β-SiC微粉的分级与纯化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-SiC具有高强度、高硬度、抗高温氧化性、高化学稳定性、高导热性和低热膨胀系数等多方面的卓越性能,引起各国科学家的广泛研究。通过理论研究和实验探索,西安科技大学王晓刚教授等人发明了一种制备β-SiC微粉和晶须的新技术,并且可用该技术规模化制备β-SiC微粉。然而,该方法制备出的β-SiC微粉初产物粒度范围宽,各个粒级堆垛在一起,并且含有SiO2、石墨、无定形碳以及铁、镁、钙等杂质,不能满足市场对于β-SiC微粉的要求。因此,期望通过合理的分级与纯化工艺方法得到能够应用于工业中的大批量粒度分布范围窄的优质β-SiC微粉产品。
     首先,本文对影响分级与纯化效果的微粉团聚现象、微粉“复颗粒”、粗颗粒杂质等因素进行了研究。确定了分散β-SiC微粉的最佳分散剂为V1,分散剂的最佳用量为固含量的0.5%;对微粉初产物进行球磨以打开微粉复颗粒;并通过筛分对β-SiC微粉初产物进行初步除杂。
     其次,结合国内外分级机的优点,以垂直上升流理论、液固两相流水平溢流理论、离心沉降理论、湿法筛分及平衡轨道等理论为依据,设计了一种新型浓缩过滤分级机。采用该分级机能够有效分离出14μm以上不同级别的β-SiC微粉颗粒,且分级精度和效率较高。对三足离心机进行分级实验,结果表明该分级机可以有效分离出0~1μm、0~2μm、0~3μm等级别的微粉颗粒。因此,结合浓缩过滤分级机和三足离心机的特点,将两种分级机联合起来对β-SiC微粉进行分级,最终确定了分级工艺路线。
     再次,通过静态煅烧法、功能性提纯炉除碳法、浮选法三种除碳方法的比较,将静态煅烧法和浮选法相结合除石墨及无定形碳,以获得小批量、高纯度的β-SiC微粉;将功能性提纯炉除碳法和浮选法相结合除石墨及无定形碳,以获得大批量、纯度为99%的β-SiC微粉。通过酸洗和水洗相结合工艺除去微粉中的SiO2、游离Si、Fe2O3、CaO、Al2O3等杂质,选择氢氟酸、试剂A、试剂B进行酸洗处理,利用自来水和蒸馏水进行水洗处理。通过烘干和二次球磨工艺得到最终微粉产品。
     最后通过粒度测试、XRD分析、SEM分析、能谱分析及化学分析对β-SiC微粉分级产品进行检测,结果表明本研究的纯化工艺是对β-SiC微粉提纯的一种有效工艺过程,β-SiC的含量最高可达99.90%。并且利用本研究的分级与纯化工艺,本课题组已经能够批量生产纯度高于99%的粒度为0~1μm、0~2.5μm、0~5μm等β-SiC微粉产品,部分产品已投入国内外市场。
Due to the various excellent performances of high strength、high rigidity\resist high temperature oxidation、high chemical stability、high temperature conductivity and low expansion coefficient,β-SiC had been abroad researched by scientists of apiece nation. With the theory and experimentation research, one new patented techonlogy of preparingβ-SiC micropowder and whisker was invented by professor wang xiao gang in Xi An university of science and technology. Using the new technology,β-SiC micropowder could be manufactureed on an industrialized scale. However, theβ-SiC micropowder raw producation can not be satisfied market require because of wise granularity range and all grains stowing together, and coataining SiO2、graphite、amorphism carbon and iron、magnesium、calcium etc.So we hope to get a lot of high qualityβ-SiC micropowder with sharp granularity range which can be used in industry by using Classification and Purification Techniques in reason .
     First, for the sake of actualizing Classification and Purification Techniques well forβ-SiC micropowder , the effect factors of micropowder reunite、compound particles and impurities was studied.We made sure that V1 was the best dispersant by studying many dispersant ofβ-SiC micropowder; and undone the compound particles through abrading experiment; get rid of some impurities passing screen.
     Second, A new filtration enrichment classifier was designed by combining uprightness ascend、liquid-solid phase level floding、centrifugal sedimentation and wet sieving theory. It was shown that the design of filtration enrichment classifier was right , and that can grade bigger than 14μm ofβ-SiC micropowder. Though three legs centrifugal machine, The grading experiment was shown that the grader can separate thin grain. So we could gradeβ-SiC micropowder by combining filtration enrichment classifier and three legs centrifugal machine, and the class craftwork was made.
