银杏无性系材性遗传变异及良种选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以来自我国9个省和日本的139个银杏雌株无性系为试材,系统地研究了其生长性状、木材的解剖结构、物理力学特性、化学性质以及它们的遗传变异规律,在此基础上对无性系进行了评价选择,主要结论如下:
     1.性状的变异
     生长指标中,除新梢粗和新梢长外,材积、接口上粗、接口上高等生长指标在无性系间的差异都非常显著。
     在银杏木材中存在两种形态、结构不同的宽窄管胞,其中宽管胞为银杏木材的主要管胞类型。管胞的横截面形态变异较大,管胞长度、微纤丝角、双壁厚、腔径、壁腔比、弦向直径、径向直径等形态特征指标在无性系间有较大的变异。银杏具缘纹孔形态和纹孔排列方式在无性系间和无性系内变异也较大。
     银杏木材的密度、干缩率、生长应变等物理力学性质在不同无性系间和不同径向位置、高度上存在较大变异。抗压强度在不同无性系间的差异非常明显。
     银杏木材的冷水抽出物含量、热水抽出物含量、1%NaOH抽出物含量、苯醇抽出物含量、木质素含量、纤维素含量、灰分含量等基本化学性质在无性系间差异较大;银杏木材的耐腐能力在无性系间差异明显;各无性系木材在不同热解阶段的起始和终止温度、质量损失率和放热量都存在明显的差异,不同热解阶段的表面活化能差异也非常显著。
     2.性状的遗传控制
     材积、接口上粗、接口上高、冠幅等生长指标的重复力都在0.70以上,其它生长性状的重复力相对较弱;微纤丝角、双壁厚、腔径、壁腔比、弦向直径、径向直径6个管胞特征指标的重复力都在中等以上,其中微纤丝角和弦向直径的重复力达到了0.70以上;在物理力学指标中,除顺纹抗压强度和表面轴向生长应变的重复力较低外,干缩指标和基本密度的重复力都达到了0.60以上;银杏木材化学性质的重复力相差较大,其中木质素、纤维素、灰分、苯醇抽出物含量等4项指标的重复力较大,达到了0.70以上,在无性系内较为稳定。
     3.性状的相关性
     生长性状间的相关性较强,除了新梢粗与新梢叶数呈负相关外,大部分指标间都为正相关,并且相关性较高。
     在管胞的特征指标中,微纤丝角与壁腔比呈正相关,与双壁厚、腔径、弦向直径、径向直径呈负相关,除与双壁厚的相关性较弱外,与其它指标的相关性都达到了极显著水平。另外,腔径、径向直径和弦向直径间相关性也都较强。
     6个干缩指标及表面生长应变间为正相关,相关性都达到了极显著水平。基本密度与顺纹、横纹抗压强度间也为正相关,相关性也都达到了极显著水平。主成分分析表明:可以把物理力学指标归为反映银杏木材干缩特性和力学性质的两类指标。
     大部分化学指标间的相关系数都不大,其中不同抽出物含量之间,纤维素与木质素含量之间,纤维素含量与耐腐能力,木质素含量与热分解指标间的相关性较高。
     分别分析了生长、解剖、化学指标与物理力学指标间的相关性,结果表明:生长指标与干缩指标间存在负相关关系,与其它物理力学指标间相关性较弱;微纤丝角与干缩率呈负相关,与基本密度呈显著的正相关,与顺为抗压强度和表面生长应变都呈弱的负相关;径向直径、弦向直径与干缩率间都呈正相关,与基本密度呈负相关,与顺纹抗压强度呈弱的负相关;化学性质与物理力学性之间的相关性较弱。主要表现为:冷水抽出物与基本密度、顺纹抗压强度呈显著的正相关。苯醇抽出物含量与弦向干缩率、表面生长应变呈极显著负相关。木质素和纤维素含量与顺纹抗压强度呈正相关,与表面生长应变呈极显著负相关。
     4.无性系选择
     根据遗传参数及指标间相关性分析结果,在生长、解剖、物理力学、化学四类指标体系内,对不同试验地点的无性系进行了选择,分别选出多个生长量大,解剖结构好,物理力学特性稳定和化学组成适宜的优良无性系。
     根据指标间的相关性和重复力大小,从4类指标中选出接口上粗、管胞弦向直径、体积干缩率、基本密度、木质素含量共5个指标作为无性系选择的综合指标,建立指数选择方程为:
     I=0.1171x1-0.3749x2+12.0533x3-0.7948x4+0.7120x5综合选择指数的准确度为rH I=0.9982,指数遗传力h I2=0.9225,综合育种值选择进展△H =2.5942。通过对郯城孙出口16个无性系的选择,选择指数最大的无性系为005#,其生长、解剖、物理力学和化学组成等综合指标优于其它无性系,选择效果较好,说明这个选择评价指标体系能够较为全面地反映银杏木材的基本性状。
     本文还对银杏木材的系统进化、指标间的相关性、遗传控制以及无性系选择等问题进行了讨论。
Taking 139 Ginkgo biloba L. female clones from 9 provinces in China and Japan as test materials, this dissertation systematically studied their growth traits, wood anatomical structure, physical-mechanical properties, chemical properties as well as their law of genetic variation. On that basis, this study made a evaluation and selection on clones. The main conclusions were as follows:
     1. Trait variation
     Among all the growth traits, except for the diameter and length of new shoots, there were very significantly differences among different clones.
