木材防腐干燥特性及一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对木材进行正确的防腐和干燥处理,是延长木材使用寿命,改善木材使用性能,减少木材资源消耗,保护生态环境的有效途径之一,也是节约木材的重要内容。在我国森林资源严重不足,木材供需矛盾日益突出的今天,优化木材防腐和干燥工艺,探索环保、高效、节能的木材防腐干燥一体化处理技术,对于提高木材防腐干燥质量和生产效率,降低能耗,节约木材具有重要意义。
     本论文选题着眼于当前急需解决木材防腐干燥过程中生产周期长,环境污染严重,防腐质量难以保证等实际问题,主要对木材真空加压防腐工艺影响因子进行了优化;对防腐处理木材干燥工艺进行了研究;对防腐干燥处理后的木材微观构造进行了分析;对防腐木材力学性能、胶合性能和表面涂饰性能进行了检测和分析,为确定合理的木材防腐、干燥一体化处理技术提供理论依据。
     本论文主要研究成果及结论如下:
     (1)通过正交实验对真空加压防腐工艺的影响因素进行分析和研究发现:影响马尾松和毛白杨木材防腐处理载药量的主要因素是防腐剂的浓度,达到极显著水平;影响马尾松和毛白杨木材防腐处理载药量的次主要因素是浸注压力,达到显著水平;压力持续时间和前真空持续时间对马尾松木材防腐处理载药量的影响较小;前真空持续时间对毛白杨木材防腐处理载药量的影响较大,压力持续时间对毛白杨木材防腐处理载药量的影响较小。
     (2)通过正交实验和方差分析获得马尾松防腐木材处理优化的工艺为:防腐剂浓度为1.2%,浸注压力1.2MPa,压力持续时间1h,前真空持续时间30min;毛白杨防腐处理优化的工艺为:防腐剂浓度1.2%,浸注压力1.5MPa,压力持续时间2h,前真空持续时间45min。
     (3)通过对马尾松和毛白杨防腐处理木材进行腐朽菌毒性实验室试验发现,采用ACQ-D木材防腐剂对于马尾松和毛白杨进行真空加压防腐处理,失重率均小于10%,达到强耐腐等级。
     (4)干燥温度对于防腐木材防腐剂的流失率影响较大,对于马尾松防腐处理木材,随着干燥温度的升高,防腐剂的流失率逐渐增大,综合考虑干燥温度对生产效率、防腐剂流失率的影响,马尾松防腐木材适宜的干燥温度为70℃左右;对于毛白杨防腐木材,随着干燥温度的升高,防腐剂的流失率逐渐增大,20mm和30mm厚毛白杨防腐木材在干燥温度70-75℃下干燥,40mm厚度的毛白杨防腐木材在70℃,较小的干湿球温度差下干燥,防腐剂的流失率较低。
     (5)随着干燥温度的升高和防腐剂载药量的增加,马尾松和毛白杨防腐木材抗弯弹性模量、抗弯强度和顺纹抗压强度均呈现逐渐减小的趋势。
     (6)随着干燥温度的增加,马尾松和毛白杨防腐木材的家胶合强度呈现增加的趋势。随着防腐剂载药量的增加,马尾松和毛白杨防腐木材的胶合强度呈现逐渐减小的趋势。
     (7)防腐干燥处理对于马尾松和毛白杨木材的涂饰性能没有负面影响。
     (8)电子显微镜观察防腐剂在防腐干燥后三个切面中的分布情况时发现:马尾松防腐干燥后木材,横切面内防腐剂在管胞、树脂道和木射线中都有分布,弦切面内防腐剂在树脂道附近分布较多,径切面内防腐剂分布在管胞、木射线、窗格状交叉场纹孔以及管胞壁上的纹孔周围,防腐剂在早材带中分布多于晚材带,在木射线和管胞交叉的部位分布较多。毛白杨防腐干燥后木材,横切面中防腐剂主要分布在导管中;径切面中防腐剂在木射线填充物较少的部位和导管壁上的纹孔附件分布较多;弦切面中防腐剂分布在导管壁上的纹孔附近、导管壁上以及导管分子中较多。
     (9)防腐剂在防腐木材中的分布可见,马尾松防腐木材中的防腐剂附着在管胞壁上的纹孔附近较多,毛白杨防腐木材中的防腐剂附着在导管壁上的纹孔周围较多,防腐木材在干燥过程中,较低的干燥温度可给防腐剂提供一个充分的固着时间,较高的干燥温度容易造成防腐剂来不及固着而随着水分排出沉积在木材的表层,很快会被流失掉。
     (10)扫描电镜观察马尾松和毛白杨素材与防腐干燥后木材横切面电镜显微形态发现:经过防腐干燥处理的木材的横切面细胞有变形和离析现象,晚材开裂的程度小于早材;马尾松的开裂程度要大于毛白杨。防腐干燥后木材横切面细胞的变形和离析开裂是造成防腐木材力学强度降低的主要因素。
     (11)对不同防腐干燥工艺下的马尾松和毛白杨防腐干燥后木材和素材进行傅立叶变换红外(FTIR)分析可见不同防腐工艺处理的木材在主要区段的图谱变化较小。马尾松防腐干燥后木材在3408cm~(-1)处,毛白杨防腐干燥后木材在3337cm~(-1)处的-OH伸缩振动减小,吸收峰减弱,说明-OH与防腐剂中的铜发生了络合反应;马尾松防腐干燥后木材在1662cm~(-1)处,毛白杨防腐干燥后木材在1667cm~(-1)处的共轭C=O的吸收峰有较明显的减弱,说明共轭C=O与防腐剂中的铜发生了络合反应;马尾松防腐干燥后木材在1600 cm~(-1)处,毛白杨防腐干燥后木材在1603cm~(-1)处的苯环峰稍微变小,说明ACQ-D防腐剂对于木材中木素的影响较小。马尾松防腐干燥后木材在主要区段的变化幅度要大于毛白杨的变化幅度。
     (12)首次对木材防腐干燥进行了一体化处理和研究,木材防腐干燥两个过程的有机结合可以有效地减少木材干燥缺陷的发生,简化了操作程序,降低了劳动强度,降低了对环境的污染,实现了较高的自动化控制,木材防腐和干燥质量得到了有效的保证。获得了较优的便于实现自动控制的木材防腐干燥一体化工艺,木材防腐干燥一体化处理的防腐木材主要力学强度降低较小。
Proper preservation and drying for the wood is one of the effective paths to prolong the useful life period of the wood, improve the service performance of the wood, reduce the consumption of the wood, protect the ecological environment and utilize properly the wood and save the wood. It is increasingly evident that the conflict confronted by us is that the wood is in shortly supply relative to the demand required by the market at a serious shortage of forest resources in China. Therefore it is important to optimize the preservative-treated and drying process of the wood, research the environmental protection, high efficiency, energy-saving of the integrated technique for pressure and vacuum preservative-treated and drying of the wood. It is great significance to improve the quality of the preservative-treated and drying process wood and production efficiency, reduce energy consumption and save the wood efficiently.
