-86.
    Kondo, T., S. Casolo, et al. (2012). "Atomic-scale characterization of nitrogen-doped graphite:Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms." Physical Review B 86(3).
    Kong, X. K. and Q. W. Chen (2013). "Improved performance of graphene doped with pyridinic N for Li-ion battery:a density functional theory model." Phys Chem Chem Phys 15(31): 12982-12987.
    Li, M., W. Wu, et al. (2012). "Synthesis and upconversion luminescence of N-doped graphene quantum dots." Applied Physics Letters 101(10):103107.
    Li, X., C. W. Magnuson, et al. (2011). "Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper." J Am Chem Soc 133(9):2816-2819.
    Li, X., H. Wang, et al. (2009). "Simultaneous Nitrogen Doping and Reduction of Graphene." J Am Chem Soc 131:15939-15944.
    Li, Y., Y. Zhao, et al. (2012). "Nitrogen-doped graphene quantum dots with oxygen-rich functional groups." J Am Chem Soc 134(1):15-18.
    Li, Y, W. Zhou, et al. (2012). "An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes." Nature Nanotechnology 72:394-400.
    Lin, Y.-C., C.-Y. Lin, et al. (2010). "Controllable graphene N-doping with ammonia plasma." Applied Physics Letters 96(13):133110.
    Lucchese, M. M., F. Stavale, et al. (2010). "Quantifying ion-induced defects and Raman relaxation length in graphene." Carbon 48(5):1592-1597.
    Luo, Z., S. Lim, et al. (2011). "Pyridinic N doped graphene:synthesis, electronic structure, and electrocatalytic property." Journal of Materials Chemistry 21(22):8038-8044.
    Lv, R., Q. Li, et al. (2012). "Nitrogen-doped graphene:beyond single substitution and enhanced molecular sensing." Sci Rep 2:586.
    Panchakarla, L. S., A. Govindaraj, et al. (2007). "Nitrogen-and boron-doped double-walled carbon nanotubes." ACS NANO 1(5):494-500.
    Panchakarla, L. S., K. S. Subrahmanyam, et al. (2009). "Synthesis, Structure, and Properties of Boron-and Nitrogen-Doped Graphene." Advanced Materials 21(46):4726-4730.
    Park, S., Y. Hu, et al. (2012). "Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping." Nat Commun 3:638.
    Park, Y, V. Choong, et al. (1996). "Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy." Applied Physics Letters 68(19):2699.
    Parret, R., M. Paillet, et al. (2012). "In Situ Raman Probing of Graphene over a Broad Doping Range upon Rubidium Vapor Exposure." ACS NANO 7(1):165-173.
    Qian, W., X. Cui, et al. (2011). "Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction." ACS Appl Mater Interfaces 3(7):2259-2264.
    Qu, L. T., Y. Liu, et al. (2010). "Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells." ACS NANO 4(3):1321-1326.
    Reddy, A. L. M., A. Srivastava, et al. (2010). "Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application." ACS NANO 4(11):6337-6342.
    Reina, A., X. Jia, et al. (2009). "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition." Nano Lett 9(1):30-35.
    Schiros, T., D. Nordlund, et al. (2012). "Connecting dopant bond type with electronic structure in N-doped graphene." Nano Lett 12(8):4025-4031.
    Shim, J., C. H. Lui, et al. (2012). "Water-gated charge doping of graphene induced by mica substrates." Nano Lett 12(2):648-654.
    Srivastava, D., M. Menon, et al. (2004). "Vacancy-mediated mechanism of nitrogen substitution in carbon nanotubes." Physical Review B 69(15):153414.
    Stampfer, C., F. Molitor, et al. (2007). "Raman imaging of doping domains in graphene on SiO[sub 2]." Applied Physics Letters 91(24):241907.
    Sun, Z., Z. Yan, et al. (2010). "Growth of graphene from solid carbon sources." Nature 468(7323): 549-552.
    Tapaszto, L., P. Nemes-Incze, et al. (2012). "Mapping the electronic properties of individual graphene grain boundaries." Applied Physics Letters 100(5):053114.
    Usachov, D., O. Vilkov, et al. (2011). "Nitrogen-doped graphene:efficient growth, structure, and electronic properties." Nano Lett 11(12):5401-5407.