     There were two kinds of wide and narrow tracheids with different shapes and structure in wood of Ginkgo biloba L. and the former was the main tracheid type. The cross-sectional shape of tracheid mutated greatly. The shape features indexes of the tracheid, including tracheid length, microfibril angle, double-wall thickness, lumen diameter, the ratio of cell wall to cavity, tangential diameter and radial diameter, were quite variable among the clones. And there were great variations of the shape and the arrangement modes of bordered pits among and within the clones.
     There were great variations of physical and mechanical properties of Ginkgo wood, such as wood density, shrinkage rate, and growth strain, among different clones and at different radial locations and heights. The maximum crushing strength differed significantly among different clones.
     There were significant differences of chemical properties, including the content of cold water, hot water, 1%NaOH, alcohol-benzene, lignin, cellulose, and of ash among clones. The corrosion resistance of wood differed greatly among clones. There were significant differences of the starting and final temperatures, as well as the rate of mass loss and thermal discharge at different thermal decomposition stages between different clones. And the surface activation energy differed greatly at different thermal decomposition stages between different clones,too.
     2. Genetic control of traits
     The repeatability of stem volume,diameter upon rootstock,length above rootstock,crown-width was over 0.70,and the repeatability of other growth traits were relatively low; The repeatability of the six tracheid feature indexes: tracheid microfibril angle, double-wall thickness,lumen diameter,ratio of cell wall to cavity,tangential diameter and radial diameter, were above the average. The repeatability of microfibril angle and tangential diameter were over 0.70; Among physical-mechanical properties indexes, the repeatability of air-dried shrinkage rate and basic density was over 0.60, except for the lower repeatability of Maximum crushing strength and surface longitudinal growth strains; The repeatability of chemical properties differs greatly, and repeatability of lignin,cellulose, ash and alcohol-benzene was much higher above 0.70 and was stable among the clones.
     3. Correlation of traits
     Correlations among the growth traits were relatively strong. The correlations among most indexes were positive with higher correlation coefficient, except for the correlation of the diameter of new shoots and the number of new shoot leaves being negative. Among the indexes of tracheid features, microfibril angle presented a positive correlation with Ratio of cell wall to cavity, and presented a negative correlation with double-wall thickness,diameter of cavity,radial diameter and tangential diameter. And except for the weak correlation with double-wall thickness, its correlation with other indexes reached a very significant level. The Correlation between lumen diameter, radial diameter and tangential diameter were also very strong.
     The 6 shrinkage indexes and the surface growth strain had a positive correlation at a significant level. The correlation between basic density and maximum crushing strength was also positive at a significant level. The analysis of principal components showed that the entire physical-mechanics indexes could be classified into two categories of indexes which reflected the shrinkage properties and mechanical properties of Ginkgo wood.
     The correlation coefficients of most chemical indexes were not significant. the correlation among different extracts,the correlation between the content of cellulose and lignin,the correlation between the content of cellulose and the corrosion resistance, and the correlation between the content of lignin and the indexes of thermal decomposition were relative strong.
     This study also analyzed the correlation of growth traits, wood anatomy and chemical properties with physical-mechanical properties. The conclusions showed that: Growth indexes and dried-air shrinkage indexes had a negative correlation, and it had a weak correlation with other physical-mechanical indexes; microfibril angle presented a negative correlation with shrinkage rate, a significant positive correlation with basic density,and a weak negative correlation with Maximum crushing strength and surface growth strains; Radial diameter and tangential diameter of tracheids presented a positive correlation with shrinkage rate, a negative correlation with basic density, and a weak negative correlation with Maximum crushing strength; There were a weak correlation between chemical properties and physical-mechanical properties, which principally presented as follows: there were significant positive correlation between cold water extracts and basic density as well as maximum crushing strength. There were a significant negative correlation between alcohol-benzene extracts and tangential shrinkage rate as well as surface growth strain. There were a positive correlation between lignin and cellulose as well as Maximum crushing strength, and a very significant negative correlation with surface growth strains.
     4. Selections of clones
     According to the analysis results of genetic parameters and correlations of different indexes, within the four index systems of growth, anatomy, physical mechanics, and chemistry, we selected superior clones with high growth, good anatomical structures, stable physical-mechanics features, and proper chemical components in different test fields. According to the correlation and the repeatability, from 4 categories of indexes, this study chose 5 indexes, which were diameter upon rootstock,tangential diameter, dried-air shrinkage rate of volume, basic density and lignin content, as the comprehensive indexes to select clones, and established a index selection mathematical equation : I=0.1171x1-0.3749x2+12.0533x3-0.7948x4+0.7120x5
     The rate of accuracy of comprehensive selective index rH I=0.9982,index hereditary captivity h I2=0.9225,Progress in integrated breeding selection△H =2.594. This study selected 16 clones in Sun Chukou of Tan cheng with the largest selecting index 005# . its comprehensive indexes of growth, anatomy, physical-mechanics, and chemical components were superior to other clones. This showed that this system of selection index could reflect the basic traits of Ginkgo wood comprehensively.
     This dissertation also made a discussion about systematic evolution, correlation among indexes, genetic control and clone selection of Ginkgo biloba L.
