杉木木束干燥特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木束的干燥是积成材人造板及其它以木束为原料的各种产品生产中的一个重要环节,它关系到生产的效益、能耗和产品质量。在目前我国木材供需矛盾日益突出的今天,研究速生材新产品原料木束的干燥特性,对提高木束干燥效益,降低成本具有重要意义。
     本文较系统全面地研究了杉木木束在高温干燥过程中的干燥特性,分析了各因素对干燥效益和能耗的影响,尤其是研究了木束内部水分迁移和热量传导过程的规律,建立并求解了传热传质的数学模型,为确定木束干燥生产的工艺参数及控制方案提供了理论依据。本研究主要成果与创新点如下:
     1、研制了适于杉木小径材的梳解设备与梳解工艺,使杉木小径材梳解后可获得特定规格尺寸且尺寸分布具有规律性的单根状木束条,能满足人造板生产工艺要求,是速生小径材高效加工利用的新工艺、新技术。
     2、首次通过大量的试验和理论分析,较系统深入地研究了杉木木束高温干燥的基本特性。研究表明:①在木束的高温干燥中,升温阶段占据的干燥时间较长。木束的干燥宜采用高温快速干燥。②在短木束试件高温干燥时,其内部的水分的移动是在纵向和圆周方向同时进行的,并且移动的速度大致相当;而细长木束试件水分移动主要是以圆周方向为主的,随着试件的长度增加,圆周方向的水分移动对干燥速度的贡献率将逐渐占主导地位。③木束初含水率越高,则平均干燥速率越大。
     3、首次通过试验测定了封闭杉木木材试件在短期温度梯度作用下,木材内部温度场和含水率场的分布,含水率梯度与温度梯度比值(dM/dT)的大小及其影响因素。研究表明:木材即使在短期温度梯度的作用下也会出现热扩散效应,在木材内部形成与温度梯度相反的含水率梯度场,dM/dT的比值在0.9%/℃以下;随着木材温度和初含水率的增加,木材中的dM/dT越大,热扩散效应越明显;随着作用时间的延长,木材中的dM/dT增加。其中温度和含水率是影响热扩散效应的最主要因素。
     4、分析了高温干燥条件下木束内部自由水和吸着水的驱动力及其移动特性。研究表明:①高温干燥中自由水的移动为毛细管压力下液体的团块迁移和在压力梯度下的水蒸汽迁移,建立了高温干燥过程中自由水迁移量计算方程。②高温干燥中吸着水的扩散移动为浓度梯度引起吸着水的扩散和在水蒸汽压力梯度下的水蒸汽扩散迁移,
Wood bunch drying is a vital stage in the manufacturing process of wood products from wood bunch such as parallel strand board because it directly determines production efficiency, energy consumption and quality. It is of special significance to study the drying characteristics newly developed products from fast growing wood in China today when the supply of wood product does not meet its demand.This study examines the drying characteristics of China fir wood bunch in high temperature and the functions of various factors on its drying efficiency and energy consumption. A special examination was made in the nature of moisture movement and heat transfer in the inner part of wood bunch, which results in the construction and solution of a mathematic model of their process. It contributes as a theoretical basis to the calculation of the technical parameter of and designing of solution to wood bunch drying. Major findings of this study go as the following:(1) A technique of arraying cutting as well as its device was invented, which enables the production of wood bunches with the set specification. It meets the technical demands of the production of wood-based panels and is a technical innovation of the processing of fast growing small diameter wood.(2) As the first ever practice of study method, this study explored the major drying characteristics of China fir wood bunch through large-scale experiment, which shows that, a. the technique of fast drying in high temperature applies to the process of wood bunch drying because it demands longer drying duration during the rise of temperature; b. the moisture movement in the inner part goes vertically as well as horizontally in the case of shorter wood bunch drying, both at similar speed; whereas it goes more horizontally than vertically in the case of longer wood bunch; c. the average drying rate tends to be larger when the initial moisture content is higher.