白腐菌预处理与酶解转化杨木研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素主要由纤维素、半纤维素和木质素三大部分组成,其可再生且来源广泛,是一种制备生物燃料的理想原料。然而由于植物细胞壁结构的复杂性,致使生物质预处理木质纤维素过程仍存在许多关键障碍。本论文针对白腐菌预处理效率的提升,预处理后化学组分对酶水解的影响及预处理后微观结构的变化如何促进酶水解三个方面展开深入的研究。
     通过愈创木酚平板变色法和定量测定降解前后木片中木质纤维素含量的变化,本实验从23株白腐菌中筛选出3株高效降解黑杨木质素的菌株:白赭多年卧孔菌Perenniporia ochroleuca D9597,粗毛纤孔菌Funalia trogii C6978和东方栓孔菌Trametes orientalis C6320。基于主成分分析发现18株白腐菌存在3种降解类型:选择性降解木质素;选择性降解综纤维素,但对木质纤维素的降解能力极其微弱;强烈地选择性降解综纤维素。筛选出的3株菌分解黑杨木粉20天后,紫外扫描分析黑杨木粉的乙醇提取液表明其中的木质素被显著分解,木质素的芳香环结构遭到了破坏。
     三株白腐菌Lenzites betulinus, Trametes orientalis和Trametes velutina及其相应的双菌组合预处理毛白杨4周到12周后,单菌T. orientalis在固态培养12周后,可降解高达58.1%的木质素。经过酶水解后,处理后的样品可释放41.3%的还原糖。总体上,三株白腐菌的单菌培养体系在降解木质纤维素和酶水解木质生物质时要优于它们的双菌培养体系,这是由于双菌培养时有拮抗作用的存在,而单菌培养时降解更多的半纤维素和木质素,从而增强了纤维素对水解酶的可渗透性。不同的营养元素添加到白腐菌T.velutinus固态发酵毛白杨中,添加微量元素组引起最多的木质素降解,且半纤维素和纤维素的降解量最少。TE组经过8周预处理后只剩下12.6%的酸不溶木质素。预处理后8周后的样品经过96小时酶水解后,TE组获得了44%的还原糖得率。此外,经过酶水解同步发酵48小时后,预处理8周后的BM+TE组得到了最多的22%的乙醇得率,是未处理对照组的5倍。
     从4种褐腐菌和7种白腐菌中筛选出高纤维素酶活菌株(Fomitopsis palustrisC7615),并利用响应面优化其产酶条件。在添加4.46g/L的尿素和27.83μL/L的吐温80培养8天后,获得的实际纤维素酶活是130.45FPU/mL。预测值同实际测定值能够很好的拟合,验证了响应面模型的稳定性和优化因子的可靠性。利用优化后所产纤维素粗酶液对热水处理后的毛白杨原料进行了72小时的酶水解。还原糖得率显示,随着热水预处理温度的提升,还原糖得率越高。180℃的热水预处理后的杨木经过酶水解后,释放出最多的25.15%的还原糖,是未处理原料的1.72倍。
     白腐菌协同热水预处理毛白杨后在去除半纤维素和保存纤维素方面表现良好。L.betulina C5617协同200℃的热水预处理降解了最多的半纤维素高达92.33%。这表明最初的真菌处理使木质纤维生物质的紧密结构变得疏松,从而促进了热水预处理时半纤维素的降解。当毛白杨经过L. betulina C5617与热水在200℃协同预处理后,获得最高的葡萄糖得率60.26%。协同预处理的协同效应在适中条件下更显著,原因可能是半纤维素的损失促进了杨木的酶水解。在上述研究基础上,当生物预处理后的样品和原料经过添加FeCl3的热水预处理后,T.orientalis和F. palustris协助的FeCl3预处理降解了大量的半纤维素,在180℃时半纤维素损失分别达到98.8%和99.7%。T. orientalis和F. palustris协助的FeCl3预处理在180℃条件下分别得到了84.5%和95.4%的还原糖。一种原因是协同处理引起内在表面积和孔隙度的增加,从而降低了酶在木质素表面的可逆性吸附和增加了酶对纤维素的可渗透性。另一个原因是真菌同FeCl3的协同预处理引起了木质素结构的改变,如亲水性酚羟基含量的改变同样引起可逆性酶吸附的减少。
     白腐菌固态发酵后的残渣进一步溶解在离子液体中以减弱生物质对酶解转化的抗性。真菌处理后的杨木分别经过100℃和120℃的离子液体预处理后,100℃条件下的协同处理同120℃条件下的单独离子液体预处理和协同预处理释放相似含量的葡萄糖,这表明100℃条件下的协同处理比其它两种预处理方式更优异。真菌预处理的发酵周期延长至8周,12周和16周,而后在100℃条件下再离子液体预处理。当第一步的生物预处理的培养周期超过8周后,协同预处理的水解效率并没有实质性的改善,这表明8周的培养周期的真菌预处理协同后续的离子液体预处理已经足够。
     白腐菌固态发酵后的残渣进一步选择性地去除木质素和半纤维素来研究其中的木质素和半纤维素含量对后续酶水解的影响。真菌处理后的样品经亚氯酸钠再处理后,木质素含量分布为43.66%-77%且半纤维素降解很少。稀酸处理后真菌样品中,半纤维素从79.97%分布至95.09%且仅有小部分木质素被降解。表明木质素和半纤维的交叉反应被降到了最低。酶水解时,不管在何种纤维素酶负荷下,去除木质素后的样品比去除半纤维素能释放更多的葡萄糖和木糖,这表明真菌处理后的残渣中木质素而非半纤维素对酶水解起着最主要的抑制作用。基于过去文献中所阐述的酸性和碱性预处理的机制和本研究中的发现,可推论出真菌预处理同碱性处理的方式相结合比与酸性处理的方式相结合能发挥更大的协同效应。
     利用高倍率电镜和化学表征技术对白腐菌固态发酵后的残渣进行了多尺度的可视化表征和分析,以探测真菌预处理促进酶水解效率的背后机制。经过16周的固态发酵后,纤维素微弱减少但是半纤维素和总木质素分别逐渐从18.7%到11%和27.7%到12.5%。纤维素和半纤维素转化率随着培养时间的延长而逐渐增加,从预处理4周时的39%和14.5%分别上升到16周预处理时的50.6%和26.1%。本研究中结果可归纳出酶水解能力增强的部分原因是T.orientalis降解了木质素和半纤维素,而不是纤维素结晶度的变化。当预处理后残渣的酶水解数据与各种预处理后的图像比较后,可清晰地表明白腐真菌改善酶水解效率除了通过半纤维素和木质素的部分降解,也通过侵蚀细胞壁形成新的表层界面,使细胞壁上的微纤维得到更多的暴露。表面侵蚀可以作为解释预处理过程中细胞壁结构变化改善酶水解效率能力的重要原因之一
Lignocellulosic biomass is composed of three major components:cellulose, hemicelluloses, and lignin. This abundant renewable resource can serve as ideal feedstock for the biofuels production. However, many crucial obstacles should be overcome due to the complicated structure of the cell wall during the pretreatment process. To overcome these obstacles, thorough investigations on improving the performance of biological pretreatment with white-rot fungi, effects of residues from white-rot fungi pretreatment on enzymatic hydrolysis, and how do ultrostructure changes from white-rot fungal decay improve enzymatic hydrolysis, were carried out in this thesis.
     Based on agar plate tests,18isolates from23white rot fungi were selected to a subsequent wood block decay test. According to the ratio of Klasson lignin losses to holocellulose losses, three isolates, Perenniporia ochroleucaD9597, Funalia trogiiC697S and Trametes orientalisC6320, showed selective delignification on Populus nigra. Based on primary component analysis, three different types of degradation were found during the fermentation of P. nigraby18white rot fungi:type A represents selective delignification; types B and C can selectively decompose holocelluloses, but type C has a stronger capacity than type B. Investigation was carried out on the UV absorbance spectra of ethanol extracts of wood particles treated by P. ochroleucaD9597, F. trogiiC6978and T. orientalisC6320for20days, and lignin in the treated wood was found to be decomposed markedly.
