生物质气化与燃气轮机燃烧集成发电实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石能源的减少和环境问题的严重,生物质能作为清洁的、可再生资源,在全球资源战略中日益受到重视。生物质气化是主要的生物质利用技术之一,目标是得到高品质燃气,这些高品质燃气可用于后续的供气供暖、发电乃至合成气。生物质气化与燃气轮机燃烧联合发电技术作为一个系统来考虑,可提高生物质发电系统能效及环境性能。基于此背景,本文在高等学校博士学科点科研基金“生物质气化与燃气轮机燃烧集成发电的机理性研究”(No:20090032110036)的资助下,开展了相关研究。
     本文综述了国内外生物质气化发电的现状,对气化发电技术、直接燃烧发电技术、混合燃烧发电技术进行了评述,详细讲述了生物质气化发电系统的流程及原理。
     在流化床实验台上,开展了生物质气化实验研究与分析,重点研究操作条件(气化温度、当量比)和催化剂对生物质气化的影响。研究表明:当气化温度升高,产品气中可燃气体体积分数增加,CO2含量有所下降,燃气热值增加;随着当量比的增加,H2、CO和CH4主要可燃气体含量下降,CO2气体含量增加;同一温度加入催化剂后下,随着CaO配比从0到20%不断增加,气体产物各成分含量变化较大。H2的含量增加显著,CO的含量有所增加,CO2含量下降,CH4含量也缓慢有所增加。
     焦油在生物质气化发电系统中有一定的副面影响,为了使系统稳定运行、提高气化效率,本论文研究了焦油的相关理化性质和化学性质。研究发现焦油成分中苯酚及其衍生物、萘及其衍生物、大分子芳香族化合物,包含了酚、萘等多环芳烃和呋喃等化合物,碳原子数在7~20之间。采用Coats-Redfern法分析生物质焦油热解过程表观动力学,求取了不同升温速率下的表观活化能E和指前因子A。研究发现,把焦油的主要失重分为挥发分析出和热解两个阶段。在挥发分析出阶段,升温速率对焦油的活化能基本没有显著影响,热解阶段的活化能E低于挥发段的活化能,说明高温更有利于焦油热解。
     基于ASPEN PLUS平台分别搭建了生物质气化-净化模型和燃气轮机系统模块,介绍了物性方程,选择适合各模块的物性模型和方法。并在各单元模块的基础上,建立生物质气化与燃气轮机燃烧集成发电整体模型,实现对生物质气化发电系统的整体模拟和分析,并计算验证了模拟系统是基本可靠的,为整体系统设计提供了理论基础。
With fossil fuel depleting and increasing serious environmental problems,biomass energy as a clean and renewable resource has been paid more and moreattention in the global sourcing strategy. Biomass gasification is one of majorbiomass utilization technologies to get high quality gas. The high quality gas can besubsequently used for gas supply and power generation as well as syngas.Considering biomass gasification coupled with power generation technology as awhole system, the energy efficiency will be increased and the environmentalpollution problem can be reduced. Under the support of Ministry of Educationthrough fundamental research fund (No:20090032110036), a detail research wascarried out as follows.
     In this paper,the status of biomass for power generation is summarized, thethree main technologies based on biomass gasification, biomass combustion andco-combustion are also summarized and commented respectively, the process andprinciple of biomass gasification for power generation system is analyzed.
     Atmospheric air gasification of biomass was performed in pilot-scale fluidizedbed. The main influencing factors (equivalence ratio, bed temperature, addingcatalyst) were studied in detail. The results showed that the combustible gas contentand the heating value increased with temperature increasing, while carbon dioxidecontent decreased; the combustible gas content decreased with equivalence ratioincreasing, but carbon dioxide content increased. At the same temperature, with theratio of CaO variant from0to20%, hydrogen content was increased significantly,carbon monoxide content was also increased, methane content increased slightly,but carbon dioxide content was decreased.
     In biomass gasification for power generation system, tar has a negative effect.In order to make the system stable running and improve the efficiency ofgasification, properties of tar were studied. The results showed that the compositionof tar are mostly phenol and its derivatives, naphthalene and its derivatives,aromatic compounds, including phenol, naphthalene and other polycyclic aromatichydrocarbons and furan compounds, the carbon atom number is between7to13.Inthis paper, the kinetics parameters such as apparent activation energy andpre-exponential factor of different combinations in different heating rates werecalculated by using the Coats-Redfern method. Experiment results showed that loss weight of tar is divided into volatile and pyrolysis two main stages. In volatile stage,the heating rate didn’t have significant influence on activation energy, activationenergy of pyrolysis stage is lower than that of volatile stage. So in high temperatureconduce to tar pyrolysis.