     The thesis is closely focusing on resolving the practical problem of the production period too long, environmental pollution severity and the quality of the preservative-treated and drying process wood difficult to ensure. It is mainly to analyze the influence factors of the vacuum-pressure preservative-treated process; optimize the preservative-treated and drying process of the wood; to research the drying technical of preservative-treated wood; to analyses microscopic constitution of the preservative-treated wood; test and analyses mechanical property, glue bond property, surface painting property and provide a theoretical basis for determining the proper integrated technique of preservative-treated and drying of the wood. The results are as follows:
     (1) In order to obtain the reasonable vacuum-pressure the preservative-treated process of wood, this paper analyzes the influence factors of the wood preservative-treated process with the method of orthogonal experimental design. Preservative concentration is the main factors to influence the wood preservative retention of Pinus massoniana Lamb and Populus tomentosa Carr. It reached extremely significant level; pressure is the secondary main factors to influence the wood preservative retention of Pinus massoniana Lamb and Populus tomentosa Carr. It reached significant level; Pressure duration pre-vacuum duration are no significant to influence the wood preservative retention of Pinus massoniana Lamb. Pre-vacuum duration is few significant to influence the wood preservative retention of Populus tomentosa Carr. Pressure duration is no significant to influence the wood preservative retention of Populus tomentosa Carr.
     (2)The reasonable vacuum-pressure the preservative-treated process of wood is obtained with the method of orthogonal experimental design and the variance analysis. It shows that 1.2 percent preservative concentration, 1.2MPa pressure, 1h pressure duration,30minutes pre-vacuum duration are the optimization preservative-treated process of the Pinus massoniana Lamb and that 1.2 percent preservative concentration, 1.5MPa pressure, 2h pressure duration, 45minutes pre-vacuum duration are the optimization preservative-treated process of the Populus tomentosa Can.
     (3) Laboratory test for toxicity of wood preservatives to decay fungi with Pinus massoniana Lamb and Populus tomentosa Carr. The result shows that the weight loss percentage of wood is less than 10% with vacuum-pressure process and ACQ-D preservatives and reaches the strong durability gradation.
     (4) Drying temperatures is strongly influence the preservatives leaching rate of the preservative-treated. The percentage of preservatives leached from the preservative-treated Pinus massoniana Lamb increased as the drying temperatures higher. Integration production efficiency and the preservatives leaching rate influenced by the drying temperatures, the proper drying temperatures of preservative-treated Pinus massoniana Lamb is around 70℃. The percentage of preservatives leached from the preservative-treated Populus tomentosa Can increased as the drying temperatures higher.the percentage of the preservatives leached from the lumber was decreased small while the 20mm, 30mm preservative-treated Populus tomentosa Can were dried at the drying temperatures 75℃and the 40mm preservative-treated Populus tomentosa Can was dried at the drying temperatures 70℃with depression wet and dry bulb.
     (5) The MOE, MOR and the compressive strength parallel to grain of preservative-treated Pinus massoniana Lamb and Populus tomentosa Can wood were decreased with increasing the drying temperatures and the preservative retention.
     (6) The bond strength of preservative-treated Pinus massoniana Lamb and Populus tomentosa Can wood were improved with increasing drying temperatures. The bond strength of preservative-treated Pinus massoniana Lamb and Populus tomentosa Can wood were decreased with increasing preservative retention.
     (7) There is no negative impact on the surface painting property of preservative-treated and drying Pinus massoniana Lamb and Populus tomentosa Can wood.
     (8) The distribution of preservative in the three section of preservative-treated and drying wood was observed with the electronic microscope. For the preservative-treated and drying Pinus massoniana Lamb wood, in the transverse section, the preservative was found in the tracheid, resin canal and wood ray. In the tangential section, the preservative was found surrounding the resin canal. In the radial section, the preservative was found in the tracheid, wood ray, fenestriform cross-field pit and surrounding pit of the tracheid wall. The preservative in the spring wood is more than in the autumn wood. It was mainly found in the cross field of the wood ray and tracheid. For the preservative-treated and drying Populus tomentosa Can wood, in the transverse section, the preservative was found in the vessel. In the radial section, the preservative was found in the wood ray field that it has little filling material, and the surrounding of the vessel wall pit. In the tangential section, the preservative was mainly found near the vessel wall pit, vessel wall and vessel molecule.
     (9) The distribution of preservative in the preservative-treated and drying wood was observed with the electronic microscope., the preservative the preservative-treated and drying Pinus massoniana Lamb wood, was found surrounding pit of the tracheid wall. The preservative was mainly found near the vessel wall pit. Thus, the preservative-treated wood in the drying process, the lower drying temperatures can supply sufficient fixation time of the preservative; the higher drying temperatures easily lead to the preservative was not accreted effective and moved by the water, and accreted to the surface of the wood and leached quickly.
     (10) The transverse section SEM micrograph of preservative-treated and drying Pinus massoniana Lamb and Populus tomentosa Carr wood was observed. The transverse section cells of preservative-treated and drying wood were separated and distorted. The dehiscence degree of autumn wood changed less than the spring wood. The dehiscence degree of Pinus massoniana Lamb wood changed more than the Populus tomentosa Carr wood. The distortion and dehiscence among the cell walls of the preservative-treated wood are the main factors to influence the material strength decreasing.