    Velez-Fort, E., C. Mathieu, et al. (2012). "Epitaxial Graphene on 4H-SiC(0001) Grown under Nitrogen Flux Evidence of Low Nitrogen Doping and High Charge Transfer." ACS NANO 6(12):10893-10900
    Wang, B. and S. Pantelides (2011). "Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules." Physical Review B 83(24):245403.
    Wang, H., T. Maiyalagan, et al. (2012). "Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications." ACS Catalysis 2(5):781-794.
    Wang, X., X. Li, et al. (2009). "N-Doping of Graphene Through Electrothermal Reactions with Ammonia." Science 324:4.
    Wang, Y., Y. Y. Shao, et al. (2010). "Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing." ACS NANO 4(4):1790-1798.
    Wei, D. C., Y. Q. Liu, et al. (2009). "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties." Nano Lett 9(5):1752-1758.
    Wu, G, N. H. Mack, et al. (2012). "Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium-O2 Battery Cathodes." ACS NANO 6(11):9764-9776.
    Wu, M., C. Cao, et al. (2010). "Light non-metallic atom (B, N, O and F)-doped graphene:a first-principles study." Nanotechnology 21(50):505202.
    Wu, Z.-S., W. Ren, et al. (2011). "Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries." ACS NANO 5(7):5463-5471.
    Xu, K., P. Cao, et al. (2010). "Graphene visualizes the first water adlayers on mica at ambient conditions." Science 329(5996):1188-1191.
    Yan, J., Y. Zhang, et al. (2007). "Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene." Physical Review Letters 98(16):166802.
    Yan, K., D. Wu, et al. (2012). "Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation." Nat Commun 3:1280.
    Yu, Q., L. A. Jauregui, et al. (2011). "Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition." Nature materials 10(6): 443-449.
    Yu, Y.-J., Y. Zhao, et al. (2009). "Tuning the Graphene Work Function by Electric Field Effect." Nano Lett 9(10):3430-3434.
    Zhang, L., J. Niu, et al. (2012). "Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells." Langmuir 28(19):7542-7550.
    Zhang, L. and Z. Xia (2011). "Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells." The Journal of Physical Chemistry C 115(22):11170-11176.
    Zhang, L. S., X. Q. Liang, et al. (2010). "Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell." Phys Chem Chem Phys 12(38):12055-12059.
    Zhang, Y., V. W. Brar, et al. (2009). "Origin of spatial charge inhomogeneity in graphene." Nature Physics 5:722-726.
    Zhao, L., R. He, et al. (2011). "Visualizing Individual Nitrogen Dopants in Monolayer Graphene." Science 333:5.
    Zhao, L., M. Levendorf, et al. (2013). "Local atomic and electronic structure of boron chemical doping in monolayer graphene." Nano Lett 13(10):4659-4665.
    Zheng, B., P. Hermet, et al. (2011). "Scanning Tunneling Microscopy Simulations of Nitrogen-and Boron-Doped Graphene and Single-Walled Carbon Nanotubes." ACS NANO 4(7): 4165-4173.
    张滨,孙玉珍,et al.(2007).”关于用UPS测量功函数.pdf.”物理测试25(4):21-23.
    Chen, J.-H., L. Li, et al. (2011). "Tunable Kondo effect in graphene with defects." Nature Physics 7: 535-538.
    Esquinazi, P., D. Spemann, et al. (2003). "Induced Magnetic Ordering by Proton Irradiation in Graphite." Physical Review Letters 91(22).
    Jee, H.-g., K.-H. Jin, et al. (2011). "Controlling the self-doping of epitaxial graphene on SiC via Ar ion treatment." Physical Review B 84(7).
    Kumazaki, H. and D. S. Hirashima (2008). "Tight-binding study of nonmagnetic-defect-induced magnetism in graphene." Low Temperature Physics 34(10):805.
    Lehtinen, P., A. Foster, et al. (2004). "Irradiation-Induced Magnetism in Graphite:A Density Functional Study." Physical Review Letters 93(18).
    Nair, R. R., M. Sepioni, et al. (2012). "Spin-half paramagnetism in graphene induced by point defects." Nature Physics 8:199-202.
    Ugeda, M. M., I. Brihuega, et al. (2012). "Electronic and structural characterization of divacancies in irradiated graphene." Physical Review B 85(12).
    Ugeda, M. M., D. Ferndndez-Torre, et al. (2011). "Point Defects on Graphene on Metals." Physical Review Letters 107(11).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700