     Threewhite rot fungi (Lenzites betulinus, Trametes orientalis, and Trametes velutina) as well as their respective paired cultures were used to pretreat Populus tomentosa for enhanced lignocellulosic degradation and enzymatic hydrolysis. Hemicellulose and cellulose were slightly degraded, while a maximum lignin degradation of58.1%was caused by T. velutinaduring the12-week cultivation. After the pretreated samples were subjected to enzymatic hydrolysis for96h, the reducing sugar released by T. orientalis at week12was as high as41.3%, which was in line with the lignin loss at2.2times the control sample. Overall, the monocultures of white-rot fungi exhibited better degradation and saccharification of woody biomass than their co-culture. This can be attributed to the partial removal of lignin and hemicellulose, with an associated increase of cellulose accessibility to enzymes. In addition, different nutrients were added into the solid fermentation of woody biomass, Populus tomentosa, to improve pretreatment by a white rot fungus, Trametes velutina. Fungal pretreatment supplemented with trace elements resulted in large amount of lignin loss but low degradation of carbohydrate. Only12.6%of Klason lignin was left in the residues pretreated by T. velutina for8weeks supplemented with1%trace elements (TE group). When fungal-pretreated residues were subjected to enzymatic hydrolysis for96h, a maximum reducing sugar yield of44%was obtained from the TE group at the8th week,2.3times higher than that of untreated samples. In addition, the highest ethanol yield of22%was observed by the fermentation of8-week pretreated residues from the basic medium plus trace element group, which was five times more than that of untreated samples.
     Fomitopsis palustris, screened from11wood rotting fungi, was optimized with a sequential optimizationstrategy to produce the largest amount of cellulase, and the efficiency of the enzyme was evaluated. Based on the Plackett-Burman and Box-Behnken designs, the most significant variables, time, urea, and Tween80were varied for optimizing cellulase production. An optimized result for FPase activity with130.45FPU/mL was achieved for an8-day culture containing4.46g/L of urea and27.83μL/L of Tween80, which experimentally matched well with the predicted value from the model. The obtained crude cellulase was subsequently employed in the saccharification of the poplar wood, Populus tomentosa, which was pretreated with liquid hot water (LHW) at different temperatures. A maximum release of25.15%of reducing sugars was observed after a72-h enzymatic hydrolysis of the180℃-LHW-pretreated poplar wood, which is1.72times higher than that from untreated wood (14.66%), indicating that F. palustrishas a potential to produce cellulase for woody biomass hydrolysis.
     A novel stepwise pretreatment of combination of fungal treatment with liquid hot water (LHW) treatment was conducted to enhance the enzymatic hydrolysis of Populus tomentosa. The results showed that lignin and cellulose increased with the elevating temperature, while significant amount of hemicellulose was degraded during the LHW pretreatment. A highest hemicellulose removal of92.33%was observed by combination of Lenzites betulina C5617with LHW treatment at200℃, which was almost2times higher than that of sole LHW treatment at the same level. Saccharification of poplar co-treated with L. betulina C5617and LHW at200℃resulted in a2.66-fold increase of glucose yield than that of sole LHW treatment, and an increase (2.25-fold) of glucose yield was obtained by the combination of Trametes ochracea C6888with LHW. The combination pretreatment performed well at accelerating the enzymatic hydrolysis of poplar wood. Fungal treatment followed by FeCl3treatment was also used to improve saccharification of wood ofP. tomentosa. Combined treatments accumulated lignin and slightly degraded cellulose, whereas almost all hemicelluloses were removed. The white rot fungus, Trametes orientalis, and the brown rot fungus, Fomitopsis palustris, both accompanied by FeCl3post-treatment resulted in98.8and99.7%of hemicelluloses loss at180℃, respectively. In addition, the solid residue from the T. orientalis-assisted and F. palustrisassisted FeC13treatment at180℃released84.5and95.4%of reducing sugars, respectively. Combined treatments disrupted the intact cell structure and increased accessible surface area of cellulose therefore enhancing the enzymatic digestibility, as evidenced by XRD and SEM analysis data. Wood residues from fungal cultivation with white-rot fungus were further dissolved in ionic liquid (IL) to mitigate the biomass recalcitrance for enhanced bioconversion. Firstly,4-week fungus-pretreated residues were subjected to IL pretreatment at100℃and120℃, respectively. Synergistic pretreatment at100℃can achieve a similar enzymatic digestibility to sole IL pretreatment and synergistic pretreatment at120℃. Therefore, prolonged fungal fermentation followed by IL dissolution at100℃was further investigated. There was no substantial improvement on saccharification of co-treated samples when bio-pretreatment exceeded8weeks. As high as96%of cellulose conversion was achieved by co-treatment with4-week bio-pretreatment and IL pretreatment at100℃, which was3fold,1.3fold and1.2fold higher than that of untreated samples, sole IL pretreatment at100℃and120℃, respectively. This fungi-assisted IL pretreatment would gain enhanced bioconversion at lower severity with minimal costs.
     Selective delignification and hemicellulose removal were performed on white rot fungus-pretreated residuesto investigate the effects of lignin and hemicellulose removal on enzymatic hydrolysis.43.66-77%of lignin with small part of hemicellulose were degraded by chlorite treatment, while79.97-95.09%of hemicellulose with little lignin were degraded by dilute acid treatment, indicating that cross effect between lignin and hemicellulose was minimized. In subsequent enzymatic digestion, regardless of the cellulase loading, residues from series-grade delignification released more glucose and xylose than that from hemicellulose removal, suggesting that lignin rather than hemicellulose in fungi-pretreated residues played a dominant role in hindering enzymatic hydrolysis. Based on the fundamental mechanisms of acidic/alkaline pretreatments in literature, it is proposed that fungal pretreatment prefers to integrate with alkaline pretreatment rather than acidic pretreatment to maximize the synergy. This indication would be helpful to optimize and renovate the integrated pretreatment.
     Multi-scale visualization and characterization of poplar wood cell walls were carried out to elucidate the mechanism behind fungal pretreatment with white-rot fungus, Trametes orientalis C6320. During16-week cultivation, cellulose decreased slightly but hemicellulose and total lignin gradually reduced from18.7%to11%and27.7%to12.5%, respectively. Cellulose conversion increased gradually from39%in4-week pretreatment to50.6%in16-week pretreatment, being consistent with the degradation of hemicellulose and lignin. XRD analysis showed thatthe fungal pretreatment had a negligible effect on the cellulose crystalline, indicating that crystallinity is not responsible for the improved enzymatic digestion. Revealed byultrastructural analysis,especiallyby TEM,it can be concluded that the white-rot fungus pretreatmentachieved the improved enzymatic digestibility bycreating extensive new surface area via etching away cell wall matrix and leaving microfibrils exposed on cell wall structures, in addition to partial hemicellulose and lignin removal.
引文
1.蔡磊,尹峻峰,杨丽萍.几种简便的木质素降解真菌定性筛选方法[J].微生物学通报,2002,29(1):67-69.
    2.崔宝凯,余长军.大兴安岭林区多孔菌的区系组成与种群结构[J].生态学报,2011,31(13):3700-3709.
    3.戴玉成,崔宝凯.中国大孔菌属小记[J].菌物学报,2008,27(4):604-607.
    4.戴玉成,崔宝凯.中国附毛孔菌属小记[J].菌物学报,2008,27(4):510-514.
    5.戴玉成,熊红霞.中国耙齿菌属小记[J].菌物学报,2008,27(4):515-519.
    6.戴玉成.中国东北地区木材腐朽菌的多样性[J].菌物学报,2010,29(6):801-818.
    7.戴玉成.中国多孔菌名录.菌物学报[J],2009,28(3):315-327.
    8.蒋挺大.木质素[M].2版.北京:科学出版社,2009:58.
    9.林鹿,陈嘉翔,余家鸾.高效产生降解木素酶和降解聚木糖酶的菌种选育[J].中国造纸学报,1996,11(增刊):61-68.
    10.刘正贵,王海毅,房桂干.氮源用量对杨木白腐菌降解效率的影响[J].陕西科技大学学报,2007,25(2):5-8.