     Through purification experiment, we made sure an efficient technique of getting rid of impurities. The measure of removing carbon was made by comparing static state calcine divisor、functionality purification furnace and floatation. The impurities of silicon dioxide、dissociate silicon、ferric oxide、calcium and alumina ect were removed by combining acid and water cleanout. We chose hydrofluoric acid、reagent A and B、tap and distilled water as regent.Through drying and second abrade technics,we got the final micropowder. The conduct was tested by grain size and XRD、SEM、energy chart and chymical analysis, it was shown that the purification technique was an effective process toβ-SiC micropowder.The content ofβ-SiC is to 99.9%. Using the Classification and Purification Techniques, someβ-SiC micropowder product with high content more than 99.9% has been ploughed into market that with sharp granularity range of 0~1μm、0~2.5μm、0~5μm and so on.
引文
[1] 何恩广,王晓刚,尚文字,陈维. 碳化硅生产中的环境问题及其防治环境技术. No 3 1999
    [2] 王晓刚主编. 碳化硅合成理论与技术.西安:陕西科学技术出版社,2001,9
    [3] 陈友存. 碳化硅与金刚石. 安庆师范学院学报,1999,5(4)
    [4] 王铁军,王声宏. 预热自蔓延合成 SiC 粉末机理的研究. 硅酸盐学报,1998 26(2):237-242
    [5] 邢素丽,王军. 溶胶—凝胶法制备 SiC 陶瓷极其影响因素. 长沙电力学院学报,2002,17(1):81 83
    [6] 张滨,刘常. 用激光将廉价有机硅烷合成 SiC 纳米粉的研究. 中国激光,1999,26(1):37 38
    [7] 胡津津. 无限微热源法合成的 SiC 晶须与颗粒分选工艺研究:[学位论文].西安:西安科技大学,2004
    [8] T.Shima etc. J.Mater.Soc.3387-94,30(1995)
    [9] Chen-Chi.M etc. J.Mater.Sci.649—653 31(1996)
    [10] Changhong Dai etc.J.Am.Cera.Soc.80(3)1274-76(1997)
    [11] Heon-Jim Choi etc. J.Mater.sci.1982-86,30(1995)
    [12] Eric W W,Paul E S,Charles M L. Nanobeam mechanics: Elasticity,strength and toughness of nanorods and nanotubes [J]. Science,1997, 27:1971–1974
    [13] 徐桦. SiC 晶须以及有关复合材料的应用研究.[学位论文].北京:中国矿业大学北京研究生部,1993.6.
    [14] 袁明文. SiC 材料与器件. 半导体情报,2001,4(2)
    [15] 林克英. 超细金刚石微粉的提纯及分级工艺研究.[学位论文].北京:中国地质大学,2006,5
    [16] 曹茂盛,蒋成禹,田永君. 材料物理性能. 哈尔滨:哈尔滨工业大学出版社,2003
    [17] Guo Y Z,Wu J S,Zhang Y F. Manipulation of single-wall carbon nanotubes into aligned molecular layers [J]. Chem Phys Lett,2002,362:314–318
    [18] Zhang Y F,Tang Y H,Zhang Y, etc. Deposition of carbon nanotubes on Si nanowires by chemical vapor deposition [J]. Chem Phys Lett,2000,330:48–51.
    [19] 任风云,樊 昊,付耐根. 微米/纳米技术军事应用潜力巨大. 现代物理知识学报, 第 6 期
    [20] 何恩广,陈德良,张雅杰. 新型碳化硅材料及应用. 化工新型材料,2000,28 (4) :3~5
    [21] Deng S Z,Wu Z S. Synthesis of silicon carbide nanowires in acatalyst- assisted process [J]. Chem Phys Lett, 2002, 356: 511–514
    [22] 张洪涛,徐重阳. Sol-gel 法制备纳米碳化硅晶须的研究. 电子元件与材料, 2000, 19(3): 9–12
    [23] 李晋闽.SiC材料及器件研制的进展. 物理,2000,29(8):481一487
    [24] Holmes J D, Johnston K P, Christopher D R.Control of thickness and Orientation of solution-grownsiliconnanowires[J].Science,2000, 287:1471–1473
    [25] Munoz E,Dalton A B,Collins S, et al. Synthesis of SiC nanorods fromsheets of single-walled carbon nanotubes [J]. Chem Phys Lett, 2002, 39:397–402
    [26] Wei B Q,Ward J W,Vatai R, et al. Simultaneous growth of silicon carbide nanorods and carbon nanotubes by chemical vapor deposition [J]. Chem Phys Lett,2002,354:264–268
    [27] Gao Y H, Bando Y, Kurashima K. SiC nanorods prepared from SiO and activated carbon [J]. J Mater Sci,2002,37:2023–2029
    [28] Chen K W, Yu Y H, Lei Y M, et al. Non-rutherford backscattering studies of SiC/SIMOX structures [J]. Appl Surf Sci,2001,184:178–182
    [29] Tang C C,Fan S S, Dang H Y, et al. Growth of SiC nanorods prepared bycarbon nanotubes-confined reaction [J]. J Cryst Growth,2000, 210:595~599
    [30] 孙成林.我国超细粉碎与超细分级技术的现状及问题.硫磷设计与粉体工程,2002,(6):4~10
    [31] 刘俊杰,叶坤.天然高碳石墨粉碎一分级研究.非金属矿,2000,23(4):29-30
    [32] KubotaK,Nishikwaa1.Study of continuous column floatation of quartz Partieles[J]. Joumal of Chemieal Engineering of JaPan,1998,31(2):187-194.
