施用工程菌和草木灰对污染土壤Cd形态和小麦生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于重金属污染物的高毒和排放量的日益增加,土壤重金属修复问题引起了人们广泛的关注。土壤重金属可被植物吸收从而通过食物链危害人体健康。本试验以不同浓度Cd(0、1、2、4 mg kg-1干土)处理的武汉市狮子山棕红壤为材料,采用小麦盆栽实验评价草木灰和对Cd具有高吸附力的工程菌固定土壤Cd和降低其生物毒性的效果。获得的主要结果如下:
     1.Cd污染土壤中,接种基因工程菌对土壤pH值和酶活性没有显著影响;当土壤中施用10 g kg-1干土草木灰时,土壤pH值上升0.83~1.01个单位,土壤蔗糖酶、脲酶和过氧化氢酶活性升高,最高增加4.13倍,土壤磷酸酶活性降低了8.18~49.94%。
     2.Cd污染土壤中,当施入草木灰和工程菌后,土壤中的Cd重新分配。草木灰有利于促使土壤中水溶态/交换态Cd向无机结合态转化。在所有草木灰和菌体处理的土壤中,超过86.1%的Cd集中在水溶态/交换态和无机结合态,未添加草木灰的3种处理土壤中51.6-59.6%的Cd以水溶态/交换态形式存在,添加了草木灰后土壤中水溶态/交换态Cd仅占土壤Cd总量的14.68~21.14%,而69.9~82.4%的Cd以无机结合态存在。
     3.Cd污染土壤工程菌处理小麦籽粒Cd含量比对照处理降低了8.92~26.72%,添加了草木灰的处理能够同时降低小麦籽粒、秸秆及根中Cd的吸收量,其降低率为3.95-67.17%。工程菌与草木灰联合施用小麦籽粒中Cd含量比对照处理降低了14.70~26.70%。
     4.工程菌处理的污染土壤中,小麦株高增加5.50~11.88 cm,小麦产量增加0.48~1.42 g/盆;小麦粗蛋白含量没有显著差异。施用草木灰处理,小麦株高略有降低,单盆产量增加1.62~2.53 g。
     5.在本试验中,草木灰通过提高土壤pH值等作用固定污染土壤中的Cd,使其从生物有效态转变为惰性状态,从而减少小麦植株中Cd的吸收量;工程菌的施用也能够降低小麦籽粒对土壤Cd的吸收量,且与草木灰联合施用效果更佳。但无论是草木灰还是工程菌或其联合施用,小麦籽粒中Cd吸收量仍然超过国家食品安全卫生标准GB 2762-2005(Cd<0.1 mg kg-1),在今后的试验中可考虑适当增加草木灰的施用量和构建对重金属具有更强吸附力的工程菌等方式来探寻土壤重金属污染的治理途径。
Remediation of heavy metal-contaminated soil received great attention in the recent decades due to the high toxicity and increasing discharge of these pollutants. In contaminated soils, these toxic metals could be absorbed by crops and then enter into the food chains.Brown-red soil collected nearby Shizi mountain, Wuhan, and treated with various levels of Cd (0、1、2、4 mg kg-1 soil) was used in this study, to evaluate the effect of plant ash and genetically engineered bacteria (Pseudomonas putida) on the immobilization and biotoxicity of Cd in wheat(Triticum aestivum L.) potted soils.The main results are outlined as follows:
     1.No significant changes were observed in soil pH and activity of soil enzymes after application of genetically engineered bacteria. However, soil pH increased by 0.83~1.01 units after application of plant ash with a concentration of 10 g kg-1 soil. Moreover, the activities of sucrose, urease, catalase were promoted with the highest increase by 4.13 times, but that of phosphatase was depressed by 8.18~49.94%.