    11.曲音波.木质纤维素降解酶与生物炼制[M].化学工业出版社,2011.
    12.魏玉莲,戴玉成.木材腐朽菌在森林生态系统中的功能[J].应用生态学报,2004,15(10):1935-1938.
    13.徐晓峰,何北海,徐丽丽.白腐菌的筛选及对松木片木素和树脂的脱除[J].华南理工大学学报(自然科学版),2007,35(4):105-111.
    14.杨淑惠,植物纤维化学(第三版)[M].中国轻工业出版社,2007.
    15.姚梦吟,刘晓风,袁月祥.一株选择性降解木质素菌的筛选及其对玉米秸秆的降解[J].应用与环境生物学报,2009,15(3):427-431.
    16.叶汉玲,尤纪雪,房桂干.选择性降解木质素白腐菌筛选的研究[J].纤维素科学与技术,2004,12(1):19-26.
    17.余长军,李娟,戴玉成.采自云南热带雨林的中国多孔菌两新记录种[J].菌物学报,2008,27(1):145-150.
    18.袁海生,戴玉成.中国锈革孔菌科二新记录种[J].菌物学报,2008,27(1):150-154.
    19.袁海生,戴玉成.中国的齿状真菌Ⅰ:刺孢齿耳属,中国非褶菌目一新记录属[J].菌物学报,2008,27(1):57-61.
    20.袁同琦.三倍体毛白杨组分定量表征及均相改性研究[D].北京林业大学,2012.
    21. Adney B, Baker J. Laboratory Analytical Procedure (LAP):Measurment of cellulase activities. Technical Report:NREL/TP-510-42628. National Renewable Energy Laboratory,1996,Golden, Co, USA.
    22. Akhtar M, Blanchette RA, Myers G, Kirk TK. An overview of biochemical pulpingresearch.In:Young RA, Akhtar M, editors. Environmental friendly technologiesfor the pulp and paperindustry. New York:Wiley, Inc.,1998,309-340.
    23. Akhtar M, Scott GM, Swaney RE, Kirk TK.Overview of Biomechanicaland Biochemical Pulping Research. Enzyme Applications in FiberProcessing[J].American Chemical Society,Washington DC,1998, pp.15-26.
    24. Akin DE, Rigsby LL, Sethuraman A, Morrison WH, Gamble GR, Eriksson KEL. Alterationsin structure, chemistry, and biodegradability of grass lignocellulose treated withthe white-rotfungi Ceriporiopsis subvermispora and Cyathus stercoreus[J]. Applliedand EnvironmentalMicrobiology,1995,61:1591-1598.
    25. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review[J]. Bioresource Technology,2010,101:4851-4861.
    26. Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M.Methane fermentationof Japanese cedar wood pre-treated with a white rot fungus,Ceriporiopsis subvermispora[J]. Journal of Biotechnology,2006,123:71-77.
    27. Ander P, Eriksson K. The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum [J].Archives of Microbiology,1976, 109:1-9.
    28. Anderson WF and Akin DE, Structural and chemical properties of grasslignocelluloses related to conversion for biofuels[J]. Journal of Industrial Microbiologyand Biotechnology,2008,35:355-366.
    29. Antal Jr. MJ. Water:A traditional solvent pregnant with newapplications. In:White, H.J. Jr.Jr. (Ed.), Proceedings of the 12thInternational Conference on the Properties of Water and Steam.Begell House, New York,1996, pp.24-32.
    30. Arantes V, Milagres AMF, Filley TR, Goodell B,2011. Lignocellulosicpolysaccharides andlignin degradation by wood decayfungi:the relevance of nonenzymatic Fenton-basedreactions[J].Journal of Industrial Microbiology and Biotechnology,38:541-555.
    31. Arantes V, Milagres AMF. The synergistic action of ligninolytic enzymes (MnP and Laccase)and Fe3+-reducing activity from white-rot fungi fordegradation of Azure B[J]. Enzyme andMicrobial Technolog,2007,42(1):17-22.
    32. Asgher M, Asad MJ, Legge RL. Enhanced lignin peroxidase synthesis by Phanerochaetechrysosporium in solid state bioprocessing of a lignocellulosic substrate [J]. World Journal ofMicrobiology andBiotechnology,2006,22:449-453.
    33. Bak JS, Ko JK, Choi IG, Park YC, Seo JH and Kim KH, Fungal pretreatmentof lignocellulose by Phanerochaete chrysosporium to produceethanol from rice straw[J].Biotechnology and Bioengineering,2009,104:471-482.
    34. Balan V, Sousa LD, Chundawat SPS, Vismeh R, Jones AD, Dale BE. Mushroom spent straw:a potential substrate for an ethanol-based biorefinery[J]. Journal of Industrial Microbiology and Biotechnology,2008,35:293-301.
    35. Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi[J]. FEMS Microbiology Ecology,2004,50:245-253.
    36. BeheraBK, AroraM, SharmaDK,1996. Scanning electron microscopic (SEM)studies on structural architecture of lignocellulosic materials of calotropisprocera during its processing forsaccharification[J]. Bioresource Technology,58:241-245
    37. Beldman G, Voragen AGJ, Rombouts FM, Searle-van Leeuwen MF, Pilnik W. Adsorptionand kinetic behaviour of purified endoglucanases and exoglucanases from Trichodermaviride[J].Biotechnology and Bioengineering,1987,30:251-257.
    38. Ben YS, Mechichi T, Sayadi S. Purification and characterization of the laccase secreted bythe white rot fungus Perenniporia tephropora and its rolein the decolourization of syntheticdyes[J]. Journal of Applied Microbiology,2007,102(4):1033-1042.
    39. Blanchette RA. Screening wood decayed by white-rot fungi for preferential lignin degradation [J].Applied Environmental Microbiology,1984,48(3):647-653.
    40. Blanchette RA, Bumes TA, Eerdmans MM. Evaluating isolates of Phanerochraete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping progress [J]. Holzforschung,1992,46(2):109-115.
    41. Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE. Cell wall alterations inloblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora[J].Journal of Biotechnology,1997,53:203-213.
    42. Blanchette RA. Delignication by wood-decayfungi[J]. Annual Review of Phytopathology, 1991,29:381-398.
    43. Boddy L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology,2000,31:185-194.
    44. BornemanWS, Hartley RD, MorrisonWH, Akin DE, Ljungdahl LG. Feruloyl and p-coumaroylesterase from anaerobic fungi in relation to plant cell wall degradation[J]. Applied Environmental Microbiology,1990,3:345-351.
    45. Box GP, Behnken DW. Some new three level design for the study ofquantitative variables[J]. Technometrics,1960,2:456-475.
    46. Bozell JJ.Connecting biomass and petroleum processing with a chemical bridge[J]. Science,2010,329:522-523.
    47. Brandt A, Ray MJ, To TQ, Leak DJ,Murphy RJ, WeltonT. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures[J]. Green Chemistry,2011,13, 2489-2499.
    48. Camassola M, Dillon AJP. Biological pre-treatment of sugar canebagasse for the production of cellulases and xylanases by Penicilliumechinulatum[J].Industrial Crops and Products,2009,29:642-647.
    49. Carmona R, Lienqueo ME, Salazar O, Garcia A. Bioenergy Ⅱ:biologicalpretreatmentwith fungi as a tool for improvement of the enzymaticsaccharification of Eucalyptus globulus Labill to obtain bioethanol[J]. International Journal of Chemical Reactor Engineering, 2009,7:A77
    50. Chen Y, Sharma-Shivappa R, Chen C. Ensiling agricultural residues for bioethanolproduction[J]. Appllied Biochemistry Biotechnology,2007,143:80-92.
    51. Cheng G, Varanasi P, Li CL, LiuHB, MelnichenkoYB, SimmonsBA, Kent MS,Singh S. Transition of cellulose crystalline ctructure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis[J]. Biomacromolecules,2011,12:933-941.
    52. Chi Y, Hatakka A, Maijala P. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes?[J]. International Biodeteriation and Biodegradation,2007,59:32-39.