     Based on the simulation software ASPEN PLUS, the biomass fluidized bedgasification-purification model and gas turbine system module were set uprespectively, the physical equation was introduced, suitable properties and methodfor each module were selected. On the basis of each unit module, the biomassgasification integrated gas turbine combustion for power generation model isestablished. The whole system model were applied to simulate and analysis thesystem facility, after these calculation, it is verified this system model can simulatethe whole process, thus provide certain theoretical basis for system design.
引文
[1] McKendry P. Energy production from biomass (part1):overview of biomass[J]. Bioresource Technology,2002,83(1):37-46.
    [2] Leung DYC,Yin X L,Wu C Z. A review on the development andcommercialization of biomass gasification technologies in China [J].Renewable and Sustainable Energy Reviews,2004,8(6):565-80.
    [3] Demirbas A. Biomass resource facilities and biomass conversion processingfor fuels and chemicals[J]. Energy Conversion and Management,2001,42(11):1357-78.
    [4]张百良.农村能源工程学[M].北京:中国农业出版社,1999.
    [5] Caputo A C,Palumbo M,Pelagagge P M,Scacchia F. Economics of biomassenergy utilization in combustion and gasification plants: effects of logisticvariables [J]. Biomass&Bioenergy,2005,28(1):35-51.
    [6]李建芬.生物质催化热解和气化的应用基础研究[D].武汉:华中科技大学,2010.
    [7] Yuan Z H. Research and development on biomass energy inChina.http://www.unescap.org/enrd/energy/China/ChinaBiomass,2001.
    [8]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [9]刘荣厚.生物质能工程[M].北京:化学工业出版社,2009.
    [10]陈汉平,杨海平,李斌,等.生物质流化床气化焦油析出特性的研究[J].燃料化学学报,2009,37(4):433-437.
    [11]吕鹏梅,熊祖鸿,王铁军,等.生物质流化床气化制取富氢燃气的研究[J].太阳能学报,2003,24(6):758-764.
    [12]姚东林,金保升,肖刚.生物质流化床燃烧/气化的烧结特性与机理研究[J].锅炉技术,2009,40(4):76-80.
    [13]吕友军,金辉,郭烈锦,等.原生生物质在超临界水流化床系统中气化制氢[J].西安交通大学学报,2009,43(2):111-115.
    [14]方原欢,陈砾,王红林.南方农林废弃物的固定床气化特性研究[J].太阳能学报,2009,30(8):1118-1123.
    [15]孙云娟,蒋剑春.生物质热解气化产物中焦油的催化裂解研究[J].林业化学与产业,2007,27(5):15-20.
    [16]赵力,景元琢,刘国喜.下吸式固定床气化炉的加料装置[J].可再生能源,2009,27(1):85-87.
    [17]张晓东,周劲松,骆仲泱,等.生物质中热值气化技术中试试验[J].太阳能学报,2003,24(1):74-79.
    [18]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版,2005.
    [19]骆仲泱,张晓东,周劲松,等.生物质热解焦油的热裂解与催化裂解[J].高校化学工程学报,2004,18(2):162-167.
    [20]刘荣厚,鲁楠.旋转锥反应器生物热裂解工艺过程及实验[J].沈阳农业大学学报,1997,8(4):307-311.
    [21]刘荣厚,鲁楠.生物质热裂解技术的实验研究[J].农村能源,1999,5:17-19.
    [22]袁廷璧,易维明,李志合,等.竖直下降管换热实验台改进设计与实验[J].农业机械学报,2009,7:107-111.
    [23]李志合,易维明,刘焕卫,等.垂直下降管内陶瓷球流动与传热的实验[J].农业工程学报,2009,2:28-32.
    [24]杨永平.生物质发电技术[M].北京:中国水利水电出版社,2007.
    [25]吴创之,周肇秋,马隆龙,等.生物质发电技术分析比较[J].可再生能源,2008,26(3):34-37.
    [26]别如山,李炳熙,陆慧林,等.燃生物质废料流化床锅炉[J].热能动力工程,2000,15(4):344-347.
    [27]国家发展和改革委员会.可再生能源中长期发展规划[R].2007,8.
    [28]马隆龙,肖艳京,任永志,等.生物质气化发电[J].能源工程,2000,2:4-6.
    [29]Lars N. Straw for energy production technology-environment-economy[R].Denmark: The Center fot Biomass Technology,1998.
    [30]Timo J,Eija A. Cofiring of biomass-evaluation of fuel procurement andhandling in selected existing plants and exchange of information [R].Finland:VTT Energy,2001.
