内蒙古赤峰市金蟾山金矿床成矿机制与成矿构造背景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金蟾山金矿床位于华北克拉通北缘东段赤峰-朝阳金矿化集中区。区域内主要出露太古界建平群及元古界明安山群变质岩;中生界中侏罗系至白垩系砂砾岩、火山碎屑岩及凝灰岩;以及新生界上第三系和第四系地层。研究区海西-燕山期岩浆活动强烈,并以中酸性岩类为主,各类脉岩广泛发育。东西向深大断裂和北东、北北东向断隆断陷带控制了区内岩浆岩和矿床的分布。区内金矿点近百处,已开采的金矿床十几处。
     矿区出露地层主要为晚太古代建平群、元古宙明安山群变质岩以及第四系沉积物。区内岩浆岩主要为安家营子花岗岩,后期发育大量脉岩,以流纹斑岩最为发育。控矿构造为一系列北东-北北东向平行侧列产出的断裂。矿体呈脉状产于断裂构造中,产状与断裂一致。矿石矿物主要有黄铁矿、黄铜矿、方铅矿、闪锌矿、磁黄铁矿等,金矿物主要为银金矿,其次为自然金和金银矿。脉石矿物以石英为主,其次为绿泥石、绢云母、钾长石、高岭土及碳酸盐等。矿石结构主要有自形-半自形、他形粒状结构、包含结构、交代结构以及碎裂结构等。构造类型主要有块状、斑杂状、浸染状、细脉浸染状、细脉-网脉状及条带状构造等。围岩蚀变发育,主要有钾长石化、绢云母化、绿泥石化、硅化、黄铁矿化、碳酸盐化等。该矿床可以划分为内生期和表生期两个成矿期,内生期又可进一步分为石英—黄铁矿阶段、多金属硫化物阶段和石英-黄铁矿-碳酸盐三个成矿阶段。
     与成矿密切相关的安家营子花岗岩SiO2含量为60.70%~68.01%,MgO 0.41%~2.44%;具高Al2O3≥15%和Sr(488×10-6~686×10-6)、低Y(9.04×10-6~18.60×10-6)和Yb(0.84×10-6~1.76×10-6)特点,富集轻稀土、亏损重稀土(La/Yb) N=17.62-56.11)和高场强元素及弱的负Eu异常等,与中国东部埃达克质岩的地球化学特征相似。主要氧化物Harker图解及主微量元素Al2O3 (SiO2)/CaO-Na2O/CaO、Ce/Rb-La/Rb等协变图解具有良好的线性演化关系,指示岩浆源区可能存在混合作用;这与花岗岩中含椭球状暗色包体、且包体中含花岗岩成分,镜下观察见花岗岩中黑云母斑晶含长针状磷灰石、角闪石斑晶中包裹黑云母、长石具有反环带以及暗色包体内含钾长石大斑晶等组成所揭示的岩浆混合信息一致。全岩ISr(t)变化于0.7055~0.7060、εNd(t)为-8.19,同位素组成具沿地幔演化线分布特点;铅同位素组成206Pb/204Pb=17.194-17.288,207Pb/204Pb=15.340-15.391, 208Pb/204Pb=37.243-37.392,构造模式图解显示其主要位于下地壳和地幔演化线之间或地幔与造山带演化线之间,线性分布特点明显,共同表明安家营子花岗岩具壳幔混合特征。综合岩相学、主微量元素地球化学及同位素地球化学结果可知:岩石成因与俯冲板片的部分熔融、玄武质岩浆的地壳混染与分离结晶过程(AFC)以及拆沉榴辉岩相下地壳的部分熔融熔融模式相区别,而其源区过程可能为底侵高温岩浆促使早期底侵形成的玄武质下地壳和/或古老下地壳部分熔融,两者混合形成埃达克质熔体。定量模型计算表明,安家营子花岗岩演化过程中斜长石和黑云母、锆石等矿物的分离结晶对微量元素的变化产生了显著影响。
     矿石石英流体包裹体的H-O同位素δ18O水=2.1‰~8.4‰、δD水为-96.5‰~-80‰,方解石δ180水为-7.5‰~8.3‰,δD水介于-102‰~54‰,表明金蟾山金矿床成矿流体主要为岩浆水,后期有大气降水的混合。黄铁矿、黄铜矿、闪锌矿的S同位素δ34S值为-2.6‰~+7.6‰,峰值0‰~+1‰,均值+1.6‰,塔式效应明显,具岩浆硫特点。Pb同位素206Pb/204Pb=17.088-17.591、207Pb/204Pb=15.367-15.578、208Pb/204Pb=37.167-38.091,与安家营子岩体铅同位素组成一致,表明成矿物质来源于深源岩浆。以上同位素结果均表明金成矿与安家营子花岗岩具有密切的成因联系。石英流体包裹体的均一温度为220~380℃,盐度为4.0~40.1ω(NaCl)%,流体包裹体密度集中于0.66~0.87g/cm3,压力和深度估算分别为21.16~34.19Mpa、0.80~1.29 km,属浅成成矿环境。由包裹体气液相成分可知金蟾山金矿床成矿流体属H2O-CO2-KCl-NaCl型,金以硫化物络合物迁移为主。以下两种机制可导致金的沉淀:(1)深部高温成矿流体与大气降水混合,流体冷却,引起金硫络合物平衡的破坏,是金沉淀的主要机理;(2)含矿流体沿破碎带迁移过程中,水岩反应和成矿流体中Fe2+、Zn2+、Pb2+等的沉淀,导致pH、fO2和硫的总浓度的降低,引起金硫络合物平衡的破坏,导致金沉淀。
     金蟾山金矿床直接的赋矿围岩安家营子花岗岩锆石U-Pb年龄为132±5Ma,矿田内广泛发育的流纹斑岩脉大部分与金矿脉、矿化蚀变带平行分布,局部可见其侵入到矿化蚀变带中,侵位时代比金矿化时代略晚或同期,其锆石U-Pb年龄为124.9~126.5Ma,从而将金矿成矿时代限定在132~126Ma之间,属燕山晚期。这一时期与中国东部岩石圈减薄、剧烈的岩浆活动及成矿大爆发等地质事件相吻合,表明金蟾山金矿床与我国胶东、小秦岭等地金矿床类似,是深部岩石圈破坏的成矿响应。安家营子花岗岩携带的深部成矿物质沿北北东向(红山-八里罕?)断裂上升侵位,岩浆期后成矿热液充填于北东、北北东向断裂中,形成了金蟾山主要工业矿体。