    53. Chundawat SPS, Donohoe BS, Leonardo CS, Thomas E, Umesh P. Agarwal, Fachuang L,Ralph J,Michael E, Himmel,Balanab V, Dale BE. Multi-scale visualization and characterization oflignocellulosic plant cell wall deconstruction during thermochemical pretreatment[J]. Energy& Environmental Science,2011,4(3):973-984.
    54. Cohen R, Suzuki M, Hammel KE.Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum[J]. Appllied Environmental Microbiology,2005,71:2412-2417.
    55. Cosgrove DJ.Growth of the plant cell wall [J]. Nature Reviews Molecular Cell Biology, 2005,6:850-861.
    56. Cullen D, Kersten PJ. Enzymology and molecular biology of lignin degradation. In:BramblR, Marzluf GA, editors. The Mycota Ⅲ. Biochemistry and molecularbiology. Berlin-Heidelberg:Springer-Verlag,2004,249-273.
    57. Dadi AP, Schall CA, Varanasi S. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment [J]. Appllied Biochemistry and Biotechnology, 2007,407-421.
    58. Dai YC, Cui BK, Yuan HS, Li BD. Pathogenic wood-decaying fungi in China[J]. ForestPathology,2007,37(2):105-120.
    59. Dai YC, Qin GF, Xu MQ. The forest pathogens of root and butt rot in Northeast China[J].Forest Research,2000,13(1):15-22.
    60. Dai YC, Yang ZL. A revised checklist of medicinal fungi in China[J]. Mycosystema, 2008,27(6):801-824.
    61. Dai YC, Zhou LW, Yang ZL, Wen HA, Tolgor, Li TH. A revised checklist of edible fungi inChina[J]. Mycosystema,2010,29(1):1-21.
    62. Dai YC, Zhuang JY.Numbers of fungal species hitherto known in China[J].Mycosystema, 2010,29:625-628.
    63. Dai YC. A checklist of polypores in China[J]. Mycosystema,2009,28(3):315-327.
    64. Dai YC. A revised checklist of corticioid and hydnoid fungi in China for 2010[J]. Mycoscience,2011,52,69-79.
    65. Dai YC. Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience,2012,53:49-80.
    66. Dai YC.Species diversity of wood-decaying fungi in Northeast China[J].Mycosystema, 2010,29:801-818.
    67. Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections[J]. Energy Conversion Management,2008,49:2106-2116.
    68. Derkacheva O, Sukhov D. Investigation of Lignins by FTIR Spectroscopy[M]. Weinheim, Germany:Wiley-VCH Verlag,2008,61-68.
    69. Deswal D, Khasa YP, Kuhad RC. Optimization of cellulase production by a brown rot fungus Fomitopsissp.RCK2010 under solid state fermentation[J].Bioresource Technology,2011,102:6065-6072.
    70. Dewey D, Ryu Y, Mandels M. Cellulases:biosynthesis and applications [J]. Enzyme Microbiology Technology,1998,2:91-101.
    71. Dhouib A, Aloui F, Hamad N, Sayadi S. Pilot-plant treatment of olivemill wastewaters by Phanerochaete chrysosporium coupled to anaerobicdigestion and ultrafi ltration[J]. Process Biochemistry,2006,41:159-167.
    72. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing lignin coalescence and migration through maize cell wallsfollowing thermochemical pretreatment[J].Biotechnology and Bioengneering,2008,101:913-925.
    73. Donohoe BS, Vinzant TB, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier N, Ladisch MR, Falls M, Holtzapple MT, Sierra-Ramirez R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Hames B, ThomasSR, Warner RE. Surface and ultrastructural characterization of raw and pretreated switchgrass[J]. Bioresource Technology,2011,102:11097-11104.
    74. Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F. Cellobiosedehydrogenaseis essential for wood invasion and nonessential for kraft pulp delignificationby Trametes versicolor[J]. Enzyme Microbiology Technology,2001, 29:478-489.
    75. Elissentche JP, Ferraz A, et al. Biodegradation of Chilean native wood species, Drimys winteri and Nothofagus dombeyi, by Ganoderma austral [J]. World Journal of Microbiology and Biotechnology,2001,17:577-581.
    76. Enoki M, Watanabe T, Nakagame S, Koller K, Messner K, Honda Y. Extracellularlipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora[J].FEMS Microbiol Lett,1999,180:205-211.
    77. Eriksson K, Blanchette RA, Ander P. Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, New York,1990, p.397.
    78. Esteghlalian AR, Bilodeau M, Mansfi eld SD, Saddler JN. Do enzymatichydrolyzability and simons stain reflect the changes in the accessibilityof lignocellulosic substrates tocellulase enzymes? [J]Biotechnology Progress,2001,17:1049-1054.
    79. Esterbauer H, Steined W, Labudova I, Herman A, Hayn M. Production of Thrichodermacellulase in laboratory and pilot scale [J]. Bioresource Technology,1991, 36:51-65.
    80. Fackler K, Gradinger C, Hinterstoisser B. Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy [J]. Enzyme and Microbial Technology,2006,39(7):1476-1483.
    81. Faison BL, Kirt TK. Relationship between lignin degradation and production of reducedoxygen species by Phanerochaete chrysosporium[J]. Appllied Environmental Microbiology,1983,46:1140-1145.
    82. FalkehagSI. Lignin in materials[J]. Applied Polymer Symposium,1975,28:247-257.
    83. Fan LT, Gharpuray MM, Lee YH.In:Cellulose hydrolysis biotechnology monographs. Springer.,Berlin,1987,pp.57.
    84. Fanaei MA, Vaziri BM. Modeling of temperature gradients in packed-bed solid-statebioreactors[J]. Chemistryand Engineer Process,2009,48:446-451.
    85. Fernandez-Fueyo E, Ruiz-Duenas FJ, Ferreira P, Floudas D, Hibbett DS,Canessa P,Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R,Tello M, Honda Y, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J,Hammel KE, St John FJ, Vanden Wymelenberg A, Sabat G, SplinterBonDurantS, Syed K, Yadav JS,Doddapaneni H, Subramanian V, LavinJL, Oguiza JA, Perez G, Pisabarro AG,Ramirez L, Santoyo F, Master E,Coutinho PM, Henrissat B, Lombard V, Magnuson JK, Kues U, Hori C,Igarashi K, Samejima M, Held BW, Barry KW, LaButti KM, Lapidus A,Lindquist EA, Lucas SM, Riley R, Salamov AA, Hoffmeister D, Schwenk D,Hadar Y, Yarden O, de Vries RP, Wiebenga A, Stenlid J, Eastwood D,Grigoriev IV, Berka RM, Blanchette RA, Kersten P, Martinez AT, Vicuna R,Cullen D.Comparative genomics of Ceriporiopsis subvermispora andPhanerochaete chrysosporiumprovide insight into selective ligninolysis[J]. Proc.Natl. Acad. Sci. USA.,2012,109:5458-5463.
    86. Ferraz A, Cordova AM, Machuca A. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis[J]. Enzyme and Microbial Technology,2003,32(1):59-65.
    87. Ferraz A, Rodriguez J, et al. Biodegradation of Pinus radiata softwood by white- and brown-rot fungi [J]. World Journal of Microbiology & Biotechnology,2001,17(1):31-34.
    88. Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP. A modular cinnamoylester hydrolase from the anaerobic fungus Piromyces equi acts synergistically withxylanaseand is part of a multiprotein cellulose-binding cellulase-hemicellulasecomplex[J]. Biochemistry Journal,1999,343:215-224.
    89. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. A biorefinery processing perspective:Treatment of lignocellulosic materials forthe production of value-added products[J]. Bioresource Technology,2010,101:8915-8922.
    90. Flournoy DS, Paul JA, Kirk TK, Highley TL. Changes in the size and volume of pores insweetgum wood during simultaneous rot by Phanerochaete chrysosporium Burds[J].Holzforschung,1993,47:297-301.
    91. Galbe M, Zacchi G.Pre-treatment of Lignocellulosic Materialsfor Efficient Bioethanol Production.Biofuels.Springer-Verlag, BerlinHeidelberg,2007, pp.41-65.