引文
[1]鲍甫成,吕建雄.中国木材科学研究与国家目标.世界林业研究,1999,12(4):45~50
    [2]鲍甫成,江泽慧,姜笑梅,等.中国主要人工树种幼龄材与成熟材及人工林与天然林木材性质比较研究.林业科学,1998,34(2):63~76
    [3]查朝生,刘盛全.木材性质遗传变异规律的研究进展.世界林业研究,2005,18(3):49~53
    [4]陈学森,章文才,邓秀新.银杏雌雄株核型及性别早期鉴定.果树科学,1997, 14,(2):87~90
    [5]陈益泰.林木早期选择研究新进展.林业科学研究.亚林所所庆专刊,1994,7:11~22
    [6]陈岳武,施季森,杉木木遗传改良中的若干基本问题(续).南京林学院学报,1984,No.1
    [7]成俊卿等.长白落叶松管胞长度的变异研究.林业科学院研究报告,森工部分第三号,1959
    [8]成俊卿等.人工林和大然林民自落叶松木材材性比较实验研究.林业科学,1962,6(1):18~27
    [9]成俊卿主编.木材学,中国林业出版社,1981
    [10]池玉杰. 6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析.林业科学,2005,41(21):136~140
    [11]樊军锋,周永学等.陕西泡桐育种历史及展望.西北林学院学报,2005,20(4):80~84
    [12]范璐,王美美,杨红卫等.傅里叶变换红外吸收光谱识别五种植物油的研究.分析化学,2007, 35(3) : 390~393
    [13]方乐金,施季森,张运斌等.杉木优良家系及单株综合选择研究.南京林业大学学报,1998,22(1):17~21
    [14]方文彬,林云,苏维斌.火炬松短周期工业林不同高度上干缩性能的研究.中南林学院学报, 1996,16(3):15~21
    [15]费本华.X射线衍射法测定铜钱树木材微纤丝角及其变异的研究.安徽农业大学学报,1995,3:262~265
    [16]费本华,江泽慧,阮锡根.银杏木材微纤丝角及其与生长轮密度相关模型的建立.木材工业,2000,14(3):13~15
    [17]费本华.北京地区银杏木材密度及其变异研究.北京林业大学学报,2000,22(3):14~18
    [18]费本华等.银杏木材的密度和化学性质.东北林业大学学报,2000,28(4):47~49
    [19]傅德志,杨亲二.银杏雌性生殖器官的形态学本质及其系统学意义.植物分类学报, 1993a.31(4):294~296
    [20]傅德志,杨亲二.银杏雌性生殖器官的形态学本质及其系统学意义.植物分类学报,1993b, 31(3) :309~317
    [21]冈田幸郎.育种学最近の进步,1973,13: 27~34
    [22]顾万春,归复,于志民等.毛白杨优良无性系(新品种)材性测定研究.林业科学研究,1998, 11(2):186~191
    [23]郭平仲.数量遗传分析.北京:首都师范大学出版社,1987,109~110
    [24]胡伯智.杉木优良家系实生苗与扦插苗造林效果比较.南京林业大学学报,1997, 23(4):74~75
    [25]胡继青,姜笑梅,侯祝强等.三种人工林桉树轴向生长应变变异初探,木材工业,2000,14(6):9~11
    [26]黄秦军,苏晓华.美洲黑杨×青杨F-2代基本材性性状遗传变异研究.林业科学研究,2003,16(2):141~145
    [27]黄寿先,施季森等.杉木纤维用材优良无性系的选择.南京林业大学学报(自然科学版)2005,29(5):21~24
    [28]黄玉源.在银杏类植物中发现导管初报.广西农业生物科学,2003,22(4):331~333
    [29]江泽慧,彭镇华.世界主要树种木材科学特性.北京:科学出版社,2001:9~10
    [30]姜笑梅,骆秀琴,殷亚方.不同湿地松种源木材材性遗传变异的研究.林业科学,2002,38 (3):130~135
    [31]解荷锋,于中奎,陈代良等.黑杨纸浆材品种的材性遗传分析和选择.山东林业科技, 1996,l:l~ 5
    [32]金国庆,周世水.马尾松自由授粉家系生长和材质的遗传分析和联合选择,1994,7(3):263~268
    [33]金其样.杉木无性系生长和木材密度的遗传变异及选择.林业科技通讯,1999,8:11~13
    [34]李保进,邢世岩.叶籽银杏叶解剖及气孔特性研究.林业科学, 2007,43(10):34~38.