Jinchanshan gold deposit located in eastern of north margin of North China platform, Chifeng-Chaoyang gold mineralization concentration area. In the region, exposed Archean Jianping Group and Proterozoic Minganshan Group metamorphic rocks; Mesozoic middle Jurassic to Cretaceous sandstone, conglomerate, pyroclastic rocks and tuff; and Cenozoic Tertiary and quaternary strata. Magmatism of Hercynian-Yanshan period in study is strong, the mainly are intermediate-acid rocks,and various types of dykes are extensive development. East-West deep fault and NE, NNE rift zone control the distribution of magmatic rocks and deposits in the region area. The are nearly one hundred gold points, and more than ten exploited gold deposits in this area.
     The main formations outcropped in the mining area are late archean Jianping group,proterozoic Mingan group metamorphic and quaternary sediments. Anjiayingzi granite is the main Magmatic rock in mining area. There are also many dikes such as quartz porphyry, granite prophyry, felsite prophyry, rhyolite prophyry, invaded at late period. The main ore-controlling structure are fault, which strike is NE-NNE. Orebody located in these faults, shape like vein, has a same attitude as the faults. Main Metallic mineral is pyrite, next are chalcopyrite, galena, sphalerite, pyrrhotite and a little of matildite, skutterudite and cobaltite. The main auriferous minerals is electrum, next are native gold and kustelite. The main nonmetallic mineral is quartz, next are chlorite, sericite, potash feldspar, kaolinite and carbonate. The main ore texture have euhedral-half euhedral texture, allotriomorphic granular texture, including texture, metasomatic texture.solid solution separation texture and fragmentation texture. Structure type have massive tectonic type, complex-shaped plaques, disseminated, veinlet disseminated, stringer vein-stockwork, and banded structure, etc.. Wall rock had occurred alteration, mainly of potash feldspathization, sericitization, chloritization, silicification, pyritization, carbonatization and so on. The deposit can be divided into endogenous period and supergene period of both the endogenous period is further divided into quartz-pyrite stage, polymetallic sulfide stage and quartz-pyrite-carbonate ore stage.