    92. Galkin S, Vares T, Kalsi M, Hatakka A. Production of organic acids by different white-rotfungias detected using capillary zone electrophoresis[J]. Biotechnol Tech,1998, 12:267-271.
    93. Giles RL, Galloway ER, Elliott GD, Matthew WP. Two-stage fungal biopulping for improved enzymatic hydrolysis of wood[J]. Bioresource Technology,2011,102:8011-8016.
    94. Gold MH, Youngs HL, Gelpke MD. Manganese peroxidase[J]. Metal Ions in Biological Systems,2000,37:559-586.
    95. Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F,Krishnamurthy S, Jun L, XuG. Low molecular weightchelators and phenolic compounds isolated from wood decayfungi and their role in the fungal biodegradation of wood [J]. Journal of Biotechnology,1997,53:133-162.
    96. Goodell B, Qian Y, Jellison J, Richard M, Qi W. Lignocelluloseoxidation by lowmolecular weight metal-binding compoundsisolated from wood degrading fungi: acomparison of brown rotand white rot systems and the potential application ofchelatormediatedFenton reactions[J]. Progress in Biotechnology,2002,21:37-47.
    97. Goyal A, Ghosh B, Eveleig D. Characterization of fungal cellulases[J]. Bioresource Technology,1991,36:37-50.
    98. Guerra A, Mendonca R, Ferraz A. Characterization of the residual lignins in Pinus taedabiodegraded by Ceriporiopsis subvermispora by using in situ CuO oxidation andDFRC methods[J]. Holzforschung,2002,56:157-160.
    99. Guerra A, Mendonca R, Ferraz A. Molecular weight distribution of wood componentsextracted from Pinus taeda biotreated by Ceriporiopsis subvermispora[J]. Enzyme andMicrobialTechnology,2003,33:12-18.
    100. Guillen F, Martinez AT, Martinez MJ. Substrate specificity and properties of the aryl-alcoholoxidase fromthe ligninolytic fungus Pleurotus eryngii[J]. European Journal of Biochemistry,1992,209:603-611.
    101. Guillen F, Martinez MJ, Munoz C, Martinez AT. Quinone redox cycling in the ligninolyticfungus Pleurotus eryngii leading to extracellular production of superoxide anionradical[J].Arch Biochemistry and Biophysic,1997,339:190-199.
    102. GusakovAV,SinitsynAP.Atheoreticalanalysisofcellulase productinhibition:effectofcellulasebindingconstant,enzyme/substrateratio,and β-glucosidaseactivityonthe inhibition pattern[J]. BiotechnologyandBioengineering, 1992,40:663-671.
    103. Gutierrez A, Caramelo L, Prieto A, Martinez MJ, Martinez AT. Anisaldehyde productionandaryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of thegenus Pleurotus[J]. Appllied Environmental Microbiology,1994,60:1783-1788.
    104. Gutierrez A, Del Rio JC, Martinez-Inigo MJ, Martinez MJ, Martinez AT. Production of newunsaturated lipids during wood decay by ligninolytic basidiomycetes[J]. Appllied EnvironmentalMicrobiology,2002,68:1344-1350.
    105. Gutierrez A, Rencoret J, Edith M, Cadena, AR, Dorothee B,Jose C, Martinez AT.Demonstration of laccase-based removal of lignin from woodand non-wood plant feedstocks[J]. Bioresource Technology,2012,119:114-122.
    106. Gutierrez-Correa M, Tengerdy RP. Production of cellulase onsugar cane bagasse by fungal mixed culture solid substrate fermentation [J]. Biotechnology Letters,1997, 19:665-667.
    107. Haider MA, Pakshirajan K. Screening and optimization of mediaconstituents for enhancing lipolytic activity by a soil microorganismusing statistically designed experiments. Appllied Biochemistry and Biotechnology,2007,141:377-390.
    108. Hakala TK, Maijala P, Konn J, et al. Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood [J]. Enzyme and Microbial Technology,2004,34:255-263
    109. Hammel KE. Fungal degradation of lignin. In:Cadisch G, Giller KE, editors. Plant litterquality and decomposition[J]. CAB-International,1997,33-46.
    110. Hatakka A. Biodegradation of lignin[M]. Weinheim:Wiley-VCH,2001:129-803.
    111. Hatakka AI. Pretreatment of wheat straw by white-rot fungi for enzymic saccharificationofcellulose[J]. Appllied Environmental Microbiology,1983,18:350-357.
    112. Henriksson G, Johansson G, Pettersson G. A critical review of cellobiose dehydrogenases[J]. Journal of Biotechnology,2000,78:93-113.
    113. Hibbett DS, Thorn RG. Basidiomycota:Homobasidiomycetes. In: McLaughlinDJ,McLaughlinEG, LemkePA (eds).Systematics and evolution[M].Berlin: SpringerVerlag,2001,121-168.
    114. Hideno A, Aoyagi H, Isobe S, Tanaka H. Utilization of spent sawdustmatrix after cultivation of Grifola frondosa as substrate for ethanol productionby simultaneous saccharifi cation and fermentation [J]. Food Science Technology Research, 2007,13:111-117.
    115. Hietala AM, Nagy NE, Steffenrem A, Kvaalen H, Fossdal CG, Solheim H. Spatial patterns in hyphal growth and substrate exploitation within Norway spruce stems colonized by the pathogenic white-rot fungus Heterobasidion parviporum[J]. Appllied Environmental Microbiology,2009,75:4069-4078.
    116. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance:Engineering plants and enzymes for biofuels production [J]. Science,2007,315:804-807.
    117. Himmel ME, Ruth MF, Wyman CE. Cellulase for commodity productsfrom cellulosicbiomass[J].Current Opinion in Biotechnology,1999,10:358-364.
    118. Holmgren M, Sellstedt A. Identifi cation of white-rot and soft-rot fungiincreasing ethanol production from spent sulfite liquor in co-culture withSaccharomyces cerevisiae[J]. Journal of Appllied Microbiology,2008,105:134-140.
    119. HoltzappleMT,CaramHS,HumphreyAE.TheHCH-lmodel of enzymaticcellulosehydrolysis[J].BiotechnologyandBioengineering,1984,26:775-780.
    120. HuberGW, DumesicJA. An overview of aqueous-phase catalytic processes for production ofhydrogen and alkanes in a biorefinery[J]. Catalysis Today,2006,111:119-132.
    121. HuberGW, IborraS, CormaA. Synthesis of transportation fuels from biomass:
    chemistry,catalysts, and engineering[J]. Chemical Reviews,2006,106:4044-4098.
    122. Hwang SS, Lee SJ, Kim HK, Ka JO, Kim KJ, Song HG. Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi[J]. Journal of Microbiology Biotechnology,2008,18:1819-1825.
    123. Hyde SM, Wood PM. A mechanism for production of hydroxylradicals by the brown-rot fungus Coniophora puteana:Fe (Ⅲ) reduction by cellobiose dehydrogenase and Fe (Ⅱ)oxidation at a distance from the hyphae[J]. Microbiology,1997,143:259-266.
    124. Iakovlev A, Stenlid J. Spatiotemporal patterns of laccase activity in interacting mycelia of wood-decaying basidiomycete fungi[J]. Microbial Ecology,2000,39:236-245.
    125. Ibarra D, Romero J, Martinez MJ, Martinez AT, Camarero S. Exploring the enzymaticparameters for optimal delignification of eucalypt pulp by laccase-mediator[J]. Enzymeand Microbial Technology,2006,39:1319-1327.
    126. Iiyama K, Lam TBT, Stone BA. Covalent cross-links in the cell wall [J]. Plant Physiology,1994,104:315-320.
    127. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi [J]. Journal of Biotechnology,2003,103(3):273-280.
    128. Jarosz-Wilkoazka A, Graz M. Organic acids production by white rot Basidiomycetes in thepresence of metallic oxides[J]. Canadian Journal ofMicrobiology,2006,52(8):779-785.
    129. Jeffries TW. Biodegradation of lignin and hemicelluloses. In:Ratledge C, editor.Biochemistry of microbial degradation. Dordrecht:Kluwer,1994,233-277.