    [35]李斌,顾万春,夏良放等.鹅掌揪种源材性遗传变异与选择.林业科学,2001,37(2):42~50
    [36]李淡清,刘金凤等.蓝桉、直干桉木材纤维长度在株内的变异.云南林业科技,2000(2):8~14
    [37]李坚等.木材科学新篇.哈尔滨:东北林业大学出版社,1991
    [38]李金花,张绮纹.不同年龄47号杨木材性质变异研究.林业科学研究,2005,18(5):567~572
    [39]李明鹤.遗传参数在林木早期选择中的应用.湖北林业科技,1990,4:1~4
    [40]梁善庆,罗建举.人工林米老排木材解剖性质及其变异性研究.北京林业大学学报,2007,29(3):142~148
    [41]林金根,陶银周.银杏干材生长规律研究简报.浙江林业科技,1995,15(4):35~37
    [42]林同龙.杉木杂交后代胸径生长和木材体积质量的遗传变异及联合选择.浙江林学院学报,2000,17(2):142~145
    [43]刘莎,朱虹,褚小立等.汽油族组成的近红外光谱快速测定.分析测试学报,2002,21(1):40~43
    [44]刘晓丽,姜笑梅,殷亚方.人工林尾巨桉树木表面轴向生长应变.北京林业大学学报,2005,27(6):99~102
    [45]刘晓丽,姜笑梅,殷亚方.应变片和轴向生长应变仪法测试树木轴向表面释放应变的研究.林业科学,2005,41(2):210~214
    [46]刘昭息,何玉友,孙海著等.火炬松种源遗传变异研究及纸浆材优良种源评选Ⅰ.性状的地理变异和相关分析.林业科学研究,1997,10(3):253~258
    [47]骆秀琴,管宁,张寿槐等.32个无性系木材性质和力学性质的差异.林业科学研究,1994,7(3):259~262
    [48]马永涛,郑碗,舒筱武.云南松木材材性与生长性状相关性研究.云南林业科技,2002,l:68~70
    [49]莫惠栋.农业试验统计.上海:上海科学技术出版社,1989,360~39
    [50]潘惠新,黄敏仁,李火根等.美洲黑杨新无性系干形性状遗传变异初步研究.南京林业大学学报,1999,23(5):1~6
    [51]秦特夫,黄洛华,周勤.杉木幼龄材与成熟材木质素的化学官能团和化学键特征研究.林业科学,2004,40(2):137~141
    [52]秦特夫.“I-214杨”心材、边材木质素的红外光谱、质子和碳-13核磁共振波谱特征研究.林业科学研究, 2001,14(4):375~382
    [53]邱帖轶,常德龙,唐君畏.秃叶黄皮树的木材解剖性质.东北林业大学学报,2006, 34(3):36~38
    [54]邱肇荣,刘君良,张士诚.长白落叶松木材管胞长度的变异研究.吉林林学院学报,1996,12(3):156~158
    [55]茹广欣,冯胜等.泡桐无性系木材基本密度遗传变异研究.河南农业大学学报,2001, 35 (4):335~338
    [56]沈熙环.国外林业科技资料.中国林科学院科技情报所,1974:33~35
    [57]盛志廉.陈姚生.数量遗传学.科学出版社,1999
    [58]沈熙环.林木遗传育种学.中国林业出版社,2003:54~55
    [59]施季森,叶志宏,陈岳武等.木材材性的遗传和变异研究:杉木种子园自由授粉子代间木材密度的遗传变异和性状之间的相关性.南京林业大学学报,1987,11(4):15~24
    [60]施季森,叶志宏,翁玉榛等.杉木生长与材性联合遗传改良研究.南京林业大学学报.1993,17(4):l~8
    [61]施云海,方梦祥,王树荣等.建筑装潢中几种常用板材热解特性及动力学研究.火灾科学,2002,11(4):21~216
    [62]时明芝.杨树新无性系的引种及遗传选择.福建林学院学报,2003,23(4):352~355
    [63]孙晓梅,张守攻.日本落叶松自由授粉家系纸浆材材性遗传变异的研究.林业科学研究, 2003,16(5):515~522
    [64]宋云民,黄栓,黄永利.湿地松家系生长和材性遗传变异分析.林业科学研究,1995, 8(6):671~676
    [65]童再康,俞友明等.黑杨派新无性系木材物理力学性质研究.林业科学研究,2002, 15(4):450~456
    [66]王薇.银杏开发研究进展.贵州农业科学,1996,2:62~64
    [67]王多加,周向阳,金同铭.近红外光谱检测技术在农业和食品分析上的应用.光谱学与光谱分析,2004, 24(4) : 447~450
    [68]王伏雄,陈祖铿.银杏胚胎发育的研究-兼论银杏目的亲缘关系.植物学报,1983,25(3): 199~207
    [69]王军辉,顾万春,夏良放等.恺木种源(群体)/家系材性性状的遗传变异.林业科学研究,2001,14(4):362~368
    [70]王克胜,韩一凡,任建中等.群众杨改良无性系材性的遗传及性状相关的研究.林业科学,1995,31(1):44~49
    [71]王克胜.杨树无性系生长和材性的遗传变异及多性状选择.林业科学,1996, 32 (2): 111 ~117
    [72]王明庥,黄敏仁,阮锡根.黑杨派新无性系木材性状的遗传改良.南京林业大学学报,1989,13(3):9~16
    [73]王明庥.主编.林木遗传育种学.北京:中国林业出版社,2001
    [74]吴顺昭,蔡嘉祥.台湾樟部树材之构造研究(2),中华林学季刊,1972,6(3):35~79
    [75]吴际友,龙应忠,余格非等,湿地松半同胞家系主要经济性状的遗传分析及联合选择.林业科学,2000,36:57~61
    [76]邢世岩,孙霞.银杏胚胎发育研究述评-兼论银杏系统发育.武汉植物学研究,1996,14(3):279~286
    [77]邢新婷,张志毅.三倍体毛白杨无性系木材密度遗传变异研究.北京林业大学学报,2000, 22(6):16~20
    [78]徐立安,陈天华,王章荣.马尾松种源子代材性变异与制浆造纸材优良种源选择.南京林业大学学报,1997,21(2):l~6
    [79]徐有明.油松管胞形态特征的变异.林业科学,1990,26(4) :337~343
    [80]徐有明,邹明宏,万鹏.火炬松种源木材管胞特征值的差异分析.南京林业大学学报(自然科学版),2002,26(5):15~20
    [81]阎昊鹏,陆熙娴,秦特夫.热重法研究木材热解反应动力学.中国木材工业,1997,11(2):14~18
    [82]杨传平.兴安落叶松种源试验研究(Ⅱ) .东北林业大学学报,1991,19(育种专刊):68~75
    [83]杨秀艳,季孔庶.林木育种中的早期选择.世界林业研究,2004,17(2) 6~8
    [84]杨忠,江泽慧,费本华,刘君良.近红外光谱技术及其在木材科学中的应用.林业科学,2005,41(4):177~183
    [85]杨文斌,马世春,顾炼百.阻燃马尾松的热动力分析.木材工业,2000,14(5):10~12
    [86]叶克林,陶伟根.新世纪我国木材科学与技术展望.木材工业,2001,15(1):5~8
    [87]叶培忠,陈岳武等.杉木早期选择的研究.南京林产工业学院学报,1981,(1):106~116