(3) Also as the first ever practice of research method, the study mensurated the distribution of temperature and moisture content profiles in sealed wood of Chinese Fir whose opposite faces are subjected to constant but different temperature for a short time, the ratio of moisture content gradient to temperature (dM/dT). The results show that, the effect of heat proliferation was produced even in the function of short-term temperature gradient; at the same time, an moisture gradient was formed in he inner part of wood which was opposite to the temperature, and the ratio of dM/dT went below 0.9%/°C. The ratio of dM/dT tended to get larger and the heat
    
    proliferation tended to be more active when the wood temperature and its initial moisture content increased. Thus, wood temperature and its initial moisture content are fundamental factors in the effect of heat proliferation.(4) The driving force of free moisture and absorb moisture in wood interior under high temperature and their movement features were studied, which show that, a. the free moisture movement in high temperature drying acted as mass movement under capillary pressure or steam movement under pressure gradient. An equation of free moisture movement in high temperature drying was created accordingly, b. the diffused transfer of absorb moisture in high temperature drying acted as one under concentration gradient or steam diffused transfer under steam pressure gradient. An equation of absorb moisture movement in high temperature drying was also created, c. A general moisture diffusion coefficient was obtained through experiment, which indicates that the coefficient grows as the wood bunch diameter or its temperature increases.(5) The first ever mathematic model of heat and mass transfer in wood bunch drying under high temperature was created. Experiments showed that the equation is mostly workable in predicting average moisture content and temperature of China fir wood bunch in the process of high temperature drying. Hence, it contributes as a theoretical basis to wood bunch drying.(6) As an innovational research, this study also looked into the functions of fac
引文
1.马岩.重组木坯料在腰鼓形压辊辗压中应力的级数解初探.东北林业大学学报,1994,22(3):65~69
    2.马岩等.均布载荷辗压重组木坯料的强度准则建立初探.东北林业大学学报,1993,21(6):56~59
    3.马岩等.重组木微观力学模型及刚度参数分析方法探讨.东北林业大学学报,1995.23(4):106~109
    4.Kollmann F F P著.木材学与木材工艺学原理—实体木材.江良游等译.北京:中国林业出版社,1991
    5.Xapyk B E著.气体和液体对木材的渗透,(摘译)李维桔译,南林科技,1981(2):21-31
    6.马岩等.静压作用下重组木坯料的力学机理和试验验证.林业科学,1996,32(2):171~174
    7.马建隆.宋之平等编.实用热工手册.北京:水利电力出版社,1988
    8.王国恒,张德元.干燥过程分析与数学模型方法.96干燥学术研讨会 1996:125~130
    9.王恺,肖亦华.重组木国内外概况及发展趋势.木材工业,1989(1):40~43
    10.叶良明.重组竹板材的研究.浙江林学院学报,1991.8(2):133~140
    11.申宗圻等.木材学[第二版].北京:中国林业出版社,1993.9
    12.伊松林.木材浮压干燥过程的传热传质.博士论文.北京林业大学.2002
    13.刘志坤,杜春贵,李延军,等.小径杉木梳解加工工艺研究.林产工业,2003,30(3):10~13.