     (11) The FTIR was analyzed between untreated and preservative-treated and drying Pinus massoniana Lamb and Populus tomentosa Carr wood with the different preservative-treated and drying process. The results indicated that the main absorb band of the preservative-treated wood with treated different preservative-treated and drying process has small influence. The preservative-treated and drying Pinus massoniana Lamb at 3408cm~(-1) band and Populus tomentosa Carr wood at 3337cm~(-1) band, the -OH expansion vibration absorption peak decreased it is concluded that complex reaction were generated between the -OH and the copper of preservative. The preservative-treated and drying Pinus massoniana Lamb at 1662cm~(-1) band and Populus tomentosa Carr wood at 1667cm~(-1) band, the absorption peak of conjugate C=O visibly decreased at band, it is concluded that complex reaction were generated between the conjugate C=O and the copper of preservative. The preservative-treated and drying Pinus massoniana Lamb at 1600cm~(-1) band and Populus tomentosa Carr wood at 1603cm~(-1) band, the absorption peak of benzene ring diminished after a sort, it is concluded that ACQ-D has little influence on the lignin of the preservative-treated Pinus massoniana Lamb wood and Populus tomentosa Carr. The rangeability in main field of the preservative-treated Pinus massoniana Lamb wood changed more than the Populus tomentosa Carr wood.
     (12) Preservation and drying for the wood were firstly treated and studied at the same time, while the organic connection of the two procedures can reduce the occurrence of wood drying flaw effectively and also can simplify the operation, and reduce the labor intensity. The quality of the preservation and drying for the wood can controlled by highly automation production and reduce the environmental pollution. Based on the preliminary examination and combined the integrated machine for pressure and vacuum wood modification and drying, the technique of optimization and automation production was obtained. The main mechanical strength of the wood integrated by the preservative-treated and drying were decreased small, the technique fit for the industrialization.
引文
[1][美]罗杰·罗维尔主编.刘正添译.实木化学[M].北京:中国林业出版社,1988.
    [2]GB/T 17657-1999,人造板及饰面人造板理化性能实验方法[S].
    [3]LY/T1068.1992,锯材窑干工艺规程[S].
    [4]LY/T13942.1-1992,木材天然耐久性实验方法[S].
    [5]LY/T1283·1998,木材防腐剂对腐朽菌毒性实验室实验方法[S].
    [6]LY/T1635-2005,木材防腐剂[S].
    [7]LY/T1636-2005.防腐木材的使用分类和要求[S].
    [8]于丽丽,曹金珍.水载型木材防腐剂有效成分的加速固着方法[J].木材工业,2007,21(5):25-28.
    [9]中国国家技术监督局.GB 1927-1943-91木材物理力学性质实验方法.北京:中国标准出版社.1991.
    [10]中国林业科学研究院.《木材学一木材防腐》[M].北京:中国林业出版社,1985.
    [11]中国林科院中国主要树种物理力学性能[M],北京:中国林业出版社,1982.
    [12]尤纪雪.ACB木材防腐剂用于纸浆防腐防霉的研究[J].林产工业,1996,23(2):18-20.
    [13]方桂珍,任世学3种季铵盐木材防腐剂的防腐性能和抗流失性比较[J].林产化学与工业,2002,22(6):61-64.
    [14]王东林,常建民木材干燥中的热工测量[J].林业机械与木工设备,2001,29(11):13-15.
    [15]王宏棣.人工林杨木木材强化研究发展现状与趋势[J].林业机械与木工设备,2008,36(11):13-14.
    [16]王金林.木材胶合技术的发展动向[J].木材工业,1992,6(2):41-43.
    [17]王恺.木材工业实用大全(木材保护卷)[M].北京:中国林业出版社,2002,139.
    [18]王恺.英汉木材工业词典[M].北京:中国标准出版社,1999.
    [19]王朝晖,吴玉章.ACQ和CuAz防腐剂对木材力学性能的影响[J].木材工业,2004,18(3):18-22.
    [20]王雅梅.铜唑类木_竹材防腐剂的性能评价及其应用研究[D].内蒙古农业大学博士学位论文,2007.
    [21]韦兰·J·小海斯.农药毒理学各论[M].北京:化学工业出版社,1990.
    [22]叶卫平.Origin7.0科技绘图及数据分析[M].北京:机械工业出版社,2004.
    [23]申宗圻.木材学(第二版)[M],北京:中国林业出版社,1993.
    [24]艾沐野.木材干燥实用技术[M].哈尔滨:东北林业大学出版社,2003.
    [25]任世学.季铵盐类木材防腐剂的应用研究[D].东北林业大学硕士学位论文,2001.
    [26]刑嘉琪.木材生物防治研究的现状与展望[J].世界林业研究,2005,17(3):32-35.
    [27]刘元,胡进波.西南桦木材干燥特性与干燥方法及其工艺[J].中南林学院学报,2005,25(4):15-20.
    [28]刘元.桉树热处理及其渗透性能的改善[J].木材工业,1994,8(3):30-34.
    [29]刘迎涛,刘一星.FRW阻燃胶合板的DMA分析[J].林业科学2006,42(3):108-110.
    [30]刘迎涛,李坚.FRW阻燃中密度纤维板的热性能分析[J].东北林业大学学报,2006,34(5):61-63.
    [31]刘智,曹金珍.改性处理在提高木材耐腐性方面的研究概况[J].林产工业.2006,33(4):11-15.
    [32]刘智,曹金珍.热空气干燥法对ACQ-D在木材内固着的加速作用[J].北京林业大学学报,2006,28(6):119-123.
    [33]刘智.季胺铜防腐剂处理和热处理后人工林杉木的耐腐性研究[D].河北农业大学硕士学位论文,2006.
    [34]刘磊,苏海涛.我国木材防腐技术应用现状与存在问题[J].中国木材.2006,3:20-22.
    [35]吕建雄,鲍甫成.汽蒸处理对木材渗透性的影响[J].林业科学,1994,30(4):352-357.
    [36]孙耀星,张士成.提高落叶松材渗透性的研究[J].林业科学,2002,38(6):42-44.
    [37]成俊卿.木材学[M].北京:中国林业出版社,1985
    [38]朱政贤.木材干燥(第二版)[M],北京:中国林业出版社,1992
    [39]朱政贤.木材真空干燥的初步研究[J].木材工业,1989,3(1):1-6.