    130. Jeffries TW. Physical, chemical and biochemical considerations in the biologicaldegradation of wood. In:Kennedy JF, Phillips OG, William AP, editors. Wood andcellulosics:industrial utilization biotechnology, structure and propietaries. Chichester,West Sussex, England:Ellis Harwood Ltd.,1987, Chapter 24.
    131. Jensen Jr KA, BaoW, Kawai S, Srebotnik E, Hammel HE. Manganese-dependent cleavageof nonphenolic lignin structure by Ceriporipsis subvermispora in the absence ofligninperoxidase[J]. Appllied Environmental Microbiology,1996,62:3679-3686.
    132. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, JohnsonDK. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility [J]. Biotechnology and Bioengineering,2007,98,112-122.
    133. Joergensen RG. Ergosterol and microbial biomass in the rhizosphere of grassland soils[J].Soil Biology and Biochemistry,2000,32:647-652.
    134. Jonathan S. Schilling, Jun Ai, Robert A. Blanchette, Shona M. Duncan, Timothy R.Filley,Ulrike W. Tschirner. Lignocellulose modifications by brown rot fungi and theireffectsaspretreatments on cellulolysis[J]. Bioresource Technology,2012,114:365-369.
    135. Kadimaliev DA, Revin VV, Atykyan NA, Samuilov VD. Effect of wood modification on ligninconsumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus[J]. Appllied Biochemistry and Microbiology,2003,39:488-492.
    136. Kalmis E, Yasa I, Kalyoncu F, Pazarbasi B, Kocyigit A. Ligninolyticenzyme activities in mycelium of some wild and commercial mushrooms [J].African Journalof Biotechnology,2008,7:4314-4320.
    137. Kapich AN, Jensen KA, Hammel KE. Peroxyl radicals are potential agents of ligninbiodegradation[J].FEBS Letter,1999,461:115-119.
    138. Keller FA, Hamilton JE, Nguyen QA. Microbial pretreatment of biomass-Potential for reducing severity of thermochemical biomass pretreatment[J]. Appllied Biochemistry and Microbiology,2003,105:27-41.
    139. Kerem Z, Jensen KA, Hammel KE. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum:evidence for an extracellular hydroquinone-driven fenton reaction[J]. FEBS Letter,1999,446:49-54
    140. Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading BasidiomycetePhanerochaete chrysosporium[J]. Forest Genetic Biology,2007,44:77-87.
    141. Keyser P, Kirt TK, Zeikus JG. Ligninolytic enzyme system of Phanerochaete chrysosporium:synthesized in the absence of lignin in response to nitrogen starvation [J]. Journal of Bacteriology,1978,135:790-797.
    142. Khazaal KA, Owen E, Dodson AP, Palmer J, Harvey P. Treatment of barley straw withligninase-effect on activity and fate of the enzyme shortly after being added tostraw[J]. Animal Feed Scienceand Technology,1993,41:15-21.
    143. Kim TH, Lee YY. Pretreatment and fractionation of corn stover by ammonia recycle percolation process[J]. Bioresource Technology,2005,96:2007-2013.
    144. Kim Y, Hendrickson R, Mosier NS, Ladisch MR,. Enzyme hydrolysis and ethanolfermentation of liquid hot water (LHW) and AFEX pretreated distiller's grainsat high solids loadings[J]. BioresourceTechnology,2008,99:5206-5215.
    145. Kim Y, Mosier NS, Ladisch MR. Enzymatic digestion of liquid hot water pretreatedhybrid poplar[J]. BiotechnologyProgress,2009,25:340-348.
    146. Kirk TK, Burgess RR, Koning JW.Use of Fungi in Pulping Wood:An Overview of Biopulping Research. Frontier Proceedings of IndustrialMycology symposium, Madison, WI. Chapman & Hall, New York, USA,1992, pp.99-111.
    147. Kirk TK, Farrell RL. Enzymatic "combustion":the microbial degradation of lignin[J]. Annual Review of Microbiology,1987,41:465-505.
    148. Kirk TK, Connors WJ, Zeikus JG. Requirement for a growth substrate during lignindecomposition by two wood-rotting fungi[J]. Appllied Environmental Microbiology,1976,32:192-194.
    149. Kirk TK, Cullen D. Enzymology and molecular genetics of wood degradation by whiterotfungi. In:Young RA, Akhtar M, editors. Environmentally friendly technologiesfor the pulpand paper industry. New York:John Wiley & Sons,1998,273-308.
    150. Kirk TK, Tien M, Kersten PJ, Mozuch MD, Kalyanaraman B. Ligninase of Phanerochaetechrysosporium-mechanism of its degradation of the nonphenolic arylglycerolbeta-aryl ether substructure of lignin[J]. Biochemistry Journal,1986, 236:279-287.
    151. Krajick K. Defending deadwood[J]. Science,2001,293(5535):1579-1581.
    152. Kuhad RC, Singh A, Ericsson KEL. Microorganisms and enzymes involved in thedegradation of plant fiber cell walls[J]. Advances in Biochemical Engineering Biotechnology,1997,57:45-125.
    153. Kuhar S, Nair LM, Kuhad RC. Pre-treatment of lignocellulosic materialwith fungi capable of higher lignin degradation and lower carbohydratedegradation improves substrate acid hydrolysis and the eventual conversionto ethanol[J]. Canadian Journal of Microbiology,2008,54:305-313.
    154. Kumar P, Barrett DM, Delwiche MJ, Stroeve P.Methods for pretreatmentof lignocellulosic biomass for effi cient hydrolysis and biofuelproduction[J].Industrial Engineering Chemistry Research,2009,48:3713-3729.
    155. Kumar R, Wyman CE. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments[J]. Biotechnology Bioengineering,2009,103: 252-267.
    156. Ladisch M., Kohlmann K, Westgate P, Weil J, Yang Y.Processes for treating cellulosic material. US Patent 5,1998,846-787.
    157. Laine JE, Goring DAI. Influence of ultrasonic irradiation on the properties of cellulosicfibers[J]. Cellulose Chemistry Technology,1977,11:561-567.
    158. Leatham GF, Myers GC, Wegner H. Biomechanical pulping of aspen chips:energy savings resulting from differentfungal treatments [J]. Tappi Journal,1990,73(5):197-200.
    159. Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M. Biologicalpre-treatment of softwood Pinus densifl or a by three white rot fungi[J]. Journal ofMicrobiology, 2007,45:485-491.
    160. Lee JW, Kim HY,Koo BW,Choi DH, Kwong M, Choi IG. Enzymatic saccharification of biologically pretreated Pinus densiflorausing enzymes from brown rot fungi [J] Journal ofBioscience and Bioengineering,2008,106(2):162-167.
    161. Leonowicsz A, Matuszewska A, Luterek J, Ziegenhagen D,Wojtas-Wasilewska M, Cho NS. Biodegradation of lignin by white rot fungi[J]. Fungal Geneticsand Biology,1999, 27:175-85.
    162. Li CL, Cheng G, Balan V, Michael SK, MarkusOng, Chundawat SPS, SousaLC, Melnichenko YB, Dale Bruce, SimmonsBA, Singh S. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover[J]. Bioresource Technology,2011,102:6928-6936.
    163. Li CL, Knierim B, Manisseri C, AroraR, SchellerHV, Auer M, Vogel KP, Simmons BA, SinghSeema. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification[J]. Bioresource Technology,2010,101:4900-4906.
    164. Li L, Li XZ, Tang WZ, Zhao J, Qu YB. Screening of a fungus capableof powerful and selective delignifi cation on wheat straw[J]. Letters in Appllied Microbiology,2008, 47:415-420.
    165. Li WY,Sun N, Stoner B,Jiang XY,Lu XM, RogersRD,. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin[J]. Green Chemistry,2011,13:2038-2047.
    166. Li X, Kondo R, Sakai K. Studies on hypersaline-tolerant white-rot fungi I:screening of lignin-degrading fungi in hypersaline conditions [J]. Journal of Wood Science,2002, 48(21):147-152.