    14.吕建雄,鲍甫成,姜笑梅.蒸汽处理对木材渗透性的影响.林业科学,1994,30(4):352~357
    15.成俊卿主编.木材学.北京:中国林业出版社,1985
    16.朱政贤 木材干燥(第二版) 北京:中国林业出版社,1992
    17.约翰·F·肖[美]著.木材传热传质过程.肖亦华等译.北京:中国林业出版,1989.8
    18.许香雯主编.纤维板生产工艺与技术.哈尔滨:东北林业大学出版社,1988,190~195
    19.严家碌等,湿空气和烃燃气热力性质图表.高等教育出版社 1989
    20.张远君,王平,韩振兴等.流体力学大全.北京航天航空大学出版社,北京,1991
    21.张贵麟,华毓坤等.澳大利亚重组木的考察.林产工业,1991,18(6):38~39
    22.张璧光.我国木材干燥技术现状与国内外发展趋势.北京林业大学学报,2002,24(5):262~266
    23.李大纲.杨木高温干燥过程中水分迁移及流变特性的研究.博士论文,1998
    24.李友荣等,多孔物料降速干燥阶段水分蒸发机理.中国工程热物理学会传热传质学术论文集,1994.V:50~54
    25.杜国兴.木材水分非稳态扩散的研究.南京林业大学学报,1991,15(2):76~82
    26.杨庆贤 木材干燥过程中热分子压力对热传导的影响.《新学科研究》.北京中国科学技术出版社,1993:130~131
    27.杨庆贤 木材横纹导热系数的半经验理论公式.《力学与实践》Vol.15,No.2,1993:50~55
    28.杨庆贤.木材干燥过程中热质迁移交互作用的研究.浙江大学学报,1998,32(4):304-308
    29.杨强生.对流传热与传质.北京.高等教育出版社,1985
    30.汪孙国,华毓坤.重组竹制造工艺的研究.木材工业.1991,5(2):14~18
    31.陆仁书.刨花板制造学.北京:中国林业出版社(第2版),1993
    32.陆仁书.胶合板制造学.北京:中国林业出版社(第2版),1993
    
    33.周筠清,传热学.冶金工业出版社.北京,1999
    34.尚德库.木材干燥导水系数和换水系数的研究.林业科学,1992,18(5):476~478
    35.苗平.马尾松木材高温干燥的水分迁移和热量传递.博士论文.南京林业大学.2000.
    36.侯祝强.木材导热系数的的研究.林业科学,1992,28(2):153~160
    37.赵广杰.木材的介电驰豫和分子运动.东北林业大学学报.1993,21(6):44~48.
    38.赵广杰.木材细胞壁中吸着水的介电驰豫.中国林业出版社.北京.2002.
    39.赵有科,鲍甫成.针叶树木材流体纵向渗透性与其构造关系的理论分析.林业科学,1998,34(4):88~95
    40.徐咏兰等.中密度纤维板制造.北京:中国林业出版社,1995
    41.钱滨江等编,简明传热手册.北京:高等教育出版社,1984
    42.高瑞堂.木材热学性质与温度关系的研究.东北林业大学学报,1985,13(4):2
    43.常建民.木材对流干燥过程热质传递规律及其湿迁移特性.东林博士学位论文,1994.4
    44.彭晓峰,王补宣.微型槽结构的冷却特性.中国工程热物理学会传热传质学术会议论文集,大连,1994
    45.彭晓峰,王补宣.液体内部汽化空间与拟沸腾.中国科学基金,1994,8(1):7~12
    46.谢拥群,陈瑞英,杨庆贤等.木材干燥过程中的热质迁移及其耦合关系.林业科学,2004,40(1):148~153
    47.鲍甫成,侯祝强.针叶树材管胞气体渗透流阻及其渗透系数.林业科学,2001,37(4):80~87.
    48.鲍甫成,胡荣.泡桐木材流体渗透性与扩散性的研究.林业科学.1990,26(3):239-245
    49.鲍甫成,赵有科,吕建雄.杉木与马尾松木材渗透性与超细结构的关系研究.北京林业大学学报.2003,25(1):1~5
    50.鲍甫成.郝丙叶,杜浩等.中国主要针叶树人工林与天然林及幼龄材与成熟材流体扩散性比较研究.世界林业研究(专集),1994:154~161.
    51.鲍甫成.中国重要树种流体渗透性研究.林业科学,1992,28(3):237~245
    52.鲍甫成,江泽慧.中国主要人工林树种木材性质,北京:中国林业出版社,1998
    53.熊文愈.杉木.北京:中国林业出版社,1997.