    [40]江京辉.ACQ防腐剂对扭叶松蓝变部分木材力学性能的影响[J].中国防腐新标准宣贯暨防腐木材产业发展研讨会论文集.2006
    [41]汤宜庄,刘燕吉.木材工业实用大全木材保护卷[M].北京:中国林业出版社,2002
    [42]许美琪.木材真空干燥技术的进展[J].林产工业,1994,2l(6):40-42.
    [43]何勇.ACQ防腐剂处理杉木小径材的研究[J].林业科技,2006,31(6):43-44.
    [44]何清慧.木材干燥基准简易确定法-百度实验法[J].木材工业,1998,12(6):39-41.
    [45]吴春华,杨德枢.桉木防腐的初步研究[J].应用化工,2006,35(8):650-653.
    [46]宋桢,尤纪雪.硼化物抗流失性能的改善[J].林产工业,1997,24(4):12-14.
    [47]张玉萍.人工林难胶合木材研究现状[J].木材工业,2005,19(6):4-7
    [48]张玉萍.六种人工林木材胶合性能初步研究[J].木材加工机械,2006,17(4):6-10.
    [49]张安将.1-[2-(2,4-二氯苯基)4-烷基-1,3-二氧戊环-2-基甲基]-1H-1,2,4-三唑的NMR研究[J].波谱学杂志,2001,18(3):257-262
    [50]张壁光,常建民21世纪我国木材干燥技术发展趋势的探讨[J].林业科技开发,2000,14(1):4-6.
    [51]张壁光,常建民 热压式单板干燥机组热效率测试[J].林产工业,2001,28(2):38-40.
    [52]张壁光,常建民等浮压下马尾松的干燥特性及水分迁移机理初探[J].工程热物理学报,2001,22(5):612-614.
    [53]张壁光.木材科学与技术的研究进展[M],北京:中国环境科学出版社,2004
    [54]李玉栋.促进我国木材防腐产业的跨越式发展[J].林产工业 2002,29(6):3-6.
    [55]李玉栋.我国木材防腐工业的状况、问题与对策[J].木材工业.2004,18(1).20-23.
    [56]李兆邦.标准化和木材防腐产业的发展.中国木材保护工业发展研讨会.2002.11.广州
    [57]李坚.木材保护学[M].哈尔滨:东北林业大学出版社,1999
    [58]李坚.木材波谱学[M].北京:科学出版社,2003
    [59]李坚.木材科学[M].哈尔滨:东北林业大学出版社,1994
    [60]李贤军.木材干燥预热时间初探[J].北京林业大学学报,2004,26(2):90-93.
    [61]李晓东,郝万新.超声波技术在木材阻燃浸渍处理过程中的应用[J].福建林业科 技,2006,33(1):64-66.
    [62]杜朝刚,陈天全.刨花板热压过程中的传热传质研究现状和展望[J].林产工业,2004,31(5):10-12.
    [63]沙家骏.国外新农药品种手册[M].北京:化学工业出版社,1992
    [64]苏海涛,刘磊.我国木材防腐行业存在的问题及建议[J].中国木材.2006,(1):10-12
    [65]陈人望,金重为等.我国木材防护工业现状和今后发展建议[J].中国防腐新标准宣贯暨防腐木材产业发展研讨会论文集.2006
    [66]陈平雁.SPASS13.0统计软件应用教程[M],北京:人民卫生出版社,2008
    [67]陈汉章,黄日明等.马尾松枝桠材室内耐腐性能初报[J].闽西职业大学学报,1999.(4):73-74
    [68]陈利芳,刘磊等18种树种木材防腐处理性能研究[J].广东林业科技,2005,21(4):5-8.
    [69]陈志军,郑万友.木材对流加热间歇真空干燥[J].林业机械与木工设备,2003,31(6):22-23.
    [70]陈国华,常建民.木材干燥远程控制技术现状及发展[J].木材工业,2006,20(3):26-28.
    [71]陈尚坤.我国铁路木材防腐工业现状问题和发展对策.木材工业,2001,15(1).10-12.
    [72]周明,刘秀英.木材防腐剂对软腐菌实验室快速毒性实验标准方法的研究[J].木材工业,1994,8(4):23-26.
    [73]周明.我国主要树种的木材(心材)天然耐腐性实验[J].林业科学,1981,26(2):145-154.
    [74]周慧明.木材防腐[M].北京:中国林业出版社,1991
    [75]国务院.第六次全国森林资源清查结果[R].2005.
    [76]国家统计局.2008年国民经济和社会发展统计公报[R].2009.
    [77]罗声涌.一种木材干燥与防腐一体化处理的方法及装置,专利申请号200410035838.0
    [78]苗平,顾炼百.马尾松木材横向液体渗透性的研究[J].中南林学院学报,2001,21(4):40-43.
    [79]金重为,施振华.木材防护工业的技术进步和面临的问题.林产工业.2004,31(4).3-6.
    [80]金重为,施振华.ACQ木材防腐剂及防腐处理木材[J].木材工业,2004,18(4):34-36.
    [81]侯祝强.木材流体渗透性研究的发展与趋势[J].世界林业研究,1999(1):34-37.
    [82]段新芳,孙芳利.壳聚糖金属配合物的防腐性能[J].林业科学,2004,40(6):138-143.
    [83]贺佳.SAS8.2统计软件应用教程[M],北京:人民卫生出版社,2006.
    [84]赵仁杰.木质材料学[M].北京:中国林业出版社,2003.
    [85]赵有科,鲍甫成.针叶树木材流体纵向渗透性与其构造关系的理论分析[J].林业科学,1998,31(4):88-95.
    [86]钟海庆.红外光谱法入门[M].北京:化学工业出版社,1984
    [87]袁志发.实验设计与分析(第二版)[M],北京:中国农业出版社,2007
    [88]高希武.新编实用农药手册[M].郑州:中原农民出版社,2002
    [89]高峰.郭锦棠.木材防腐剂氨溶烷基铜铵的制备和防腐性能研究[J].化工进展,2005,24(5):532-536.
    [90]常建民.木材对流干燥热质传递模型的研究[J].林产工业,1996,23(1):25-17.
    [91]常建民.王东林.木材干燥全自动控制系统的研制[J].北京林业大学学报,2003,25(2):72-75.
    [92]常建民.孙晓秋.木材干燥室计算机辅助设计[J].林产工业,1998,25(4):36-38.
    [93]常建民.落叶松干燥过程热质传递特性的实验研究[J].哈尔滨建筑大学学报,1997,30(4):72-75.