     SiO2 of Anjiayingzi granite closely related with the mineralization is 60.70%-68.01%, MgO ranging from 0.41% to 2.44%; and with high Al2O3≥15%, high Sr (488×10-6 686×10-6), low Y (9.04×10-6-18.60×10-6) and Yb (0.84×10-6-1.76×10-6), and LREE enriched and HREE deficit(La/Yb) N=17.62-56.11),and weak negative Eu anomalies,with geochemical characteristics of typical adakitic rocks. Harker diagrams of the major oxides and Al2O3 (SiO2)/ CaO-Na2O/CaO, Ce/Rb-La/Rb diagrams of major and trace elements have good linear evolution relationship, indicating magma mixed in magma source; oval dark inclusion in granite and granite composition in inclusion, long apatite in biotite phenocrysts, mafic hornblende phenocrysts with biotite, feldspar anti-ring and dark inclusion bodies containing large feldspar phenocrysts of microscopic observation, indicating the same crust-mantle mixed messages. Isr (t) change from 0.7055 to 0.7060 andεNd (t) is-8.19 the whole rock, distribution of isotopic composition along the mantle evolution line; Pb isotopic composition of 206Pb/204Pb=17.194-17.288,207Pb/204Pb=15.340-15.391,208Pb/204Pb=37.243-37.392,structure model diagrams show the Pb isotopic is mainly between the lower crust and upper mantle or between the mantle and the orogenic evolution of lines, have good linear distribution, which indicate crust-mantle mixed feature of Anjiayingzi granite. Petrographic, major and trace element geochemistry and isotope results suggest:rock genesis have different from partial melting of subducted slab, crustal contamination and fractional crystallization processes (AFC) of basaltic magma and partial melting model of eclogite facies lower crust. The sourse maybe mixed between old lower crust and basic melt which come from partial melting of underplate basaltic lower crust.Quantitative model show that fractional crystallization of plagioclase, biotite, zircon and other minerals in evolution of Anjiayingzi granite have a significant affect on changes of the trace element.
     The study on H-0 isotopic of fluid inclusions in quartzs have shown that metallogenetic fluids in Jinchanshan gold deposit are mainly magmatic water with meteoric water mixed later. Characteristics of S and Pb isotopic in sulfides indicate that metallogenic matter are from deep-derived magma,with crust-mantle mixing characteristics.These isotope results above show that gold mineralization have a close genetic relationship with Anjiayingzi granite. Homogenization temperatures of fluid inclusions in Quartzs are 220-380℃, and salinity is 4.0-40.1ω(NaCl)%, and density is concentrated in 0.66-0.87g/cm3, and pressure and depth estimates are 21.16-34.19Mpa and 0.80-1.29 km, show a shallow metallogenetic environment. Gas and liquid components of fluid inclusions show that metallogenetic fluids in Jinchanshan gold deposit is H2O-CO2-KCl-NaCl-type, that is alkali-rich.In this high-temperature and alkaline fluids, migrate of gold is mainly complexes of sulfide. A variety of mechanisms can result in the precipitation of gold:the deep high-temperature ore fluids are mixed with meteoric water and then fluid cooling, which result in break of balance on Au-S complexes is the main mechanism of gold deposition;With ore fluid migrating along with the broken, water-rock reactions and sedimentation of Fe2+, Zn2+, Pb2+in forming fluids which result in the drop of PH、fO2 and total concentration of sulfur, causing break of balance on Au-S complexes leading to gold deposition.