    54.潘石峰.沙柳材的特性及重组木的研究.木材工业.1991,17(5):9~11
    55. Avramidis S., Kuroda N. Siau J. E Experiment in Nonisothermal Diffusion of Moisture in Wood. Part Ⅱ. Wood and Fiber Science. 1987,19(4):407~413
    56. Bekele T. Kiln drying of sawn boards of young Eucalyptus globules Labill. And Eucalyptus camaldulensis Dehnh. Grown on the Ethiopian Highlands. Holz als Roh-und wrestle. 1994,52(6):377~382
    57. Ben Nasrallah S. and perre P. Detailed study of a model of heat and mass tronsfer during convective drying of porous media Boone R S. High-temperature kiln-drying red maple lumber——some options. F P J, 1986, 36(9):19~25
    58. Bram hall G.. Diffusion and the drying of wood. Wood Sciencer Technology, 1995,29(3):209~215
    59. Bram hall G.. Mathematical model for lumber drying 1-principles involved. Wood science, 1979,12(1):15~21
    60. Bram hall G..Sorption diffusion in wood. Wood science Technology, 1994,28(1):86~88
    61. Canadido. Properties of boards made from "Zephyr" particles I. Effects of "zephyr" particle length and ordinary chip admixture on the bending properties of boards. Mokuzai Gakkaishi 1991. 37(5):441~448
    
    62. Chafe S C, Bananas R A. Effect of presetting on moisture loss and internal checking in high temperature drying board of Eucalyptus globules and Euealyplus regnants. Joural of the institute of wood science, 1996,14(2):72~77
    63. Chen G The drying stress and check development on high temperature kiln seasoning of sapwood pinus radiate boards, part 1 moisture movement and train model. Holz als Roh-und werkstoff, 1997,55(2):59-64
    64. Chen G. The drying stress and check development on high temperature kiln seasoning of sapwood pinus radiate boards, part 2 stress development. Holz als Roh-und werkstoff, 1997,5 5 (2): 67-73
    65. Chen Y, Choong E T, Wetzel D M. A numerical analysis technique to evaluate the moisture dependent diffusion coefficient on moisture movement during drying. Wood and Fiber Science, 1996,28(3):338-345
    66. Chen Y, Choong E T, Wetzel D M. Evaluation of diffusion coefficient and surface emission coefficient by an optimization technique. Wood-and-Fiber-Science, 1995,27(2): 178-182
    67. Choog E T, A chmadi S, Tesoro F O. Variables affecting the longitudinal flow of gas in hardwood. In: Cellulose and Wood-Chemistry and Technology Proceeding of the Tenth Cellulose Conference. ED. C. Schuerch. Syracuse, New York, 1988,1175-1196
    68. Choong E T Skaar C. Separating internal and external resistance to moisture removal in wood drying. Wood Science, 1969, l(4):200-202
    69. Choong E T, Skaar C. Diffusion and surface emissive in wood drying. Wood and Fiber Science, 1972, 4 (2): 88-86
    70. Choong E.T.. Movement of moisture through a softwood in the hygroscopic range. Forest Products Journal,l 963,13(11):489~498
    71. Cloutier A. and Fortin Y. A model of moisture movement in wood based on water potential and the determination of the effective water conductivity. 1993 Wood Sci Technol. 27:95-114
    72. Cloutier A. Fortin Y. et al. A wood drying finite element model based on the water potential concept. Drying Technology, 1992, 10(5),l 151-1181
    73. Collignan A. Nadeau J. P. et al. Description and analysis of timber drying kinetics. Drying technology, 1993, 11(3),489-506