    167. Lindenfelser LA, Detroy RW, Ramstack JM, Worden KA. Biological modification of thelignin and cellulose components of wheat straw by Pleurotus ostreatus[J]. Developments in IndustrialMicrobiology,1979,20:541-551.
    168. Liu C, Wyman CE. Impact of fluid velocity on hot wateronly pretreatment of corn stover in a flowthrough reactor[J]. ApplliedBiochemistry and Biotechnology,2004a, 113:977-987.
    169. Liu C, Wyman CE. The effect of flow rate of compressed hotwater on xylan, lignin, and total mass removal from corn stover[J].Industrial Engineering Chemistry Research, 2003,42:5409-5416.
    170. Liu C, Wyman CE. The effect of flow rate of very dilutesulfuric acid on xylan, lignin, and total mass removal from cornstover[J]. Industrial Engineering Chemistry Research, 2004b,86:88-95.
    171. Liu CG, Wyman CE. Partial flow of compressed-hot water through cornstover to enhance hemicellulose sugar recovery and enzymatic digestibility ofcellulose[J].Bioresource Technology,2005,96:1978-1985.
    172. Liu CG, Wyman CE. The enhancement of xylose monomer and xylotriosedegradation by inorganic salts in aqueous solutions at 180℃[J]. Carbohydrate Research2006,341:2550-2556.
    173. Liu L, Sun J, Cai C, Wang S, Pei H, Zhang J. Corn stover pretreatment byinorganic salts and its effects on hemicellulose and cellulose degradation[J].Bioresource Technology, 2009a,100:5865-5871.
    174. Liu L, Sun J, Li M, Wang S, Pei H, Zhang J. Enhanced enzymatichydrolysis and structural features of corn stover by FeCl3 pretreatment[J].Bioresource Technology, 2009b,100:5853-5858.
    175. Locci E, Laconi S, Pompei R, Scano P, Lai A, Marincola FC. Wheat bran biodegradation byPleurotus ostreatus:a solid-state Carbon-13 NMR study[J]. Bioresource Technology,2008,99:4279-4284.
    176. Lu JL, Zhou PJ. Optimization of microwave-assisted FeCl3 pretreatmentconditions of rice straw and utilization of Trichoderma virideand Bacilluspumilusfor production of reducing sugars [J]. Bioresource Technology,2011,102:6966-6971.
    177. Lucia L A. Lignocellulosic biomass:A potential feedstock to replace petroleum[J]. BioResources,2008,3(4):981-982.
    178. Lynd L, Cushman JH, Nichols RJ,WymanCE. Fuel ethanol from cellulosic biomass[J]. Science,1991,15:1318-1323.
    179. Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass[J]. Annual Review of Energyand Environment,1996,21:403-465.
    180. Ma FY, Wang JJ, Zeng YL, Yu HB, Yang Y, Zhang XY.Influence of the co-fungal treatment with two white rot fungi on the lignocellulosic degradation and thermogravimetry of corn stover[J]. Process Biochemistry,2011,46:1767-1773.
    181. Ma FY, Yang N, Xu CY, Yu HB, Wu JG, Zhang XY. Combination ofbiological pre-treatment with mild acid pre-treatment for enzymatichydrolysis and ethanol production from water hyacinth[J]. BioresourceTechnol,2010,101:9600-9604.
    182. Machuca A, Ferraz A. Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium [J]. Enzyme and Microbial Technology,2001,29:386-391.
    183. Majumder A, Singh A, Goyal A. Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization [J]. Carbohydrate Polymer,2009,75:50-156.
    184. Malherbe S, Cloete TE. Lignocellulose biodegradation:fundamentals and applications [J].Reviews in Environmental Scienceand Bio/Technology,2002,1:105-114.
    185. Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F.Biodegradation of lignocellulosics:microbial, chemical, and enzymatic aspects ofthe fungal attack of lignin[J]. Intr Microbiol,2005,8:195-204.
    186. Martinez AT. Molecular biology and structure-function of lignin-degrading hemeperoxidases[J].Enzyme and Microbial Technology,2002,30:425-432.
    187. Martin-Sampedro R, Eugenio ME, Garci'JC F, Lopez JC, Villar MJ. Diaz. Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus[J]. Biotechnology and Bioengineering,2012,42:97-106.
    188. Mata G, Hernandez D, Andreu L. Changes in lignocellulolytic enzyme activities in six Pleurotusspp. strains cultivated on coffee pulp in confrontation with Trichodermaspp[J]. World Journal of Microbiology and Biotechnology,2005,21:143-150.
    189. Messner K, Koller K, Wall MB, Akhtar M, Scott GM. Fungal treatment or wood chipsfor chemical pulping. In:Young RA, Akhtar M, editors. Environmental friendlytechnologies forthe pulp and paper industry. New York:Wiley, Inc.,1998,385-419.
    190. Meunier-Goddik L, Penner MH. Enzyme-catalyzed saccharification ofmodel cellulose in the presence of lignacious residues[J]. Journal of Agriculturaland FoodChemistry 1999,47:346-351.
    191. Miller GL. Use of dinitrosalicyclic acid reagent for determination of reducing sugar[J].Analytical Chemistry,1959,31:426-428.
    192. Mitchell DA, Krieger N, Berovic M. Solid-state fermentation bioreactors: fundamentaldesign and operation. New York:Springer-Verlag,2006.
    193. Mitchell DA, Krieger N, Stuart DM, Pandey A. New developments in solid-statefermentation:Ⅱ. Rational approaches to the design, operation and scale-up of bioreactors[J].Process Biochemistry,2000,35:1211-1225.
    194. Moiser N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass[J].Bioresource Technology,2005,96:673-686.
    195. Monrroy M, Ortegab I, Ramirezb M, Baezaa J, Freer J.Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis[J]. Enzyme and Microbial Technology,2011,49:472-477.
    196. MooneyCA, MansfieldSD, TouhyMG,Saddle JN.Theeffect of initial pore volume and lignin content on the enzymatichydrolysisof softwoods[T].Bioresource Technology, 1998,64:113-119.
    197. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC,MCCann KS, Melville K, Morin PJ, Nadelhoffer K,Rosemond AD, Post DM, Sabo JL, ScowKM, Vanni MJ, Wall DH. Detritus, trophic dynamics and biodiversity [J]. Ecology Letters,2004,7(7):584-600.
    198. Morrison IM. The effect of physical and chemical treatments onthe degradation of wheat and barley straws by rumen liquor-pepsinand pepsin-cellulase systems[J]. Journal of the Science of Food and Agriculture,1983,34:1323-1329.
    199. Mosier NS, Hendrickson R, Brewer M, et al. Industrialscale-up of pH-controlled liquid hot water pretreatment of corn fiberfor fuel ethanol production [J]. Appllied Biochemistry and Biotechnology,2005a,125,77-97.
    200. Munoz C, Mendonc R, Baeza J, Berlin A, Saddler J, Freer J.Bioethanol production from bioorganosolv pulps of Pinus radiata andAcacia dealbata[J].Journal of Chemical Technology and Biotechnology,2007,82:767-774.
    201. Nishida T, Kashino Y, Mimura A, et al.Lignin biodegradation by wood-rotting fungi. I. Screening of lignin-degrading fungi[J]. Mokuzai Gakkaishi,1988,34:530-536.
    202. NREL (National Renewable Energy Laboratory), technical report:determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks, NREL/TP-580-28893,2000.
    203. O'Dwyer JP, Zhu L, Granda CB, Holtzapple MT. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 model:inhibition pattern, degree of inhibition, validity of simplified HCH-1 model[J]. Bioresource Technology,2007,98: 2969-2977.
    204. Olofsson K, Wiman M, Liden G. Controlled feeding of cellulases improvesconversion of xylose in simultaneous saccharification and cofermentation for bioethanol production [J]. Journal of Biotechnology,2010,145:168-175.
    205. Palonen H, Viikari L. Role of oxidative enzymatic treatments on enzymatic hydrolysis ofsoftwood[J]. Biotechnology and Bioengineering,2004,86:550-557.