     U-Pb zircon age of Anjiayingzi granite rock the direct ore-bearing rock of Jinchansh gold deposit is 132±5Ma. Widely developed of rhyolite porphyry dikes within the ore field in the majority gold veins and alteration zone or parallel distribution with its invasion to the alteration, the emplacement age slightly later than the age of gold mineralization and the same period, the U-Pb zircon age is 124.9-126.5Ma, thus limiting the times of gold mineralization is 132-126Ma, between an late Yanshan. This period is coincide with lithospheric thinning in eastern China, intense magmatic activity and mineralization geological events, which show the Jinchanshan gold deposit and Jiaodong gold deposit, gold deposits in Qinling and other places, all the deep lithosphere destruction into mine response. Anjiayingzi carried deep granite minerals along the NNE (Red Hill-balihan?), magmatic ore-forming hydrothermal fill in the north east, north-trending fault formed the Jinchanshan gold deposit.
引文
①内蒙古喀喇沁旗金蟾山金矿床成矿规律和找矿预测研究.中国科学院地质与地球物理研究所.2000
    陈卫锋,陈培荣,黄宏业,等.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学D辑:地球科学,2007,37(7):873-893
    陈衍景,郭光军,李欣喜.华北克拉通花岗绿岩低体中生代金矿床的成矿地球动力学背景.中国科学(D辑),1998,28:35-40.
    崔文元,王长秋,张承志,张禹业.1991.辽西-赤峰一带太古代变质岩中锆石U-Pb年龄.北京大学学报,27(2):229-237.
    邓晋福,冀宣学,赵海玲等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.矿床地质,1999,18:308-315.
    董申保,田伟.埃达克岩的原因、特征及成因.地学前缘,2004,11(4):585-597
    董彦辉,王强,许继锋.等.羌塘地块北部东月湖始新世高Mg#埃达克质火山岩的成因以及构造意义.岩石学报.2008.24(2):
    韩吟文,马振东等.地球化学.第一版.北京.地质出版社,2003,224
    胡芳芳,范宏瑞,杨进辉,等.胶东文登长山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据.岩石学报,2005,21(3):569-586
    黄华,高山,胡兆初,等.辽西彰武地区中生代高镁安山岩地球化学及其对新生下地壳拆沉作用的指示.地球科学,2007,37(10):1287-1300.
    姜能.华北北缘源于古老下地壳的中生代adakitic岩浆活动.2006年全国岩石学与地球动力学研讨会.
    李俊建,1998.中国金矿床成矿时代的讨论.地球学报,19(2):215-220.
    李伍平.辽西北票早侏罗世兴隆沟组英安岩的地球化学特征.岩石学报,22(6):1608-1616.
    刘刚.赤峰-朝阳地区金矿成矿物理化学条件研究.黄金地质,1996.2(4):43-49.
    刘刚,金宝义,王桂娟.赤峰-朝阳地区金矿床流体包裹体特征及成因.黄金地质,2001.7(3):8-14.
    刘纲,等.赤峰-朝阳金矿集中区异源同生区域成矿模式.见:华北地台北缘金矿地质研讨会论文选编.沈阳:东北工学院出版社.1992.
    刘红涛,张旗,刘建明,等.2004.埃达克岩与Cu、Au成矿作用:有待深入研究的岩浆成矿关系[J].岩石学报,20(2):205-218.
    路凤香,郑建平,邵济安,等.华北东部中生代晚期-新生代软流圈上涌与岩石圈减薄.地学前缘,2006,13(2):86-89.
    罗镇宽,苗来成,关康,等.2000.华北地台北缘金矿床成矿时代讨论.黄金地质,6(2):70-76.
    罗镇宽,苗来成,关康,等.辽宁阜新排山楼金矿区岩浆岩锆石SHRIMP定年及其意义.地球化学.2001,30(5):483-490.
    李永刚,翟明国,苗来成,等.内蒙古安家营子金矿与侵入岩的关系及其地球动力学意义.岩石学报,2003a, 19(4):808-816.