    [88]叶志宏,施季森.杉木11个亲本双列交配遗传分析.林业科学研究,1991,4(4):380~385
    [89]虞华强.人工经济林核桃、枣树木材性质及其变异规律的研究:[硕士学位论文].合肥:安徽农业大学,2001
    [90]袁国成译.银杏人工林及其生长过程.陕西林业科技,1982(3):87~88
    [91]袁觉等.浅谈银杏木材的利用与发展.林业科技开发,2002.2:6~8
    [92]虞沐奎,赖天碧,徐六一等.火炬松材性变异及优良种源选择研究.江苏林业科技,2000, 27(l):7~12
    [93]张宝贵.我国的古银杏.大自然,2006,(04):10~56
    [94]张含国.长白落叶松生长和材质性状的地理变异的研究.林业科技,1996,21(6):5~8
    [95]张培杲.林木良种选育学术会议论文集.农业出版社,1965:44~45
    [96]张顺泰,王炳云,丁修堂.银杏管胞分子的变异性和相关性.山东农业大学学报,1990,2l(4):3l~35
    [97]张文标,李文珠,阮锡根.树木的生长应力.世界林业研究,2001,14(3):30~35
    [98]张洋,等.速生杨木的动态润湿性能研究.南京林业大学学报,2008,32:49~52
    [99]赵建民.木材概论.高等教育出版社,2001:65~78
    [100]郑勇奇.常规林木育种研究现状与发展趋势.世界林业研究,2000,14(3):10~17
    [101]中国林科院木工所.中国主要树种的木材物理力学性质.北京:中国林业出版社,1982
    [102]中野准三,通口隆昌,住本昌之等.木材化学.鲍禾,李忠正译.北京:中国林业出版社,1989
    [103]周崟,姜笑梅.中国裸子植物材的木材解剖学及超微构造.北京:中国林业出版社,1994,26~113
    [104]周志春,金国庆.马尾松自由授粉家系生长和材性的遗传分析及联合选择.林业科学研究,1994,7(3):263~268
    [105] A.J.Panshin,Carl de Zeeuw.木材学.张景良,柯病凡,陈桂陞译.中国林业出版社,1991:24~147
    [106] Aaron Nelson,Emmanuel Johnson,et al. Increasing cellulose production and transgenic plant growth in forest tree species.Journal of Forestry Research,2005,16(1):67~72
    [107] Andrew W.Ezell et al.Variation of Sweetgum Fiber Length Within and Between Upland and Bottoml and Sites.Wood and Fiber,13(4)1981:246~251
    [108] B.Giraud. Statistical analysis of wood structure variation as related to distance from the pith in Entandrophra-gmaautile(Mcliaccac).IAWA Dulletin,1977,(40):71~75
    [109] Baucher M,Monties B,Montagu M V,et al.Biosynthesis and genetic engineering of lignin. Critical Reviews in Plant Science,1998,17(2):125~197
    [110] Bailey I W. The preservative treatment of woodⅡ. The structure of pit membranes in the tracheids of coniferous and their relation to the penetration of gases, liquids, and finely divided solids in green and seasoned wood. For Quart. 1913,11:12~20
    [111] Barton F E. Theory and principles of near infrared spectroscopy. Spectroscopy Europe, 2002,14 : 12~18
    [112] Batten GD. An appreciation of the contribution of NIR to agriculture. Journal of NearInfrared Spectroscopy , 1998,6 (1) :105 ~114
    [113] Bhat-KM,Indira-BP,Zhang-SY et al.Specific gravity as selection criterion of genetic improvement of teak wood quality and end-product value.Proceeding of the CTIAIVFR- O International Wood Quality Workshop,Quebee city,Canada,August 18-22,1997,IV 91~IV 96
    [114] B?ning, K. berden inneren Bau horizontaler und geneigter Sprosse und seine Ursachen. Mitt.Deutsch.Dendrol.Ges. 1925, 35:86~102
    [115] Boyce S.G, kaeiser M. Environmental and genetic variability in the length of fibers in eastern cottonod.Tappi,1961,44:363~366
    [116] Brian K.Via,Michael Stine,et al.Genetic Improvement of Fiber Length and Coarseness Based on Paper Product Performance and Material Variability-A Review. IAWA Journal, 2004,25(4): 401~405
    [117] Burrows C H.Some factors affecting resin efficiency in flake board. forest Prod .1961,11(1):27~33
    [118] Campbell M M,Sederoff R R.Variationin Lignin Content and Composition.Mechanisms of control and miplications for the genetic improvement of plants.Plant physiology,1996, 110(1)3~13.