     2.In Cd-contaminated soils, the species of Cd were redistributed after application of plant ash and engineered bacteria. The introduction of plant ash caused soluble/exchangeable Cd to convert to inorganic-bound form. In all treated soils, soluble/exchangeable and inorganic-bound Cd accounted for 86.1% of total Cd. Soluble/exchangeable Cd took up 51.6~59.6% of total Cd in contaminated soils without the introduction of plant ash, while 14.68~21.14% of Cd were observed as soluble/exchangeable species and 69.9~82.4% as inorganic-bound species after adding plant ash.
     3.The content of Cd in the wheat seed was decreased by 8.92~26.72% in engineered bacteria treatment. Cd content in wheat straw, seed and root were reduced by 3.95~67.17% after applying plant ash. The content of Cd in the seed were decreased by 14.70~26.70% due to application of plant ash and engineered bacteria.
     4.The height of wheat was increased by 5.50~11.88 cm and the dry yield was increased by 0.48~1.42 g per pot with inoculation of engineered bacteria, no effects was observed in the content of crude protein in wheat seeds.The addition of plant ash decreased the height of wheat slightly while increased the dry yield of wheat by 1.62-2.53 g per pot.
     5.In this experiment, the immobilization of Cd can be strengthened in soil with elevation of soil pH by applying plant ash, which translate bioavailability Cd into inert state, and the accumulation of Cd in wheat seed was reduced; engineered bacteria can also reduce the Cd uptake in wheat seed, a better effect could result from combining with plant ash. However, Cd accumulation of wheat seed in all treatment exceed the national food safety and hygiene standards of GB 2762-2005(Cd<0.1 mg kg-1).Appropriate application of plant ash and construction genetically engineered bacteria of stronger heavy metals adsorption can be considered in future trials to control heavy metal pollution.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2000
    2.曹德菊,程培.3种微生物对Cu、Cd生物吸附效应的研究.农业环境科学学报,2004,23(3):471-474
    3.陈怀满,郑春荣.中国土壤重金属污染现状与防治对策.人类环境杂志,1999,28(2):130-134
    4.陈涛,吴燕玉,张学询等.张士灌区镉土改良和水稻镉污染防治研究.环境科学,1980,1(5):7-11
    5.陈同斌,黄启飞,高定等.中国城市污泥的重金属含量及其变化趋势.环境科学学报,2003,23(5):561-569
    6.陈同斌.重金属对土壤的污染.金属世界,1999,3:10-11
    7.崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展.土壤通报,2004,35(3):366-370
    8.方满,刘洪海.武汉市垃圾堆放场重金属污染调查及控制途径.中国环境科学,1988,8(4):54-59
    9.顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,2003,11(2):143-151
    10.关松萌.土壤酶及其研究法.北京:农业出版社,1986
    11.郭利敏,艾绍英,唐明灯等.不同改良剂对镉污染土壤中小白菜吸收镉的影响.中国生态农业学报,2010,18(3):654-658
    12.郭学军,黄巧云,赵振华等.微生物对土壤环境中重金属活性的影响.应用与环境生物学报,2002,8(1):105-110
    13.何振立.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社,1998:129-130
    14.金善宝.中国小麦学.北京:中国农业出版社,1996
    15.李艳霞,赵莉,陈同斌等.城市污泥在冷季型草皮专用复合肥生产中的应用.植物营养与肥料学报,2002,8(5):501-503
    16.廖国礼,吴超.矿山不同片区土壤中Zn, Pb、Cd、Cu和As的污染特征.环境科学,2005,26(3):157-161
    17.林治庆,黄会一.木本植物对汞耐性的研究.生态学报,1989,9(4):315-319
    18.刘翠华,依艳丽,张大庚等.葫芦岛锌厂周围土壤镉污染现状研究.土壤通报,2003,34(4):326-329
    19.路延笃,黄巧云,陈雯莉等.猴金属硫蛋白α域(MT-α cDNA)突变体的构建、表达及工程菌对重金属的吸附.环境科学学报,2008,28(9):1763-1770
    20.潘学冬,虞云龙.生物修复中细菌的遗传修饰.微生物学报,2002,42(1):121-124
    21.潘园园,陈雯莉,黄巧云.一株抗重金属铜镉细菌的分离、鉴定及其16S rDNA的序列分析.微生物学通报,2005,32(3):68-72
    22.邱廷省,王俊峰,罗仙平.重金属污染土壤治理技术应用现状与展望.四川有色金属,2003,(2):48-52
    23.宋书巧,梁利芳,周永章等.广西刁江沿岸农田受矿山重金属污染现状与治理对策.矿物岩石地球化学通报,2003,22(2):152-155
    24.滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展.土壤与环境,2002,11(1):85-89.