    [33] 马玉聪.采用微泡来改善细粒物料的浮选.国外选矿快报,1993,(10):4-7
    [34] Matis KA,Gallios G.P. Separation of fines by flotation techniques[J]. Separation Technology,1993,3(2):76-90
    [35] Rybali Vl,Zhivankov GV. Increase of dimaond recovery from kimberlite ores by forth Separation with flotation reagents[J]. Obogashch Rud(s.Peterburg),1998,(2):24-27
    [36] 方啸虎编著.合成金刚石的研究与应用.北京:地质出版社,1996,(8):398-416.
    [37] 李贤国,张荣曾编.重力选矿原理.北京:煤炭工业出版社,1992,126-145
    [38] BuehanR , YararB. Recovering plastics for recyling by mineral Poreessing teehniques[J].Joumal of Minearls,1995,47(2):52-55
    [39] 王晓刚. 一种碳化硅晶须和微粉的工业制备方法.中国专利,03114672. 2003-5-9
    [40] 何恩广,王晓刚,陈寿田. 用硅质煤矸石合成 SiC 的研究.硅酸盐学报,2001,(29):72~75
    [41] 卢寿慈主编.粉体加工技术.北京:中国轻工业出版社,1999,4:254-293
    [42] 顾锡人. 表面化学. 北京:化学工业出版社,2001,102-123
    [43] Fengsheng L.et al.Int.Symp.on Surface charge char,21st AnnuaI Meeting.2001,41-42
    [44] 龙石红,邓斌.不同分散剂对二氧化钛颗粒分散稳定性的影响.渝西学院学报:自然科学版,2003,2(4):12~14
    [45] 张娜,任俊,胡柏星等. ND 超分散剂制备及其对超微 CaCO3 颗粒的分散性能影响.非金属矿,2002,21(1):20~21.
    [46] 李玲编著.表面活性剂与纳米技术.北京:化学工业出版,2004,5(7):168
    [47] 张柏清,林万云编著.陶瓷工业机械与设备.北京:中国轻工业出版社,1999.6,1(5):34~54
    [48] 李凤生等编著. 超细粉体技术. 北京:国防工业出版社,2000
    [49] 盖国胜,马正先,胡小芳. 超细粉碎与分级设备进展.金属矿山,2000,28(5): 30~35
    [50] Larry Hixon. Sizing up air classifiers [J]. Chemical engineering progress,1992,(88):59~62
    [51] Hideto Yoshida, Kouichiro Ono, Kunihiro Fukui. The effect of a new method of fluid flow control on submicron particle classification in gas-cyclones [J]. Powder Technology, 2005,(149):139~147
    [52] 李书. 超细离心湿法分级机理的研究:[学位论文].上海:华东理工大学,2002
    [53] 盖国胜.超细分级技术的工业应用.金属矿山,1998, 11: 12~16
    [54] M. Shapiro,V. Galperin. Air classification of solid particles: a review [J]. Chemical Engineering and Processing, 2005:279~285
    [55] Zennosuke TANAKA,Masahiko UCHIYAMA. The Accurate Air Classification of Fine Particles. J. Soc. Powder Technol. 1996,33:248~254
    [56] 陆伟刚,张金风,袁寿其.离心泵叶轮轴向力自动平衡新方法.中国机械工程,2007,18(17):2037-2040
    [57] Vijay T.John. Recent developments in materials synthesis in surfaetant systems[J]. Current opinion in Colloid&Interfaee Seienee.2002,7:288~295
    [58] 沈亮,丁小平,李恒.人工合成金刚石技术比较.首都师范大学学报:自然科学版,2005,2(26):26-29
    [59] 赵秋月.人造金刚石快速电解提纯工艺研究.湖南冶金,1998,(3):5-7
    [60] 田金星. 高纯石英砂的提纯工艺研究. 中国矿业,1999,8(3):55~58
    
    [61] 陈鹏万.爆炸合成纳米超微金刚石的提纯方法研究.功能材料,2000,31(1):56-58
    [62] 贾咏胜.人造金刚石提纯去石墨新工艺的研究.探矿工程,1995,(3):30-32
    [63] 0.R.伯曼.除去粒状混合物中的碳.美国专利,98117532. 1998-05
    [64] 徐康.含非金刚石碳的合成金刚石半成品的纯化方法.中国专利,01125004.2001-06

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700