    [94]曹金珍,D.PascalKamdem不同水基防腐剂处理木材的表面自由能[J].2006,28(4):1-5.
    [95]曹金珍.国外木材防腐技术和研究现状[J].林业科学,2006,42(7):120-126
    [96]黄淑英,郭松令.能谱法分析研究木材的流体渗透性[J].东北林业大学学报,1988,16(2):79-82.
    [97]黄铭,邱伟建.PLC在木材防腐设备机组中的应用[J].木材工业,2000,4(6):33-34.
    [98]傅国建,杨文斌.三种木材的渗透性与阻燃处理关系[J].福建林业科技,2001,28(3):18-20.
    [99]彭万喜.人工速生工业林木材增值利用[D].中南林学院硕士学位论文,2003.
    [100]联合国环境规划署化学品处.关于持久性有机污染物的斯德哥尔摩公约(POPS).联合国环境规划署,2001.
    [101]蒋明亮,刘秀英.F R-1、F R-2及P F树脂对木材阻燃、防腐、尺寸稳定等效果的研究[J].林业科学,2001,37(1):121-125.
    [102]蒋明亮.木材防腐剂的登记及质量监督制度探讨.木材工业.2005,19(2).43-45.
    [103]蒋明亮.新型木材防腐剂:百菌清的研究近况[J].木材工业,1997,11(4):21-22,27.
    [104]谢拥群,张壁光.木材纤维对撞流干燥特性的研究[J].北京林业大学学报,2004,26(3):55-58.
    [105]腰希申等.中国主要竹材微观构造[M].大连:大连出版社,1992
    [106]鲍甫成,吕建雄.长白鱼鳞云杉木材纹孔塞不同位置对渗透性的影响[J].植物学报,2001,43(2):119-126.
    [107]鲍甫成,侯祝强.针叶树材纵向气体渗透的三维流阻网络[J].林业科学,2002,38(6):93-98.
    [108]鲍甫成,赵有科等.杉木和马尾松木材渗透性与微细结构的关系研究[J].北京林业大学学报,2003,25(1):1-5.
    [109]潘定如CCA防腐处理对木材表面特性影响的探讨[J].北京林业大学学报,1988,11(3):95-98.
    [110]A.S Mujumdor and L.Passos.Drying:Innovative Technology and Trends in Research and Development' 99 The first Asian--Australia Drying Conference,Indonesia,1999:4-14
    [111]Alex Valcke.Suitability of propieonazole(R 49362) as a new-generation wood-preserving fungicide[C].International Research Group on Wood Preservation 1989,IRG/WP 89-3529
    [112]American Wood-Preservers Association Standards[S].Use Category System1999.2001,135-190.
    [113]AS1602.1-2000IS.Standards Australia International.Australian Standard~(TM) Specification for Preservative Treatment Part1.Sawn and Round Timber,2000.
    [114]Authority N.Timber preservation in New Zealand - Specifications.Process Specification p10:Alternating Pressure Method(APM).1969
    [115]Avramidis S,Ruddick N R.Effect of temperature and moisture on CCA fixation[J].Holz als Roh-und Werkstoff,1989,47(8):328.
    [116]AWPA Standard P8-02,Standard for oil-borne preservatives[S]
    [117]AWPA StandardP5-02,Standard for waterborne preservatives[S]
    [118]B.A.Richardson,Wood Preservation,Construction Press,Lancaster,1978.
    [119]Barnes H M,Amburgey T L,Landers R W.Ground contact performance of wood treated by the MSU process. 21~(st) Annual Meeting of International Research Group on Wood Preservation. Rotorua, New Zealand: 1990.Document No: IRG/WP 3609.
    [120] Barnes H M, Murphy R J, Via B K. Bending & tensile properties of vapor boron-treated composites.33~(rd) Annual Meeting of International Research Group on Wood Preservation. Cardiff, Wales, UK: 2002. Document No: IRG/WP 02-40228.
    [121] Barnes H M, Murphy R J. Wood preservation: the classics and the new age. For. Prod. J., 1995,45 (9): 16-26
    [122] Barnes HM. Treatment of lodgepole pine poles using the MSU process [J]. Proc Am Wood-Preservers Ass, 1988(84):201-210.
    [123] Bergervoet A, Burton R, Nasheri K, et al. Gaseous boron treatments of wood and wood products. 23~(rd)Annual Meeting of International Research Group on Wood Preservation. Harrogate, United Kingdom: 1992.Document No: IRG/WP 92-3691.
    
    [124] Bramhall G., Mathematical model for lumber drying, Wood Science, 1979. 12, No 1:14-21
    [125] Burton R, Bergervoet T, Nasheri K, et al. Gaseous preservative treatment of wood.21st Annual Meeting of International Research Group on Wood Preservation. Rotorua, New Zealand, 1990. Document No: IRG/WP 3631.
    [126] Cao J, Kamdem D P. Microwave treatment to accelerate fixation of copper-ethanolamine (Cu-EA) treated wood [J]. Holzforschung,2004,58(5):569-571.
    [127] Changshi Xie, et al. Fixation of ammoniacal copper preservatives: reaction of vanillin, a lignin model compound with ammoniacal copper sulphate solution[J]. Holzforschung, 1995, 49:483-490
    
    Craciun R et al.XPS and FTIR applied to the study of waterbome copper naphthenate wood preservatives [J]. Holzforschung, 1997,51:207-213
    [128] Chemical Specialties, Inc (CSI). CSI Offers Arsenic-Free ACQ Preserve R Wood Preservative Technology [EB/OL]. http://www.treatedwood.com. News, Chemical Specialties, Inc, 2002-02-04.2.
    [129] Chemical Specialties, Inc./RocK wood Specialties. United States EPA Honors GSI / RocK wood Specialties as Presidential Green Chemistry Challenge Award Recipient. Chemical Specialties, Inc, 2002,6.
    [130] Cloutier A. and Fortin Y.A model of moisture movement in wood based on water potential and the determination of the effective water conductivity 1993 Wood Sci- Technol.27:95-114
    [131] Cloutier A. Fortin Y.et al. A wood drying finite element model based on the water potential concept. 1992. Drying Technology. 10(5), 1151 -1181
    [132] Collignan A. Nadeau J.P.et al. Description and analysis of timber drying kinetics. 1993. Drying Technology. 11(3)489-506
    [133] Conradie W E, Pizzi A. Progressive heat-inactivation of CCA biological performance [J]. Proc Am Wood-Preservers Ass,1987(83):32-49.