    李永刚,翟明国,杨进辉,等.内蒙古赤峰安家营子金矿成矿时代以及对华北中生代爆发成矿的意义.中国科学(D辑),.2003b,33(10):960-966.
    李永刚,债明国,苗来成.等.内蒙古赤峰地区安家营子金矿成矿流体研究.2004,020(04):961-968.
    骆辉,赵运起.辽宁阜新排山楼金矿地质和成矿作用.前寒武纪研究进展,1997,20(4):13-23.
    苗来成,范府茗,翟明国,等.金厂沟梁-二道沟金矿田内花岗岩类侵入体锆石的离子探针U-Pb年代学及意义.岩石学报,2003,19(1):
    牛耀龄.玄武岩浆起源和演化的一些基本概念以及对中国东部中-新生代基性火山岩成因的新思路.高校地质学报,2005,11(1):9-46
    王金荣,吴春俊,蔡郑红,郭原生,吴继承,刘晓煌.2006.北祁连山东段银硐梁早古生代高镁埃达克岩:
    地球动力学及成矿意义.岩石学报,22(11):2655-2664.
    王强,许继锋,赵振华.一种新的火成岩—埃达克岩的研究综述.地球科学进展,2001,16(2):
    王强,许继锋,赵振华.强烈亏损重稀土元素的中酸性火成岩(或埃达克质岩)与Cu、Au成矿作用.地学前缘,2003,10(4):
    王强,许继锋,赵振华.等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约.2003,33(4):
    王强,赵振华,许继锋.等.鄂东南铜山口、殷祖埃达克质侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因.岩石学报.2004,20(2):351-360.
    王强,唐功建,贾小辉,等.埃达克质岩的金属成矿作用.高校地质学报.2008,14(3):
    王强,赵振华,熊小林,徐继峰.2001.底侵玄武质下地壳的熔融:来自沙溪adakite质富钠石英闪长玢岩
    的证据.地球化学,30(4):353-362.
    王强,徐继峰,赵振华,资锋,唐功建,贾小辉,姜子琦.2008.埃达克质岩的构造背景与岩石组合[J].矿物岩石地球化学通报,27(4):
    王强,徐继峰,赵振华,资锋,唐功建,贾小辉,姜子琦.2007.中国埃达克岩或埃达克质岩及相关金属成矿作用[J].2007.26(4):
    邵济安,路凤香,李伍平.辽西中生代陆内底侵作用背景下形成的安山岩.岩石学报,2007.237(4):701-708.
    邵济安,张履桥,贾文,等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨.岩石学报,2001,17(2):283-290.
    邵济安,路凤香and李伍平,2007.辽西中生代陆内底侵作用背景下形成的安山岩.岩石学报,23(4):701-708页.
    邵济安,贾文,储著银,等.内蒙古喀喇沁早白垩世橄辉云煌岩岩筒.岩石学报,2003,19(3):429-434.
    邵洁涟,梅建明.浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因找矿意义.矿物岩石,1986,6(3):103-111.
    沈柳生,高州,王铃.赤峰朝阳地区金矿控矿因素及找矿方向探讨.地质找矿论丛,2008,23(2)
    王建平,刘水山,董法先等.内蒙古金厂沟梁金矿构造控矿分析.北京:地震出版社.1992
    王时麒,孙承志.等.内蒙古赤峰地区金矿地质.呼和浩特:内蒙古人民出版社,1994.
    王时麒、汤葵联.内蒙赤峰安家营子金矿床成矿流体的物理化学条件研究.北京大学学报,1994,30(4):447-452.
    王义文,谢锡才.1998.内蒙古安家营子金矿田赋矿岩体地球化学特征.黄金地质,4(2):1-9.
    王志,徐忠勋,杨福和.辽宁省二道沟金矿地质及成因.长春地质学院学报,1989,19:287-297.
    吴福元,杨进辉,张艳斌,等.辽西东南部中生代花岗岩时代.岩石学报,2006,22(2):315-323.
    谢锡才,王义文.安家营子金矿田矿床及同源岩体同位素地球化学.1997,6(3):171-182.