    25.廖晓勇,陈同斌,谢华等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究.环境科学学报,2004,24(3):455-462
    26.吴金水,林启美,黄巧云等.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006
    27.吴燕玉,陈涛,孔庆新等.张士污灌区镉污染及其改良途径.环境科学学报,1984,4(3):275-282
    28.徐厚恩.中国有毒污染物有毒危险性评价.北京:北京医科大学、中国协和医科大学联合出版社,1997,29-58
    29.杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报,2002,8(5):564-571
    30.曾光明,黄国和,袁兴中等.堆肥环境生物与控制.北京:科学出版社,2006
    31.曾希柏,李莲芳,白玲玉等.山东寿光农业利用方式对土壤砷累积的影响.应用生态学报,2007,18(2):310-316
    32.张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应.土壤学报,2001,38(2):212-218
    33.张迎明,尹华,叶锦韶等.镍钴转运酶NiCoT基因的克隆表达及基因工程菌对镍离子的富集.环境科学,2007,28(4):918-923
    34.周立祥,王艮梅.污水污泥中重金属的细菌淋滤效果研究.环境科学学报,2001,21(4):504-506
    35.周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展.生态学报,2007,27(7):3043-3050
    36.Adriano D C.Trace Elements in Terrestrial Environments, Biogeochemistry, Bioavailability and Risks of Metals (2nd ed.), Springer, New York,2001
    37.Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ Pollut,2006,144(3):736-745
    38.Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements. Biorecovery,1989,1(2):81-97
    39.Boisson J, Mench M, Vangronsveld J, et al.Immobilization of trace metals and arsenic by different soil additives:Evaluation by means of chemical extractions. Commun Soil Sci Plan,1999,30(3&4):365-387
    40.Bolan N S,Duraisamy V P. Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals:a review involving specific case studies. Aust J Soil Res,2003,41(3):533-555
    41.Brooks R R, Lee J, Reeves R D, et al.Detection of nickeliferous rocks by analysis of herbarium species of indicator plants.J Geochem Explor,1977,7:49-57
    42.Chen S,Wilson D B.Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments. Appl Environ Microb,1997,63(3):2442-2445
    43.Chen X B, Wright J V, Conca J L, et al.Evaluation of heavy metal remediation using mineral apatite. Water Air Soil Poll,1997,98(1&2):57-78
    44.Chlopecha A, Adriano D C.Mimicked in-situ stabilization of metals in a cropped soil bioavailability and chemical form of zinc. Environ Sci Technol,1996,30(11): 3294-3303
    45.Chojnacha K, Chojnacki A, Gorecka H, et al.Bioavailability of heavy metals from polluted soils to plants.Sci Total Environ,2005,337(1-3):175-182
    46.Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils. Trends Biotechnol,1995,13(9):393-397
    47. Dar G H. Effect of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresource Technol,1996,56(2&3):141-145
    48.Diels L, Lelie N V D, Bastiaens L. New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Bio,2002,1(1):75-82
    49.Huang Q Y, Chen W L, Guo X J. Chemical fractionation of copper, zinc, and cadmium in two Chinese soils as influenced by rhizobia. Commun Soil Sci Plant, 2004,35(7&8):947-960
    50.Ikeda M, Zhang Z W, Shimbo S,et al.Urban population exposure to lead and cadmium in east and south-east Asia. Sci Total Environ,2000,249(1-3):373-384
    51.Jackson A P, Alloway B J. The Transfer of Cadmium from Agriculture Soils to the Human Food Chain. In D.C.Adriano, ed. Biogeochemistry of Trace Metals.Lewis Publishers,Boca Raton,FL,1992,109-158
    52.Jarup L. Hazards of heavy metal contamination. Brit Med Bull,2003,68:167-182
    53.Kandeler F, Kampichler C, Horak O.Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fert Soils,1996,23(3):299-306