    [134] Cooper P A,D Jeremic, Y T Ung. Cooper Effectiveness of CCA fixation to avoid hexava lent chromium leaching[C]. International Research Group on Wood Preservation, 2002, IRG/WP 02-50187
    [135] Craciun R et al.XPS and FTIR applied to the study of waterborne copper naphthenate wood preservatives [J]. Holzforschung, 1997,51:207-213
    [136] Crawford D et al.Laboratory studies of CCA-C-leaching: Influence of Wood and Soil Properties on Extent of As and Cu Depletion[C].International Research Group on Wood Preservation,2002,IRG/WP 02-50186
    [137] Crawford D M, DeGroot R C, Watkins J B, et al. Treatability of US wood species with pigment-emulsified creosote[J].For Prod J,2000,50(1):29-35
    [138] Crumiere N, et al. IMPact of leachiest from CCA-and Copper azole-treated pine decking on soil-dwelling invertebrates[C]. International Research Group on Wood Preservation, 2002, IRG/WP 02-50183
    [139] Dagarin, F.; Petric, M.; Pohleven,F.; Sentjurc, M. EPR investigations of interactions between ammoniacal Cu (II) octanoate and wood[C]. International Research Group on Wood Preservation, 1996, IRG/WP 96-30110
    [140] Dongshan zhang and A. S. Mujumdar .Deformation and stress Analysis of Porous Capillarg Bodies During Intermittent volumetric Thermal Drying. 1992. Drying Technology. 10(2), 421-443
    [141] Ell -97,Standard method of determining the leach ability of wood preservatives[S]
    [142] Erlandsson M, Odeen K, Edlund M L. Environmental consequences of various materials in utility poles-A life-cycle analysis. 23~(rd) Annual Meeting of International Research Group on Wood Preservation.Harrogate.UK: 1992.Doc.No:IRG/WP 92-3726.
    [143] Evans P D, Hainey S D, Bruce A, et al. The suitability of high pressure sap-displacement for the retention of UK grown spruce and pine.21~(st) Annual Meeting of International Research Group on Wood Preservation. Rotorua, New Zealand: 1990.Document No: IRG/WP 3595.
    [144] Evans P.Emerging technologies in wood protection.For.Prod.J.,2003,53 (1): 14-22
    [145] Fang F, Ruddickn N R, Avramidis S. Application of radio-frequency heating to utility poles. Part 2. Accelerated fixation of chromate copper arsenate[J].Forest Prod J, 2001,51(9):53-58.
    [146] George Bronnhall Mathematical model for lumber drying. 1979. wood science. Vol 12. Nol
    [147] Goetsch S, Peek R D. Possibilities of improving the oscillating pressure method. 22~(nd) Annual Meeting of International Research Group on Wood Preservation. Kyoto, Japan: 1991. Document No: IRG/WP 3668.
    [148] Hashim R, Dickinson D J, Murphy R J, et al. M. Effect of vapor boron treatment on mechanical properties of wood based board materials.23~(rd) Annual Meeting of International Research Group on Wood Preservation. Harrogate, United Kingdom: 1992. Document No: IRG/WP 92-3727.
    [149] Hashim R, Murphy R J, Dickinson D J, et al. The mechanical properties of boards treated with vapor boron. For. Prod. J., 1994,44 (10): 73-79
    [150] Hashim R, Murphy R J, Dickinson D J, et al. Vapour boron treatment of wood based panels: Mechanism for effect upon iMPact resistance. 25th Annual Meeting of International Research Group on Wood Preservation. Nusa Dua, Bali, Indonesia: 1994. Document No: IRG/WP 94-40036.
    [151] Hashim R, Murphy R J, Dickinson D J, et al. Vapour boron treatment of wood based panels: Further studies on mechanical properties.24~(th) Annual Meeting of International Research Group on Wood Preservation. Orlando, Florida, USA: 1993. Document No: IRG/WP 93-30028.
    [152] Hedley M, Nasheri K, Durbin G. Multiple-Phase Pressure (MPP) Process: One-stage CCA treatment and accelerated fixation process.5 Treatment of Sitka spruce and Scots pine 30~(th)Annual Meeting of International Research Group on Wood Preservation. Rosenheim, Germany: 1999. Document No: IRG/WP 99-40136.
    [153] Hendrickson S T. Some experiments with oscillating pressure in wood impregnation. Annual Convention of British Wood Preserving Association. 1958.
    [154] Hosli J P, Filion M. Suitability of the pulsation process for the impregnation of white spruce round wood by creosote. International Journal of Wood Preservation, 1983,3 (1): 23-30
    [155] Hosli J P, Ruddick J N R. The potential of high pressure pulsation processes to treat white spruce lumber with water-borne preservatives. 19th Annual Meeting of International Research Group on Wood Preservation. Madrid, Spain: 1988. Document No: IRG/WP 3471.
    [156] Hudson M S, Shelton S V. Longitudinal flow of liquids in southern pine poles. For. Prod. J., 1969,19 25-32
    
    [157] Hudson M S. New process for longitudinal treatment of wood. For. Prod. J., 1968, 18 31-35
    [158] Hughes A. S. Connell M. Occupational exposure risk assessment at a commercial treatment plant using copper azole preservative[C].International Research Group on Wood Preservation, 1998,IRG/WP 98-50101-15
    [159] Humar,M, Petric, M. Determination of ethanolamine in impregnated wood[C]. International Research Group on Wood Preservation, 2000, IRG/WP 00-20198
    
    [160] J. G. Wilkinson, Industrial Timber Preservation, Associated Bussiness Press,London,1979.
    [161] Japanese Agricultural Standard Specifications of Wood Preservation and Wood Species. 1988,4.
    [162] Johns W E. Isocyanates as Wood Binders-a Review. Journal of Adhesion, 1982,15 (1): 59-67
    [163] Jones W A, Barnes H M, Murphy R J. Ancillary properties of vapor boron-treated composites.32~(nd) Annual Meeting of International Research Group on Wood Preservation. Nara, Japan: 2001. Document No: IRG/WP 01-40210.