    74. Datta.A.K. and Ni.H.. infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of food engineering. 2002,51:355-364.
    75. Dongshan zhang and A.S. Mujumdar. Deformation and slress Analysis of Porous Capillarg Bodies During Intermittent volumetric Thermal Drying. 1992.Drying Technology. 10(2),421-443
    76. George Bronnhall Mathematical model for lumber drying. 1979. wood science. Vol.12.Nol HoYang Kang,C.Arthur Hart.Temperature Effect on Diffusion Coefficient in Drying Wood.Wood and Fiber Science. 1997,29(4):325-332
    77. Hunter A J. The evaporation of water from wood at high temperature. Wood Science and Technology, 1997,31(6):73-76
    78. Iradayaraj J. and Haghighi K. Nonlinear Finite Element Analysis Coupled Heat and Mass Transfer Problems with an Application to Timber Drying. Drying Technology, 1990,8(4):731 -749
    79. J.D.Coleman, Surrey Hills.Reconsolidated wood product. US Patent 4 232 067.1980
    80. J.D.Coleman. A"Reconsolidated" Wood for Structural Purposes. Division of Chem. tech. Research review,CSIRO Australia, 1981
    81. Jain, J.C.A note on eucalyptus "hybrid" as timber. Indian forester. 1969, 95(1 ):29-32
    82. Kho P C S, Kee R B, Walker J C F. Effect of minor board irregularities and air flows on the drying rate of softwood timber board in kilns. Proc. IUFRO International Wood Drying Symposium. Sesttle, Washington, 1989,150-157
    
    83. Koponen H., Moisture diffusion coefficient of wood, 5th Inter. Gymp. the drying held at the MIT, Cambridge. MA. 1986.P225-232
    84. Langrish T A G, Keey R B, Kho P C S, Walker J C F. Time-dependent flow in arrays of timber boards: Flow visualization. Mass-transfer measurement and numerical simulation. Chem. Eng. Science, 1993,84(12):2211-2223
    85. Langrish T A G, Kho P C S, Keey R B, Walker J C F. Experimental measurement and numerical simulation of local mass-transfer coefficients in timber kilns. Drying Technology, 1992,10(3):753-782
    86. Lee J H, Jung H S. Effect of drying temperature on internal temperature drying rate and drying defects for Japanese Larch in high temperature drying. Mokchae Kongkak, 1997,25(4):99-107
    87. Liu J Y. Diffusion coefficient of porous solid obtained from isothermal sorption tests. Research Paper Forest Products Laboratory, USDA Forest Service, 1994,No. FPL-RP-533,10 PP.
    88. Liu J, Avrmidis S Ellis S. Simulation of heat and moisture transfer in wood during drying under constant ambient conditions. Holzforschung,1994,48(3):236-240
    89. Liu J.Y. A new method for separating diffusion coefficient and surface emission coefficient. Wood and Fiber Science. 1989,21(2): 133-141
    90. Lu Jianxiong, Avramidis S. Non-Darcian air flow in wood, part 1. Specimen length effect. Holforschung, 1997,51(6):577-583
    91. LuiKov A.V. systems of Differential. Equations of Heat and Mass Transfer in Capillary -Porous Bodies. Int. J. Heat Mass Transfer. 1975,1(18): 1-14
    92. Martley J F. Moisture movement through wood, The steady state. For Proc Res Tech, Paper 2, Lendon, 1926
    93. Meijer de M. Unsteady-state diffusion of methanol in Douglas-fir Heartwood at high termperature. Holzforschung, 1996,50(2): 135-143
    94. Milota M R, Tschernitz J L. Correlation of Loblolly pine drying rates at high-temperatures. Wood and Fiber Science, 1990,22(3):298-313
    95. Mounji H. and M.EL Kouali. Modeuing of the Drying process of wood in 3-Dimensions. 1991. Drying Tech-nology, 9(5), 1259-1314
    96. N. M. Ozisik. Basic Heat Transfer. McGraw-Hill Book Company, New York, 1997.
    97. Nelson R M Jr. Heats of transfer and activation energy for bound water diffusion in wood. Wood Science and Technology, 1991,25(3):193-202
    98. Nelson R.M., Missoula J.Test of an equation for nonisothermal moisture transport in wood. Wood Sci. Technology, 1991, 25(5):321-325
    99. Nelson R.M.J. Diffusion of bound water in wood. Wood Science and Technology. 1986, 20:309-328
    100. Ni H., Datta A.K., Torrance K.E.. Moisture transport in intensive microwave heating of biomaterials:a multiphase porous media model. International journal of heat and mass transfer, 1999,42:1501-1512.