    [119] C.MáTYáS and I.PESZLEN. Effect of Age on Selected Wood Quality Traits of Poplar Clones.Silvae Genetica 1997,46:2~3
    [120] Cervera M T,Gusmao J,Steenackers M et al. Identification of AFLP molecular marker for resistance against Melampsora larici-populina in populous. Theoretical and Applied Genetics ,1996, 93: 733~737
    [121] Chafe S C.Variation in longitudinal growth stress with height in the trees of Eucalyptus nitens.Australia Forestry Research.1985,15:51~55
    [122] Chafe S C.Variations in longitudinal growth stress,basic density and modulus of elasticity with height in the tree.Aust.For.Res.1981,11:79~82
    [123] Chapola-GB J, Ngulube-MR.Basic densitity of some hardwood species grown in Malawi. South African Forestry Journal,1990, 53:12~15
    [124] Chen Bao Liang,Pieter Baas,E1isabeth A.Wheeler and Wu Shuming.Wood anaromy of trees and shrubs from China Vl.Magnoliaceae.IAWA Journal,1993,14(4):391~412
    [125] Ching,K.K.et al. Provenance Study of Douglas-fir in the Pacific Northwest Region. Silvae Genetica, 1978,27(6):229~233
    [126] Chow-P,Rolfe-GL.Some chemical constituents of ten year old American sycamore and black locust grown in illinots.Wood and Fiber Science,1996,28(2):186~192
    [127] Christophe C.,Birot Y. Genetic structures and expected genetiec gains from multirtait selction in wild population of Douglas fir.Ⅱ:practical application of index selection on several population. Silvae Genetica,1983,32(5-6):173~181
    [128] Clarie G Williams,David B Neale.Conifer wood quality and marker-aided selection:a ease study.Can.J.For.Res.,1992,22:1009~1017
    [129] Cotterill.P.P.,Faekson N.On index selection I:Methods of determining economic weihgt.Silvae Genectia, 1985,34(2-3):56~63
    [130] Falconer D.S. Introduction to quantitative geneties.Scientific&Technical, NewYork, 1989: 438
    [131] Faknoer D.S.数量遗传学导论.储明星译.北京:中国农业科技出版社,2000
    [132] Fujiwara-T,Oku-Y,Saiki-H.Variation of cross-sectional dimensions of wood fibres within annual rings in some hardwood species.Bullitin of the Kyoto University.
    [133] Harold.L.Mitchell.Wood Qua1ity Eva1uation from Increment Cores,Tapi.1958,41: 150~157
    [134] Hasebe M. Molecular phylogeny of Ginkgo biloba: close relation between Ginkgo biloba and cycads. In: Hori T, et al. Ginkgo biloba- A globa treasure from biology to med -icine. Tokyo: Sprier Ver1ag, .1997,173~181
    [135] Hazel,L.N.,Lush,J.L..The efficiency of tree methods of selection.J.Hered,1942:393~399.
    [136] Hic-J.Woods of EuealyPtus Part I.Distinguishing three species from the ash group. LAWA Journal,1997,18(1):27~36
    [137] Hudson-I,Widson-L,Bevereu-KV.Vessel and fiber property variation in Eucalyptus and Eucalyptus nitens:some preliminary results,IAWA Journal,1998,19(2):111~130.