    [164] Jones W A, Barnes H M, Stewart H A, et al. Tool wear for vapor boron-treated composites.32~(nd) Annual Meeting of International Research Group on Wood Preservation. Nara, Japan: 2001. Document No: IRG/WP 01-40209.
    [165] Jun Zhang. FTIR characterization of copper ethanolamine-wood interaction for wood preservation[J]. Holzforschung,2000,54:119-122
    
    [166] Jun Zhang. FTIR characterization of copper ethanolamine-wood interaction for wood
    [167] Karimi A, Ghorbani M. Investigation of temperature effecton fixation of Celcure preservative (ACC) [J]. Int Res Group on Wood Preserv, IRG / WP01-40200,2001.
    [168] Kelso W C J. Treatment of wood with water-borne preservatives. U.S. Patent 4,303,705, USA, 1977
    [169] Kennedy M J,P A Collins Leaching of preservative components from pine decking treated with CCA and copper azol, and interactions of leachates with soils International[C].Research Group on Wood Preservation,2001,IRG/WP 01-50171
    [170] Kennedy M J. Leaching of preservative components from pine decking treated with CCA and copper azole, and interactions of leachates with soils[C]. International Research Group on Wood Preservation,2001,IRG/WP 01 -50171
    [171] Kiguchi M, Yamamoto K. Chemical Modification of Wood Surfaces by Etherification 3.Some Properties of Self-Bonded Benzylated Particleboard. Mokuzai Gakkaishi, 1992, 38 (2):150-158
    [172] Kim G H, Yun K E, Kim J J. Effect of heat treatment on the decay resistance and the bending properties of radiate pine sapwood. Material Und Organismen, 1998,32 (2): 101-108
    [173] Kirk C. Naler and Elven T. choong. Mathematical Modeling of the Diffasion of water in wood during Drying. 1985,wood and Fiber Science. 17 (3),404-42
    
    [174] Kumar S. Chemical Modification of Wood. Wood and Fiber Science, 1994,26 (2): 270-280
    [175] Lebow, S. Leaching of Wood Preservative Components and Their Mobility in the Environment[R]. USDA, Forest products laboratory, General Technical Report, 1993, FPL-GTR-93, 1-36
    [176] Lehong Jin, et al. Copper base wood preservatives: observation on fixation, distribution and performance[J].AWPA, 1991,169-180
    [177] Lehong Jin, et al. Copper base wood preservatives: observation on fixation, distribution and performance[J].AWPA, 1991,169-180
    [178] Lin T. and W. J. Coumans Reagular Regime Analysis and Moisture Diffusivity in wood. 1993. Drying Technology, 11 (5): 971-1003
    [179] Luikov A V. Heat and Mass Transfer in Capillary-porous Bodies. Pergamon press New York. 1967
    [180] LuiKov A. V. Systems of Differential Equations of Heat and Mass Transfer in Capillary-Porous Bodies. 1975. Int. J. Heat Mass Transfer. Vol 18. P11-14
    [181] Mason C G W, Shorland F B.I improved equipment and technique for high pressure sap displacement impregnation of natural round wood.4~(th) Annual Meeting of International Research Group on Wood Preservation. West Berlin, Germany (FRG): 1972. Document No: IRG/WP 309.
    [182] Mason C G W. Improved apparatus and processes for the fluid impregnation of timber. New Zealand patent application No.167,652,New Zealand, 1972
    [183] Mc Quire A J. OPM treatment of green timber-Further developments. The New Zealand Timber Journal, 1966, Aug. and Sept. New Zealand Forest Service Reprint No 241
    [184] Mingliang Jiang, et al. Preservatives and Leaching Performance of Copper in Copper Treated Wood[C]. International Research Group on Wood Preservation, 2002, IRG/WP 02-30279
    [185] Mounji H. and M.EL Kouali. Modeuing of the Drying process of wood in 3-Dimensions. 1991. Drying Technology, 9 (5),1259-1314
    [186] Murphy R J, Barnes H M, Dickinson D J. Vapor boron technology. Proc. Enhancing the Durability of Lumber and Engineered Wood Products. Madison, WI, U. S. A.: Forest Products Society, 2002.
    [187] Murphy R J, Turner P. A vapour boron preservative treatment of manufactured wood based board materials. Wood Sci.Technol.,1989,23 (3):273-279 .
    [188] Nasheri K, Dry dale J, Durbin G, et al. Multiple-Phase Pressure (MPP) Process: One-stage CCA treatment and accelerated fixation process. 4. MPP coMPared with other processes for achieving accepTab treatment of radiate pine heartwood. 29~(th) Annual Meeting of International ResearchGroup on Wood Preservation. Maastricht, the Low Countries: 1998. Doc. No: IRG/WP 98-40115.
    [189] Nasheri K, Pendlebury A J, Dry dale J, et al. The multi-phase pressure (MPP) process. One-stage CCA treatment and accelerated fixation process- 1 .The process as a new concept in preservative treatment.28th Annual Meeting of International Research Group on Wood Preservation. Whistler, British Columbia, and Canada: 1997. Document No: IRG/WP 97-40078.
    [190] Nicholas D. Wood Preservation in the 90's sud Beyand[J].Madison W I.1995:169-173
    [191] Osmose. Osmose~R Naturewood~(TM)ACQ Timber Preservative. Osmose~R NZ. Clendon Town, Auckland, NZ. 2002,2.
    [192] Oudlaxi N. and Arnaud G.A Two-Dlnensional study of wood plank Drying the Effeat of Gaseous Prissure below Boiling point. 1992. Transport in porous Media7: 39-61
    [193] Pearson H, Durbin G, Hedley M. Multiple-Phase Pressure (MPP) Process: Pilot plant trials for disposal of kickback using reverse osmosis membrane filtration.32~(nd) Annual Meeting of International Research Group on Wood Preservation. Nara, Japan: 2001. Document No: IRG/WP 01-40202.
    [194] Pearson H, Nasheri K, Dry dale J, et al. Multiple-Phase Pressure (MPP) Process: One-stage CCA treatment and accelerated fixation process. 3. Effect of process variables on sapwood treatment and CCA fixation.29~(th) Annual Meeting of International Research Group on Wood Preservation. Maastricht, the Low Countries: 1998. Document No: IRG/WP 98-40114.