    熊小林,赵振华,白正华.等.西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制.岩石学报,2001,17(4):
    熊小林,蔡志勇,牛贺才,陈义兵,王强,赵振华,吴金花.2005.东天山晚古生代埃达克岩成因及铜金成矿意义.岩石学报,21(3):967-976.
    许继锋,王强,徐义刚.等.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制.2001,17(4):
    杨进辉,周新华.胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代.科学通报,2000,45(14):1547-1552.
    翟明国,樊祺诚,张宏福and隋建立,2005.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用.岩石学报(06).
    张宏福.邵济安,2008.辽西义县组火山岩:拆沉作用还是岩浆混合作用的产物?岩石学报,24(001):37-48.
    张旗,王焰,王元龙.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约.岩石学报
    张旗,王焰,刘伟,等.埃达克岩的特征及其意义.地质通报,2002,21(47)
    张旗,王焰,王元龙.埃达克岩与构造环境.大地构造与成矿学,27(2)
    张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成环境,附:《国内关于埃达克岩的争论》.2003,10(4)
    张旗,许继峰,王焰,等.埃达克岩的多样性.地质通报,2004,23(9-10)
    张旗.埃达克岩研究的回顾和前瞻.中国地质,2008,35(1)R.C.Paterno.埃达克岩成因回顾
    张旗,秦克章,王元龙,等.2004.加强埃达克岩研究,开创中国Cu,Au等找矿工作的新局面[J].岩石学报,20(2):195-204..
    张旗,金惟俊,熊小林,李乘东,王元龙.2009.中国不同时代O型埃达克岩的特征及其意义[J].大地构造与成矿学,33(3):432-447
    张旗,钱青,王二七,王焰,赵太平,郝杰,郭光军.2001.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学,36(2):248-255.
    赵振花,王强,熊小林.新疆北部的两类埃达克岩.2006,22(05):
    赵振华,熊小林,王强.等.新疆北部晚古生代的底侵作用.地质学报。2007,81(5):
    郑学正,张魁武,关鸿.等.东喀喇沁金矿的同位素地球化学.1995,3(3):26-32.
    Abratis M,Womer G Ridge collision, slab-window formation,and the flux of Pacific asthenosphere into the Caribbean realm. Geology,2001,29,127-130.
    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993.362:144-146.
    Bai H S,Gu M Z,Chen J F. Research report on gold metallogenic model and prognosis in estern Hebei and southern Inner Mongu China:Beijing.First Geological Exploration Co.,Ministry of Metallurgical Industry,355 P.
    Castillo P R, Janney P E,Solidum R U.1999. Petrology and geochemistry of Camiguin island, southern Philippines: insights to the source of adaketes and other lavas in a complex are setting. Contrib. Mineral. Petrol.,134: 33-51.
    Choi, S.H., Mukasa, S.B., Zhou, X., Xian, X.H. and Androniko, A.V.,2008. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. CHEMICAL GEOLOGY,248(1-2):40-61.
    Conrey R M,Hooper P R,Larson P B,et al.Trace element and isotopic evidence for two types of crustal melting beneath a high Cascade volcanic center,Mt.Jefferson,Oregon [J].Contributions to Mineralogy and Petrology,2001,141:710-732.
    Defant M J, Drummond M S.1990. Derivation of some modern are magmas b melting of young subducted lithosphere. Nature,347:662-665.
    Defant M J, Xu Jifeng, Kepezhiskas P, Wang Qiang, Zhang Qi,Xiao Long. Adakites:Some Variations on a Theme. Acta Petrologica Sinica,2002.18(2):129-142.
    Drummond M S, Defant M J, Kepezhinskas P.1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakete magmas.Transactions of the Royal society of Edinburgh, Earth Sciences,87:205-215.
    Faure, G 1986. Principles of isotope geology (2 nd ed). New York:John Wiley and Sons,567.
    Gao S, Rudnick R L,Yuan H L,et al. Recycling lower continental crust in the North China craton [J]. 2004,Nature,432:892-897.
    Gutscher etal. Can slab melting be caused flat subduction? Geology,2000,28:535-538.