    [138] Ingo Burgert,Klaus Frühmann,Jozef Keckes.etc. Structure function relationships of four compression woodtypes: micromechanical properties at the tissue and fibre level. Trees 2004,18: 480~485
    [139] Iveogen R.J.,Lowe W.J.The efficiency of early and indirect selection in three sycamore genectic traits.Silvae Genetica. 1985,34(2-3):72~75
    [140] J J M Orfao, F J A Antunes, J L Figuueiredo. Pyrolysis Kinetics of Lignocellulosic Materials-three Independent Reation Model. Fuel, 1999, 78(1): 349~358
    [141] J.A.Loo.Genetic Variation in the Time of Transition from Juvenile to Mature Wood in Loblolly Pine,Silvae Genetica,1984,34(1):14~19
    [142] Jiang X M,Yin Y F,LüJ X, et al. The influence of S2 microfibil angle on longitudinal and tangential shrinkage in China-fir (Cunninghamia lanceolata) plantation. Chinese Forestry Science and Technology, 2002,1(4):1~7
    [143] Joaquin Reina, Enrique Velo, Luis Puigjaner. Thermogravimetric Study of the Pyrolysis of Waste Wood. Thermochimica Acta, 1998, 320(1): 616~167
    [144] K.K.Jain.Intra-increment Variation in Specific Gravity of Wood in Blue Pine.Wood Science and Technology,1979,13:239~242
    [145] Kim S W,Ban S H,Cho S,et a1. Taxonomic discrimination of flowering plants by multivariate analysis of Fourier transform infrared spectroscopy data .Plant Cell Rep,2004,23:246~250
    [146] Kubler H.Growth stresses in trees and related wood properties.ForestryAbstracts.1987, 48:131~189
    [147] Lambeth,C.C.et al.Early selection is effective in 20 year old genetic tests of loblolly Pine.Silvea Gendiea.1983,32(5-6):210~215
    [148] Lambeth,C.C. Juvenile-muatre correlation in Pinaceae and implications for early selection.For. Sci.,1980,26(4):571~580
    [149] Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits . Genetics, 1990,124: 743~756
    [150] Liimmermayr, L. Beitrgge zur Kenntnis der Heterotrophie yon Holz und Rinde. Sitzungs-bet. kaiserl. Akad. Wiss. Math.-Naturwiss. Classe, Wien Pt. 1901,1(110):29~62
    [151] M.Ivkovich.Genetic Variation of Wood Properties in Balsam Poplar(populus balsamifera L.).Silvae Genetica,1996, 45:2~3
    [152] Malan-FS.Variation association and inheritance of juvenile wood properties of Eucalypt -us grandes Hillex Maiden with special reference to the effect of rate of growth. South African Forestry Journal,1991, 57:16~23
    [153] Matsiris D.I.,Zolool B.J..Inheritance and correlation of juvenile characteristics in loblolly Pine.Silave Genetiea,1973,22(l~2):38~45
    [154] Metcalfe C R, Chalk L. Anatomy of the Dicotyledons.Oxford: Clarendon Press.Outer RW den.Schutz PR,1981.Wood anatomy of Apeiba (Tiliaceae).AIWA Bulletin.n.s., 1950, 2 (4) :187~192
    [155] Meuwiasen.T.H.E,Goddard.M.E.The use of marker-haplotypes in animal breeding schemes. Genet Sel Evol,1996,28:161~176
    [156] Michelmore R W,Paran L,Kesseli RV.identification of markers linked to disease resistant gene by bulked segregant analysis:arapid method to detect markers in specific genomic regions using segregation populations.Proc,Natl.Aead.Sci.USA.1996,88:9828~9832
    [157] Mo Hrdiek,O. Silvae Genetica,1979.28(2~3):207~112
    [158] Moura VPG,Dvorak WS,Nogueira MVP. Variation in wood density,stem volume and dry matter of the Mountain Pine Ridge,Belize,Provenance of Pinus teeunumanii grown at Planaltina,Brazil.Seientia-Forestalis.1998,53,7~13
    [159] Muneri A,Leggate W and Palmer G. Relationships between surface growth strain and some trees.wood and sawn timber characteristics of Eucalyptus cloeziana.S. Afr. For.J. 1999, 186: 41~49
    [160] N A Liu, Weicheng Fan, Ritsu Dobashi, et al. Kinetic Modeling of Thermal Decompo -sition of Natural Cellulosic Materials Materials in Air Atmosphere. Journal of Analvtical and Applied Pyrolysis, 2002, 63(2): 303~325
    [161] N. L. Owen ,D. W. Thomas. Infrared Studies of "Hard" and "Soft" Woods.Applied Spec -troscopy.1989, 43(3):451~455
    [162] Neimann-Sorensen A, Roberstson A. The association between blood groups and several production characters in three Danish cattle breeds. Acta Agric Scand, 1961, 11: 163~196
    [163] Newlin J A,Wilson T R C. The relationship of the shrinkage and strength properties of wood to its specific gravity.US For Serv Bull FPL-676.1919,35
    [164] Onaka F. Studies on compression and tension wood. Wood Research, Bull. Wood Res. Inst., Kyoto University, Japan, 1949,24 (3): 1~88
    [165] Panshin AJ,C.de Zeeuw.Textbook of wood technology.McGraw-Hill,New York,1980: 302~306
    [166] Panshin,A,J and Carl.de Zeeuw .Textbook of wood technology,4th edition. McGraw-HillBook Company,1980,43(1):1~2
    [167] Qibin Yu.University of Helsinki Department of Applied Biology Publication,2001,6:6
    [168] R Bilbao, J F Mastral, M E Aldea, et al. Kinetic Study for the Thermal Decomposition of Cellulose and Pine Sawdust in an Air Atmosphere. Journal of Analytical and Applied Pyrolysis, 1997, 39(7): 53~64
    [169] Rafeal Zas,Esther Merlo,Raquel Diaz et al.Relative growth trend as early selection Parmaeter in a Douglas-Fir provenance test.For. Sci.,2004,50(4):518~526