    [195] Peek R D Strength properties of preservative treated pine and spruce wood after super-heated steaming[J]. Int Res Group on Wood Preserv, Doc IRG / WP,1984:331.
    [196] Peek R D, Klipp H. Fixation of chromate wood preservatives through technical drying[C]. Int Res Group on Wood Preserv, Doc IRO / WP,1990:22~23.
    [197] Peek R D, Willeitner H. Fixation of chromate wood preservatives through super-heated steaming [J]. Holz Roh-Werkstoff, 1981(39):495-502.
    [198] Peek R D. Application of oscillating pressure to improve treatability of refractory specie. 18~(th) Annual Meeting of International Research Group on Wood Preservation. Honey Harbour, Ontario, Canada: 1987. Document No: IRG/WP 3449.
    [199] Pendlebury A J, Dry dale J, Nasheri K, et al. The multi-phase pressure (MPP) process. One stage CCA treatment and accelerated fixation process-Concepts proved by repetitive pilot plant treatments.28~(th) Annual Meeting of International Research Group on Wood Preservation. Whistler, British Columbia, and Canada: 1997.Document No: IRG/WP 97-40079.
    [200] Permad, i P., DeGroot, R. C, Woodward, B. Alternative Wood Preservatives for Use in Indonesia[J]. Forest Prod. J, 1998,48(11/12):98-101
    [201] Pizzi Chromium interactions in CCA/CCB wood preservatives. Part I. Interactions with wood carbohydrates[J] .Holzforschung, 1990,44:373-380
    [202] Pizzi. A. A New Boron Fixation Mechanism for Environment Friendly Wood Preservatives[J].Holzfoschung, 1996,50(6):507-510
    [203] preservation[J].Holzforschung,2000,54:119-122
    [204] Rao, M. V., Kuppusamy,V.,Rao, K. S., Santhakumaran, L. N. Leaching of CCA preservative from treated timber in marine environment[C].International Research Group on Wood Preservation, 2001, IRG/WP 01-30254
    [205] Siau J. F. and Fin Z No isothermal moisture diffusion experiments analyzed by for alternative equations. 1985. wood Sci-Technol. 19:151-15
    [206] Siau J. F. Chemical Potential as a driving force for no isothermal moisture movement in wood. 1983, wood sci. Technol. 17:101-105
    [207] Siau J.F.et al An application of a thermodynamic model to experiments on isothermal diffusion of moisture in wood. Wood Sci. and Technol. 1993(27): 131-136
    [208] Siau J. F. A Proposed Theory for No isothermal Unsteady-state Transport of Moisture in wood. 1983. wood Sci-Technol. 17:75-77
    [209] Smith B, Bailey D. Emerging domestic markets for treated lumber. Enhancing the Durability of Lumber and Engineered Wood Products. Kissimmee (Orlando), Florida: Forest Products Society, 2002.
    [210] Smith S R, Murphy R J, Dickinson D J.A methodology for the life-cycle Assessment of treated timber products.26~(th) Annual Meeting of International Research Group on Wood Preservation. Cannes-Mandelieu, France: 1993. Doc. No: IRG/WP 93-50001:1.
    [211] Thevenon M F, Pizzi A, Haluk J P. Albumin borate: A new non-toxic, wide-spectrum, long-term wood preservative [J]. Int Res Group on Wood Preserv, Doe IRG / WP, 1998:30167.
    [212] Thomas. H. R, Lewis R. W, et al. An application of the finite element method to the drying of timber, 1980, wood and Fiber. 11(4). P 237-241
    [213] United States Environmental Protection Agency. Whitman Announces Transition from Consumer Use of Treated Wood Containing Arsenic.EPA Environmental New, 2002-02-12,3.
    [214] Valcke A. R., Leemput Van L. Current models used by the European Health Authorities to evaluate the volatilization of active ingredients from treated wood used inside dwellings. A case study: Volatilization of azaconazole and propiconazole from treated wood[C]. InternationalResearch Group on Wood Preservation, 1990, RG/WP 3565
    [215] Venkatasamy R. The effects of pH on leaching of copper-chrome-arsenate(CCA) from pressure-treated Kenyan-grown Eucalyptus saligna and Acacia mearnsii: Initial findings[C]. International Research Group on Wood Preservation, International Research Group on Wood Preservation, 2002, IRG/WP 02-30298
    [216] Venkatasamy R. The influence of age on retention and fixation of CCA in pressure-treated Kenyan-grown Eycalyptus saligna: Summary of findings[C]. International Research Group on Wood Preservation, 2002, IRG/WP 02-30296
    [217] Vinden P F, Fenton T, Nasheri K. Options for accelerated boron treatment: A practical review of alternatives. 16~(th) Annual Meeting of International Research Group on Wood Preservation. Guaruja, Brazil, 1985. Document No: IRG/WP 3329.
    [218] Wade R, Mason D. The 2000 Treated Wood and Treated Wood Products Statistics Report. Southern Forest Products Association, Kenn er,LA,2002.
    [219] Weaver F W. A modified empty-cell process for treatment of wood with chromate copper arsenate [D].Mississippi State University, 1981.
    [220] Wegen H. W. Organic solvent preservatives. Essays on the ecotoxicology of new formulations [C]. International Research Group on Wood Preservation, 1991,IRG/WP 3642
    [221] Welzbacher C R, Rapp A O. CoMParison of thermally modified wood originating from four industrial scale processes - durability. 33rd Annual Meeting of International Research Group on Wood Preservation. Cardiff, Wales, UK: 2002. Doc. No: IRG/WP 02-40229.
    [222] Willeitner, H, brandt, K. Problems of fixation of CCA-preservatives in palm-wood[C]. International Research Group on Wood Preservation, 1985,IRG/WP 3338
    [223] Williams F C, Hale M D. The resistance of wood chemically modified with isocyanates- Part 1. Brown rot, white rot and acid chlorite delignification.Holzforschung, 1999,53 (3): 230-236
    [224] Wood M W, Kelso W C, Barnes H M, et al. Effects of the MSU process and high preservative retentions on southern pine treated CCA-type C. Annual Meeting of American Wood Preservers' Association. 1980.76.
    [225] Yalinkilic M K. Enhancement of Biological and Physical Properties of Wood by Boric Acid[J].Holzfoschung, 1998,52(6):667-672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700