    Hofmann A W. Mantle geochemistry, the message from oceanic volcanism[J]. Nature,1997.385(16):219-229.
    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science,1971,8:523-548
    Jiang Y H, Jiang S Y, Ling H F, et al.2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry,east Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constrains[J]. Earth and Planetary Science Letters,241(3-4):617-633.
    Kay S M,Ramos V A,Marquez M.Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America [J].1993,101:703-714.
    Kroner A, Cui WY, Wang SQ et al.1998. Single zircon ages from high-grade rocks of the Jianping complex, Liaoning province, NE China. Journal of Asian Earth Sciences,16:519-532.
    Liu, Y.S., Gao, S., Jin, S.Y., Hu, S.H., Sun, M., Zhao, Z.B. and Feng, J.L.,2001. Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton:Implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta,65(15):2589-2604.
    Liu, Y, Gao, S., Yuan, H., Zhou, L., Liu, X., Wang, X., Hu, Z. and Wang, L.,2004. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton:insights on evolution of lower continental crust. Chemical Geology,211(1-2):87-109.
    Martin H, Smithies R H, Rapp R, et al.2005. An overview of adakite, tonalite-trondhje mite-granodiorite(TTG), and sanukitoid:relationships and some implications for crustal evolution[J].Lithos,79(1-2):1-24.
    Muir R J, Weaver S D,Bradshaw J D,et al.Geochemistry of the Cretaceous separation plint batholith, NewZealand: Granitoid magmas formed by melting of mafic lithosphere. Gelt Soc Lond,1995,152,689-701.
    Mungall J E.2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,2002,30:915-918.
    Oyman T, Minareci F, Piskin 0. Efemcukuru B-rich epithermnal gold deposit (Izmir, Turkey). Ore Geology Review, 2003,23(1-2):35-53.
    Peacock S M,Rushmer T,Thompson A B.Partial melting of subducting oceanic crust [J].Earth Planet Sci Lett,1994,121:227-244.
    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology,1976,58:63-81
    Rapp RP,Watson E B.Dehydration melting of metabasalt at 8-32kbar:implications for continental growth and crust-mantle recycling.Petrol,1995,36:891-931.
    Rudnick, R.L., Gao, S., Ling, W., Liu, Y. and McDonough, W.F.,2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos,77(1-4):609-637.
    Sheppard S.Griffin TJ,Tyler IM,et al.High-and Low-K granites and adakites at a Palaeoproterozoic plate boundary in northwestern Australia.Jourmal of the Geologic Society,2001,158:547-560.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders A D, Norry M J, eds. Magmatism in the ocean basins. London: Geological Society Special Publications,1989,42:313-345
    Taylor S R, Mclennan S M.1985. The Continental Crust:Its Composition and Evolution [J]. Oxford:Blackwell, 91-92.
    Thieblemont D, Stein G, Lescuyer J L. Epithermal and porphyry deposits:The adakite connecion[J]. CR ACAD SCI ⅡA,1997,325(2):103-109.
    Trumbull R B. Grnitoid-Hosted gold deposit in the Anjiayingzi district of InnerMongolia.Peoples Republic of China.Economic Geology,1996,91:875-895.
    Wang Q,Xu J F, Jian P,et al.Petrogenesis of adakitic porphyries in an extensional tectonic setting,Dexing,south China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology.2006,47(1):119-144.
    Wu F Y, Jahn B M, Wild S A, et al. Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis. Lithos,2003,66:241-273
    Wyllie P J, Cox K G, Biggar G M. The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology,1962,3:238-243
    Yang, J.H., Wu, F.Y. and Wilde, S.A.,2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:an association with lithospheric thinning. Ore Geology Reviews,23(3-4):125-152.
    Yang, W. and Li, S.,2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. LITHOS,102(1-2):88-117.
    Yogodzingski G M, Lees J M. Churikova T G,et al. Geochemical evidence for the melting of subducting oceanic lithosphere plate edges.Nature,2001,409,500-504.
    Zartman R E, Doe B R. Plumbotectonic-the model. Tectonophys,1981,75:135-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700