    [170] Raymond C, Kube P, Bradley A, Savage L and Pinkard L. Evaluation of non-destructive methods of measuring growth stress in Eucalyptus globules: relationships between strain, wood properties and stress. Technical Report 81 of Cooperation Research Center for Sustainable Production Forestry.2002: 7~29
    [171] Raymond-CA,Macdonaid-AC,Where to shoot your Pilodyn:with in tree variation in basic density in plantation Eucalyptus globules and E.nitens in Tasmsnia.New Forests,1998, 15 (3):205~221
    [172] Richard A.Scott, Wood of Ginkgo in the Tertiary of Western North America, American Journal of Botany,1962,49:10
    [173] Ridoun-BG,Sands-R.Within tree variation in cambial anatomy and xylem cell differentiation in Eucalyptus globules.Trees:Structure and Function,1993,8(1):18~22
    [174] Royer D L, Hickey L J, Wing S L.Ecological conservatism in the“living fossil”Ginkgo. Paleobiology, 2003,29(1):84~104
    [175] S H Strauss,R Lande,G Namkoong.Limination of molecularmarker-aided selection in forest tree breeding.Can.J.For.Res,1992,22:1050-1061
    [176] Sahri-MH,BouPha-L,Nobuchi-t,Jusoh-MZ.Wood quality assessment of plantation grown Azadirachta excelsa from Malaysia.IAWA-Journal,1998,19(4):476~480
    [177] Sax K. The association of size differences with seed-coat pattern and pigmentation in phaseolus vulgaris.Genetics, 1923, 8 552~560
    [178] Schreiner E J.Possibilities of improving pulping characteristics of pulpwood by controlled hybridization\of forest trees.Pap Trad J Tech Sect,1935,c:105~109
    [179] Squillace,A.E.and Gansel,G.R..Javenile-mature correlation in Slashpine.Forest Sci.,1974, 20(3):225-229
    [180] Skroppa T,Hylen G,Dietriehson J. Relationships between wood density Components and juvenile height growth and growth rhythm traits for Norway spruce Provenances and families. Silvae Genetiea.1999,48:5,235~239
    [181] Smith C, Simpson S P. The use of genetic polymorphism in live-stock improvement. Anim Breeding and Genet, 1986, 103:205~217
    [182] Smith C. Improvement of metric traits through specific genetic loci. Anim Prod, 1967, 9: 349~358
    [183] Smith F.H.,A diseriminnat function for Plant selection.Annr.Eugen.1936,7:240~250
    [184] Soller M, Beckmann J S. Genetic polyphism in varietal identification and genetic improvement. Theor Appl Genet, 1983, 67:25~33
    [185] Soller M. The use of loci associated with quantitative effects in dairy cattle improvement. Anim Prod,1978, 27: 133~139
    [186] Stam P. The use of marker loci in selection for quantitative characters.In: King JWB, McKay JC (eds). Exploiting New Technologies in Animal Breeding-Genetic Developments. Oxford University Press, New York, 1986:70
    [187] Stamm A J. Surface properties of cellulosic materials.In:Wise,Louis E,John,Edwin J.(Eds.):Wood chemistry.NewYork:Reinhold. 1952:691~814
    [188] Stamm A J. The effect of changes in the equilibrium relative vapor pressure upon the capillary structure of wood.Physics.1935b,6:334~342
    [189] Stamm A J.A Shrinking and swelling of wood.Ind Eng Chem, 1935a ,27:401~406
    [190] Susumu Mikami.Breeding for Wood Quality of Japanese Larch,Bull.For.Tree, 1988, Inst. No:6
    [191] T.E.Timell. Ultrastructure of compression Wood in Ginkgo biloba,Wood Science and technology,1978,12:89~103
    [192] Takabc-K,Miyake-S,Fukazawa.Distribution of guaiacyl and syringyl lignins in Japanese beech(Fagus crenata).Variation within anannual ring,Second Pacific Reginal Wood Anatony Conference, 1989,10:15~21.
    [193] Takhtajan A L.高等植物Ⅰ.匡可任等译.北京:科学出版社, 1963:204~365
    [194] Tanaka R.C Banding .Treatment for The Chromosomes of Some Gymnosperms.Bot Mag,1980,93:167
    [195] Vileneuve M.,Morgenstern E.K.,Sebastian I.P.Variation Patterns and age relationships of wood density in families of jack pine and black spruce,Can.J.For.Res.,1987, 17: 1219~1222
    [196] Villar M et al.Molecular genetics of rustresistance in populus(MelamPsora larici Populina Kleb Populus sP.)by bulked segregate analysis in a2x2factorial mating design. Geneties, 1996,143:531~536
    [197] Wahyudi I,Okuyama T,HAdi Ys,Yamamto H,Yoshida M and Watanabe H.Growth stresses and strains in Acaia mangium.Forest Products Journal,1999,49(2):77~81
    [198] Wakeley,p.C., Relation of thirtieth-year to earlier dimensions of southern pines..Forest Science, 1971,17(2):200~209
    [199] Williams C.G.The influence of shoot ontogeny on juvenile-mature correlations inloblolly Pine.Fores Seienee,1987,33(2):412~422
    [200] Williams C.G, Megraw R.A. Juvenile-mature relationships for wood density in Pinus taeda. Canadian Journal of Forest Researeh.1994,24:4,714~722;40 ref
    [201] Wright,J.W., Introduction to Forest Genetics. AP 1976,P.163.
    [202] Yang J L,Waugh G. Growth stress,its measurement and effects. Australian Forestry, 2001,64 (2) : 127 ~135
    [203] Zhang-SY.Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categorys,Wood Science and Techn ology, 1995, 29(6): 451~465
    [204] Zobel B.J,etal.Wood properties of clones of slash pine.Forest Genetics Workshop Macon,GA,1962:32~39
    [205] Zobel,B.J.Applied Forest Tree Improvement, John Wiley and Sons, New York.1984
    [206] Zobel,B.J.Breeding for Wood Properties in Forest Trees,Unasylva, 1964,18: 89~103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700