    [31]Tillma D A. Biomass cofiring:the technology,the experience,thecombustion consequences [J]. Biomass and Bioenergy,2000,19:365-384.
    [32]Hus P J,Tillman D A. Cofiring multiple opprtunity fuels with coal at baillygeneration station [J]. Biomass and Bioenergy,2000,19:385-394.
    [33]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [34]曾锦波.生物质气化技术的进展[J].工程设计与研究,2007,123:38-41.
    [35]Stahl K,Neergaard M. IGCC power plant for biomass utilisation[J]. Biomassand Bioenergy,1998,15(3):205-211.
    [36]袁振宏.欧洲生物质发电技术掠影[J].可再生能源,2004,4:65.
    [37]米铁,唐汝江,陈汉平,等.生物质气化技术比较及其气化发电技术研究进展[J].能源工程,2004,5:33-37.
    [38]盛建菊.生物质气化发电技术的进展[J].节能技术,2007,1:68-71.
    [39]Yan J Y. Biomass Gasification Power Generation Technology [M]. Sweden:Royal Institute of Technology,1998.
    [40]Beenackers A A C M,Maniatis K. Gasification technologies for heat andpower from biomass. Biomass Energy Environment [C]. Proceeding of9thEurope Bioenergy Conference,1996,1:228-259.
    [41]Waldheim L. Atmospheric CFB gasification of biomass [J]. Finland, Espoo:Bioenergy,1993:17-18.
    [42]Paisley M A,Farris G. Development and commercialization of a gasificationpower generation system[C]. Portland:Second Biomass Conference of theAmericas,1995:21-24.
    [43]汪婧.中国可再生能源上网定价机制研究[D].北京:清华大学,2006.
    [44]刘平.生物质能秸秆发电技术的展望[J].中州煤炭,2005,2:16-17.
    [45]孙云娟,蒋剑春.生物质气化过程中焦油的去除方法综述[J].生物质化学工程,2006,40(2):31-35.
    [46]贾佳妮.气化过程燃气焦油检测分析及脱除[D].天津:天津大学,2007.
    [47]刘亚军.生物质焦油催化裂解实验及中热值气化技术应用研究[D].浙江:浙江大学,2004.
    [48]杨海平,米铁,陈汉平,等.生物质气化中焦油的转化方法[J].煤气与动力,2004,40(3):122-126.
    [49]王炎昌.生物质气化中焦油的催化转化[D].郑州:郑州大学,2005.
    [50]周劲松,王铁柱,骆仲泱,等.生物质焦油的催化裂解研究[J].燃料化学学报,2003,31(2):144-147.
    [51]Lars N. Straw for energy production technology-environment-economy[R].Denmark:The Center fot Biomass Technology,1998.
    [52]Timo J,Eija A. Cofiring of biomass-evaluation of fuel procurement andhandling in selected existing plants and exchange of information [R].Finland:VTT Energy,2001.
    [53]Tillma D A. Biomass cofiring: the technology,the experience,thecombustion consequences [J]. Biomass and Bioenergy,2000,19:365-384.
    [54]Hus P J,Tillman D A. Cofiring multiple opprtunity fuels with coal at baillygeneration station [J]. Biomass&Bioenergy,2000,19:385-394.
    [55]Heina, K R G,Bemtgen J M. EU clean coal technology-co-combustion ofcoal and biomass [J]. Fuel Processing Technology,1998,54:159-169.
    [56]李定凯.对芬兰和英国生物质-煤混燃发电情况的考察[J].电力技术,2010,19(2):2-8.
    [57]肖军,段菁春.生物质与煤共燃研究(Ⅰ)生物质的低温热解[J].煤炭转化,2003,26(1):61-66.
    [58]肖军,段菁春.生物质与煤共燃研究(Ⅱ)燃烧性质分析[J].煤炭转化,2003,26(2):43-47.
    [59]杨永平.生物质发电技术[M].北京:中国水利水电出版社,2007.
    [60]吴创之,周肇秋,马隆龙,等.生物质发电技术分析比较[J].可再生能源,2008,26(3):34-37.
    [61]林伟刚,宋文立.丹麦生物质发电的现状和研究发展趋势[J].燃料化学学报,2005,33(6):650-655.
    [62]别如山,李炳熙,陆慧林,等.燃生物质废料流化床锅炉[J].热能动力工程,2000,15(4):344-347.
    [63]国家发展和改革委员会.可再生能源中长期发展规划[R].2007,8.