    101. Oudlaxi N. and Amaud G.A Two-Dlnensional study of wood plank Drying The Effeat of Gaseous Prissure Below Boiling point. Transport in porous Media 1992,7:39-61
    102. Pang S S, Keey R B, Langrish T A G, Walker J C F. Airflow reversals in high-termperature kiln drying of Pinus radiate boards. l:Drying of a single board. New-Zealand-Joumal-of Forestry-Science. 1994, 24(l):83-103
    103. Pang S S, Keey R B, Langrish TAG, Walker J C F. Airflow reversals in high-temperature kiln drying of Pinus radiate boards. 2:Drying of a stack boards. New-Zealand-Journal of Forestry Science, 1994, 24(l):104-119
    
    104. Pang S S. Relationship between a diffusion model and a transport model for softwood drying. Wood and Fiber Science, 1997, 29(l):58-67
    105. Pang, S. Mathematical modeling of MDF fiber drying: drying optimization. Drying Technology-An International, Vol. 18, No.7
    106. Pang,S. External heat and mass transfer coefficients for kiln drying of softwood timber.Drying Technology-An International Journal, 1996, Vol.14, No.3&4: 859-871
    107. Pang. S et al. Moisture content gradient in softwood during drying: Simulation from a 2-Dmodel and measurement. Wood Science &Technology, 1996, 30(3):165-178
    108. Pang. S. High-temperature drying of radiate pinus boards in a batch kiln. Ph.D. thesis, 1994
    109. Peng, X. F. and Wang, B. X., Forced convection and flow boiling heat transfer for liquid flowing though microchannels, Int.J. Heat Mass Transfer, 1993, 36(14): 3421-3427
    110. Peng, X.F. and Wang, B.X., Cooling characteristics with microchanneled Structures,J. Enhanced Heat Transfer, 1994, 1 (4): 315-326
    111. Peng, X.F. Peterson, G.P. and Wang, B.X., Heat tranfer characteristics of water Flowing through microchannels, Int.J.Experimental Heat Transfer, 1995, 7(4): 265-283
    112. Peralta P. N.,Skaar C. Experiments on steady-state nonisothermal moisture movement in wood. Wood and Fiber Science,1993, 25(2):124-135
    113. Plumb O. A. Spdek GA. Heat and Transfer in wood during Drying, 1985, Int. J. Heat Mass Transfer. Vol. 20, No.9, p. 1669-1678
    114. Quarles S.L., Erickson R.W. Examples of nonisothermal moisture movement in wood. Wood and Fiber Science, 1990,22(3):314-325
    115. Sehlstedt-Persson S M B. High temperature drying of Scots pine. A comparison between HT and LT drying Holzals Roh-und werkstoff. 1995,53(2):95-99
    116. Shukla, K. S. Reconsituted wood from poplar (populus deltoides). J.Ind Acad.wood sci, 1992,23(1):17-21
    117. Shukla, K.S. and Anil Negi. Reconstitued wood from eucalyptus hybrid. Timb. Dev Assoc.(India) 1996,1 l(l):5-8
    118. Siau J F, Bao Avramidis S. Experiments in nonithermal diffusion of moisture in wood. W S &T, 1986,18(l):84-89
    119. Siau J F. Application of a thermodynamic model nonisothermal diffusion experiments. W S T, 1993,27(2):131-136
    120. Siau J F. Chemical potential and nonisothermal diffusion, Letter to editor. W&F S1984,16(4):628-629
    121. Siau J F. Experiment on nonisothermal moisture movement in wood. W S & T, 1983,15(l):40-46
    122. Siau J F. Flow in wood. Syracuse Univ, Press, 1971
    123. Siau J F. Transport processes in wood. Springer-Verlag Berlin Heidelberg, New York, TokO, 1984
    124. Siau J. F. and Fin Z Nonisothermal moisture diffusion experiments analyzed by four alternative equations, wood sci. Technol. 1985,19:151-157
    125. Siau J. F. Nonisothermal diffusion model based on irreversible thermody namics. wood sci. Technol 1992,26:325-328
    126. Siau J.F Transport processes in wood . Springer-Verlag. New York, 1984, 161-163
    
    127. Siau.J.F., M,Babiak. Experiments on nonisothermal moisture movement in wood. Wood and Fiber science, 1983,15(l):40-46.