    54.Kotrba P, Doleckova L, Lorenzo V D, et al..Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microb,1999,65(3):1092-1098
    55.Kumar P B A N, Duchenkov V, Motto H, et al.Phytoextraction:the use of plants to remove heavy metal from soils.Environ Sci Technol,1995,29:1232-1238
    56.Liu L N, Chen H S,Cai P, et al. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J Hazard Mater.2009. 163:563-567
    57.Marzadori C, Ciavatta D,Montecchio D,et al. Effect of lead pollution on different soil enzyme activities. Biol Fert Soils,1996,22(1&2):53-58
    58.McLaughlin M J, Hamon R E, McLaren R G, et al.A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res,2000,38(6):1037-1048
    59.Naidu R, Bolan N S,Kookana R S,et al.Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. Eur J Soil Sci,1994,45(4): 419-429
    60.Narwal R P, Singh B R. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil.Water Air Soil Poll,1998,103(1-4), 405-421
    61.Nriagu J, Pacyna J. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature,1988,333:134-139
    62.Oskarsson A,Widell A,Olsson I M,et al. Cadmium in food chain and health effects in sensitive population groups. BioMetals,2004,17(5):531-534
    63.Panwar B S,Singh J P, Laura R D.Cadmium uptake by cowpea and mungbean as affected by Cd and P application. Water Air Soil Poll,1999,112(1&2):163-169
    64.Raskin I, Smith R D,Salt D E. Phytoremediation of metals:using plants to remove pollutants from the environment. Curr Opin Biotech,1997,8:221-226
    65. Robinson B H, Mills T M, Petit D et al.Natural and induced cadmium-accumulation in poplar and willow:Implication for phytoremediation. Plant Soil,2000,227:301-306
    66. Ross S M. Retention, transformation and mobility of toxic metals in soils. John Wiley & Sons Ltd, Chichester,1994
    67.Salt D E, Blaylock M, Kumar N P et al. Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol,1995,13: 468-474
    68.Shuman L M. Organic waste amendments effect on zinc fractions of two soils. J Environ Qual,1999,28(5):1442-1447
    69.Sposito G, Lund L J, Chang A C.Trace metal chemistry in arid-zone field soils amended with sewage sludge:I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases.Soil Sci Soc Am J,1982,46:260-264
    70.Sriprang R, Hayashi M, Hisayo O, et al.. Enhanced accumulation of Cd2+ by a mesorhizobium sp. transformed with a gene from arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microb,2003,69(3):1791-1796
    71.Steenland K, Boffetta P.Lead and cancer in humans:Where are we now? Am J Ind Med,2000,38(3):295-299
    72.Tamar S F, Peter B G, Adam Z, et al.Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta,2005,223(1):69-76
    73.Walker D J, Clemente R, Bernal M P.Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L.in a soil contaminated by pyritic mine waste. Chemosphere,2004,57(3):215-224
    74.Williams C H, David D J. The effect of superphosphate on the cadmium content of soils and plants.Aust J Soil Res,1973,11(1):43-56
    75.Xu Y, Schwartz F W, Traina S J. Sorption of Zn2+ and Cd2+ on hydroxyatite surfaces. Environ Sci Technol,1994,28:1472-1480
    76.Zhang P C.Transformation of Pb(Ⅱ)from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH. Environ Sci Technol, 1999,33:625-630

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700