    [64]姜述杰,赵伟英.浅谈秸秆生物质直燃发电技术[J].锅炉制造,2009,4:40-42.
    [65]马洪儒,张运真.生物质秸秆发电技术研究进展与分析[J].水利水电机械,2006,28(12):9-13.
    [66]钟史明,马永贵.浅谈秸秆发电技术[J].热机技术,2007,1:52-57.
    [67]刘宝亮,蒋剑春.中国生物质气化发电技术研究开发进展[J].2006,40(4):47-52.
    [68]Jarungthammachote S, Dutta A. Thermodynamic equilibrium model andsecond law analysis of a downdraft waste gasifier [J]. Energy,2007,32(9):1660-1669.
    [69]Bilodeau J F,Therien N,Proulx P,et al. A mathematical model offluidized bed biomass gasification[J]. Cananian Journal of ChemicalEngineering,l993,71:549-557.
    [70]Bridgewater A V,Peacocke G V C. Fast pyrolysis for biomass [J]. Renewable&Sustainable Energy Reviews,2000,4:1-173.
    [71]李大中.生物质发电气化过程建模及优化研究[D].北京:华北电力大学2009.
    [72]Bridgwater A V. Renewbale fuels and chemicals by thermal Proeessing ofbiomass [J].Chemiacal Engineering Jounral,2003,91:87-102.
    [73]Skog E. Biomass gasification combined cycle power plant demonstration inVamamo[M]. Sweden:Sydkraft Kunsult AB,Malmo,2000.
    [74]Fan Z. A biomass pyrolysis gasifier application in Chinese rural [J]. FuelScience and Technology,1993, l1(3):37-43.
    [75]Mansaray K G,Ghaly A E,Taweel A M. Air gasification of rice husk in adual distributor type fluidized bed gasifier [J]. Biomass&Bioenergy,1999,17(4):315-332.
    [76]Boateng A A, Walawender W P,Fan L T. Fluidized-bed steam gasificationof rice hull[J]. Bioresource Technology,1992,40(3):235-239.
    [77]Delgado J,Aznar M P,Corella J. Biomass gasification with steam influidized bed: effectiveness of CaO, MgO and CaO-M gO for hot raw gascleaning [J]. Ind Eng Chem Res,1997,36(5):1535-1543.
    [78]陈汉平,杨海平,李斌,等.生物质流化床气化焦油析出特性的研究[J].燃料化学学报,2009,37(4):433-437.
    [79]米铁,刘武标,陈汉平,等.流化床生物质气化过程的中试研究[J].环境污染治理技术与设备,2002,3(2):41-46.
    [80]赵向富.生物质流化床气化实验研究与模拟[D].武汉:华中科技大学,2006.
    [81]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [82]吴创之,周肇秋,阴秀丽,等.我国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91-99.
    [83]Di Blasi C,Signorelli G,Di Russo C. Product distribution from pyrolysis ofwood and agricultural residues[J]. Ind Eng Chem Res,1999,38(6):2216-2224.
    [84]Duran-Valle C J,Gomez-Corzo M,Pastor-Villegas J. Study of cherry stonesas raw material in preparation of carbonaceous adsorbents[J]. J Anal ApplPyrolysis,2005,73(1):59-67.
    [85]王娜.生物质气、炭、油多联产实验研究与分析[D].天津:天津大学,2010.
    [86]魏敦崧,李芳芹,李连民.生物质固定床气化实验研究[J].同济大学学报(自然科学版),2006,34(2):254-259.
    [87]张瑞芹,张长森,尹辅印.流化床反应器中生物质空气气化实验研究[J].郑州大学学报,2006,38(2):76-80.
    [88]Lv P M,Chang J,Xiong Z H. An experimental research on biomassair-steanm gasfication in a fluidized Bed[J]. Journal of Fuel Chemistry andTechnology,2003,31(4):305-310.
    [89]Su X Y,Wang Z W,Cheng C M. Study on biomass pyrolysis and gasificationin a fluidmed bed [J]. Journal of Fuel Chemistry and Technology,2000,28(4):298-305.
    [90]杨国来,陈汉平,米铁,等.不同因素对生物质气化产出气特性的影响[J].可再生能源,2007,25:34-38.
    [91]侯斌,吕子安,李晓辉,等.生物质热解产物中焦油的催化裂解[J].燃料化学学报,2001,29(1):70-75.
    [92]Aznar M P,Caballero M A, Gil J,et al. Commercial steam reformingcatalysts to improve biomass gasification with steam-oxygen mixtures [J].Ind. Eng. Chem. Res.,1999,37(7):2668-80.