    128. Simpson W.T., Lin J.Y.. Dependence of The Water Vapor Diffusion Coeffient of Aspen (Populus spec.)on Moisture Content. Wood Science and Technology. 1991,26:9-21
    129. Simpson W.T.. Determination and Use of Moisture Diffusion Coefficient to Characterize Drying of Northern Red Oak(Quercus rubra).Wood Science and Technology. 1993,27:409-420
    130. Skaar oh and Saiu J. F. Thermal diffusion of bound water in wood. Wood sci and Technol. 1981, 15:105-112
    131. South Australian Timber Corporation. A process and apparatus for applying bonding agent and a process for forming reconsolidated wood product. WO88/04983 Patent, 1988
    132. St.Avramidis, J.F.Siau.An Investigation of The External and Internal Resistance to Resistance to Moisture Diffsion in Wood. Wood Science and Technology. 1987,21:249-256
    133. Stanish M. A, Scantier G S, Kayihan F. A mathematical model of drying for Hygroscopes porous media. AIChE J, 1986,32(8):1301-1311
    134. Swigon J T C. The movement of moisture with references to timber seasoning. For Prod Technology, London, 1926, Paper No.2
    135. Swigon J Wood drying with superheated steam and air. Przem drzew, 1995,46( 11):21 -24
    136. Taylor F.Drying pine lumber at high temperature and air velocities. Wood and Fiber Science. 1987.19(3):239-245
    137. Taylor F. Moisture gradients in poles dried at high temperature P P J, 41(5)36-38
    138. Thomas. H. R..,Lewis R.W. An application of the finite element method to the drying of timber , Wood and Fiber. 1980, II (4):237-241
    139. Tiemann H D. Effect of moisture upon strength and stiffness of wood, USDA For Serv. Bull. 1906
    140. Tien C.L.,Majumdar A.. Experimental and numerical study of microwave drying in unsarurated porous material. Int.Comm.Heat Mass Transfer.2001,28(5):605-616
    141. Vansteenkiste D, Stevens M, Acker J V, High temperature drying of ftesh sawn poplar word in experimental connective drying. Holz als Roh-und werkstoff. 1997,55(5):307-314
    142. William GGracs. Manufacture of reconsolidate wood products. US Patent 4 704 316,1987
    143. Yoji Kikata, Hiroshi Nagasaka and Toshiyki Machiyashiki. Zephr wood, a Network of Continuous Fibers I. Defibrillation of wood by roller crushing and decomposition of it. Wood Science Journal, 1989,35(10)
    144. Yoji kikata, Hiroshi Nagasaka and Toshiyki Machiyashiki. Zephr wood, a Network of Continuous Fibers II. Production of low-density zephr wood. Wood Science Journal, 1989,35(11)
    145. Yong Chen, Elvin T. Choong,David M Wetzel.Evaluation of Diffusion Coefficient and Surface Emission Coeffient by An Optimization Technique.Wood Science and Technology. 1995. 27(2): 178-182
    146. Zhangjing C. Primary drying forces in wood vacuum drying. PHD dissertation, Virginia Tech, 1997
    147. Zhangjing Chen, Fred M.Lamb. Investigation of boiling front during vacuum drying of wood. Wood and fiber science. 2001,33(4):639-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700