    [93]蒋剑春,应浩,戴伟娣,等.生物质流态化催化气化技术工程化研究[J].太阳能学报,2004,25(5):678-683.
    [94]刘国喜,庄新姝,王玉金,等.生物质可燃气的净化[J].农村能源,2000;1,18-21.
    [95]郭新生,梁益武,方梦祥,等.焦油的催化裂解对燃气组成的影响[J].煤气与热力,2005,25(8):5-10.
    [96]李爱民,严建华,李水清,等.城市垃圾在回转窑中热解:热解焦油特性研究[J].燃烧科学与技术,2000,6(3):195-200.
    [97]朱锡锋,Venderbosch R H.生物质热解油气化实验研究[J].燃料化学学报,2004,32(4):510-512.
    [98]Zhang L H,Xu C B,Champagne P. Overview of recent advances inthermo-chemical conversion of biomass[J]. Energy Conversion andManagement,2010,51(5):969-982.
    [99]齐国利.生物质热解及焦油热裂解的实验研究和数值模拟[D].哈尔滨:哈尔滨工业大学,2010.
    [100]Li X T,Grace J R. Biomass Gasification in a Circulating Fluidized Bed [J].Biomass&Bioenergy,2004,26:171-193.
    [101]Myrén C,H rnell C,Bj rnbom E,et al. Catalytic tar decomposition ofbiomass pyrolysis gas with a combination of dolomite and silica[J]. Biomass&Bioenergy,2002,23:217-232.
    [102]王素兰,张全国,李继红.生物质焦油及其馏分的成分分析[J].太阳能学报,2006,27(7):647-651
    [103]王铁军.高稳镍基催化剂催化生物质燃气重整制合成气的研究[D].北京:中国科学技术大学,2005.
    [104]胡荣祖,史启祯.热分析动力学[M].北京:科技出版社,2008.
    [105]蔡炳新.基础物理化学[M].北京:科技出版社,2006.
    [106]顾舒.关于飞灰再燃燃烧特性的实验研究[D].保定:华北电力大学,2006.
    [107]赵丽霞.生物质粗甘油混合高效制氢实验研究[D].天津:天津学,2011.
    [108]徐越.燃煤联合循环系统设计集成与干煤粉加压气化过程模拟[D].西安:西安交通大学,2003.
    [109]张巍巍,陈雪莉,王辅臣,等.基于ASPEN PLUS模拟生物质气流床气化工艺过程[J].太阳能学报,2007,28(12):1360-1364.
    [110]Wang Y,Dai Z H,Yu G S. Simulation of entrianed-flow bed coal gasifierby the method of Gibbs free energy minimization [J].Coal conversion,2004,27(4):27-33.
    [111]Zhou L,Hu S Y,Li Y R,et al. Study on co-feed and co-production systembased on coal and natural gas for producing DME and electricity[J].Chemical Engineering Journal,2008,136(1):31-40.
    [112]Benito M,García S,Ferreira-Aparicio P. Development of biogas reformingNi-La-Al catalysts for fuel cells[J]. Journal of Power Sources,2007,169(1):177-183.
    [113]Li Y B,Xiao R,Jin B S. Thermodynamic equilibrium calculations for thereforming of coke oven gas with gasification gas[J]. Chemical Engineeing&Technology,2007,30(1):91-98.
    [114]Ma L W,Ni W D, Li Z. A simulating research on liquid-phase methanolsynthes is technology applying to polygeneration system[J]. CoalConversion,2004,27(2):7-12.
    [115]高杨,肖军,沈来宏.串行流化床生物质气化制取富氢气体模拟研究[J].太阳能学报,2008,29(7):894-899.
    [116]吴创之,吴正舜,郑舜鹏,等.1MW木粉气化发电系统的运行测试研究[J].太阳能学报,2003,24(4):531-535.
    [117]陈汉平,赵向富,米铁,等.基于ASPEN PLUS平台的生物质气化模拟[J].华中科技大学学报,2007,35(9):49-52.
    [118]龙琳,魏立安,卢奕昌,等.杏仁壳流化床气化实验研究,江西化工,2008,2:92-94.
    [119]马顺勤.基于ASPEN PLUS对整体煤气化联合循环系统的模拟研究[D].北京:华北电力大学,2008.
    [120]董君,王松岭,陈海平,等. M701F型燃气轮机性能分析[J].电力科学与工程,2005,4:12-14.
    [121]寇惠武. IGCC气化系统仿真[D].北京:华北电力大学,2004.
    [122]迟全虎. ICCC联合循环系统建模与设计优化研究[D].北京:中国科学院工程热物理研究所,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700