    206. PanX, Xie D, GilkesN, Gregg DJ, Saddler JN. Strategies toenhance the enzymatic hydrolysis of pretreated softwood withhigh residual lignin content[J].Appllied Biochemistry and Biotechnology,2005,124:1069-1079.
    207. Parani K, Eyini M. Effect of co-fungal treatment on biodegradation of coffee pulp waste in solid state fermentation[J]. Asian Journal Experimental Biology and Science, 2010,1:352-359.
    208. Perez J, Munoz-Dorado J, De-la-Rubia T, Martinez J. Biodegradation and biologicaltreatments of cellulose, hemicellulose and lignin:an overview[J]. International Microbiology,2002,5:53-63.
    209. Perez JA, Ballesteros I, Ballesteros M, Saez F, Negro MJ, Manzanares P.Optimizing liquid hot water pretreatment conditions to enhance sugar recoveryfrom wheat straw for fuel-ethanol production[J].Fuel,2008,87:3640-3647.
    210. Perez JA, Gonzalez A, Oliva JM,Ballesteros I, Manzanares P. Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor[J].Journal of Chemical Technology and Biotechnology,2007,' 82:929-938.
    211. Perez V, Detroya MT, Martinez AT. Invitro decay of Aextoxicon punctatum and Fagus sylvatica woods by white andbrown-rot fungi [J]. Wood Science and Technology,1993, 27(4):295-307.
    212. Plackett RL, Burman JP. The design of optimummultifactorialexperiments[J].Biometrika,1946,33:305-325.
    213. Pointing SB, Pelling AL, Smith GJD, Hyde KD, Reddy CA. Screening of basidiomycetes andxylariaceous fungi for lignin peroxidase andlaccase gene-specific sequences[J].MycologicalResearch,2005,109(1):115-124.
    214. Rabinovich ML, Bolobova AV, Vasil'chenko. Fungal decomposition of natural aromaticstructures and xenobiotics:a review[J]. Appllied Biochemistry and Microbiology,2004,40:1-17.
    215. Rabinovich ML, Melnik MS, Bolobova AV. Microbial cellulases:a review[J]. Appllied Biochemistry and Microbiology,2002a,38:305-321.
    216. Rabinovich ML, Melnik MS, Bolobova AV. The structure and mechanism of action ofcellulolytic enzymes[J]. Biochemistry-Moscow,2002b,68:850-871.
    217. RagauskasAJ, WilliamsCK, DavisonBH, BritovsekG, CairneyJ, EckertCA, Frederick WJ,HallettJP, LeakDJ, LiottaCL, MielenzJR, MurphyR, TemplerR, TschaplinskiT. The pathforward forbiofuels and biomaterials[J]. Science,2006,311:484-489.
    218. Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R. lip-like genes inPhanerochaete sordida, and Ceriporiopsis subvermispora, white rot fungi with no detectablelignin peroxidase activity [J]. Appllied Environmental Microbiology,1996, 62:2660-2663.
    219. RalphJ, LundquistK, BrunowG, LuFC, KimH, SchatzPF, MaritaJM, HatfieldRD, RalphSA, ChrtensenJH, BoerjanW. Lignins:natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids[J]. Phytochemistry Reviews,2004,3:29-60.
    220. Ramos J, Rojas T, Navarro F, Davalos F, Sanjuan RN, Rutiaga J, et al. Enzymatic and fungal treatments on sugarcane bagasse for the production of mechanical pulps [J]. Journal of Agricultural and Food Chemistry,2004,52:5057-5062.
    221. Rayner ADM, Boddy L. Fungal decompositionof wood:Its biology and ecology[M].Chichester, UK:JohnWileyand Sons,1988.
    222. Reid ID. Biological delignification of aspen wood by solid-state fermentation with thewhite-rot fungus Merulius tremellosus[J]. Appllied Environmental Microbiology, 1985,50:133-139.
    223. Reid ID. Optimization of solid-state fermentation for selective delignification of aspenwoodwith Phlebia tremellosa[J]. Enzyme and Microbial Technology,1989a, 11:804-809.
    224. Reid ID. Solid-state fermentations for biological delignification[J]. Enzyme and Microbial Technology,1989b,11:786-803.
    225. Rowell MR. Opportunities for lignocellulosic materials and composites. Emergingtechnologies for material and chemicals from biomass:Proceedings of symposium.Washington, DC:American Chemical Society,1992,26-31.
    226. Rusu M, Morseburg K, Gregersen O, Yamakawa A, Liukkonen S. Relation between fibre flexibility and cross-sectional properties[J].Bioresources,2011,6:641-655.
    227. Ruttimann-Johnson C, Salas L, Vicuna R, Kirk TK. Extracellular enzyme production andsynthetic lignin mineralization by Ceriporiopsis subvermispora[J]. Appllied Environmental Microbiology,1993,59:1792-1797.
    228. Samayam IP, Hanson BL, Langan P. Ionic-liquid induced changes incellulose structure associated with enhanced biomass hydrolysis [J]. Biomacromolecules,2011,12:3091-3098.
    229. Samayam IP, Schall CA. Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresource Technology,2010,101:3561-3566.
    230. Sanchez C. Lignocellulosic residues:Biodegradation and bioconversion by fungi[J]. Biotechnology Advance,2009,27:185-194.
    231. Sanchez OJ, Cardona CA. Trends in biotechnological production offuel ethanol from different feedstocks[J].Bioresource Technology,2008,99:5270-5295.
    232. Saratale GD, Chen SD, Lo YC, Saratale RG, Chang JS. Outlook ofbiohydrogen production from lignocellulosic feedstock using dark fermentation-a review[J]. Journal of Sciectific and Industrial Research,2008,67:962-979.
    233. Sarikaya A, Ladisch M. Solid-state fermentation of lignocellulosic plant residues frombrassica napus by Pleurotus ostreatus[J]. Appllied Biochemistryand Biotechnology, 1999,82:1-15.
    234. Sarkar P, Bosneaga E, Auer M. Plant cell walls throughout evolution:towards a molecular understanding of their design principles [J]. Journal of Experimental Botany,2009,60:3615-3635.
    235. Sasaki C, Takada R, Watanabe T et al. Surface carbohydrate analysis and bioethanol production of sugarcane bagasse pretreated with the white rot fungus, Ceriporiopsis subvermispora and microwave hydrothermolysis[J]. Bioresour Technol,2011,102: 9942-9946
    236. Saucedo-Castaneda G, Gutierrezrojas M, Bacquet G, Raimbault M, Viniegragonzalez G.Heat-transfer simulation in solid substrate fermentation. Biotechnology and Bioengineering,1990,35:802-808.
    237. Savoie JM, Mata G. The antagonistic action of Trichodermasp. hyphae to Lentinula edodes hyphae changes lignocellulotytic activities during cultivation in wheat straw[J]. World Journal of Microbiology & Biotechnology,1999,15:369-373.
    238. Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T. Effects of fungal pre-treatment and steam explosion pre-treatment onenzymatic saccharifi cation of plant biomass[J]. Biotechnology and Bioengineering,1995,48:719-724.
    239. Schumtzer M, Schwanninger M, Fackler K, et al. Comparison of methods to evaluate the potential of fungal growth on decay of spruce wood after short-time treatment [J]. International Biodeterioration & Biodegradation,2008,61(4):319-324.
    240. Score AJ, Palfreyman JW, White NA. Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions [J]. International Biodeteriation and Biodegradation,1997,39:225-233.
    241. Scott GM, Akhtar M, Lentz MJ, Swaney R. Engineering, scaleup,and economic aspects of fungal pre-treatment of wood chips.Environmentally Friendly Technologies for the Pulp and Paper Industry.John Wiley & Sons Inc., New York, USA,1998,pp.341-383.
    242. Scott GM, Akhtar M, Swaneyr E, et al. Recent development in biopulping technology at Madison [C] Viikari L, Lantto R. Progress in biotechnology, Vol.21. Biotechnology in the pulp and paper industry:8th ICBPPI Meeting. Amsterdam:Elsevier,2002:61-72.
    243. Sehwarze F, Engels J, Matheck C. Fungal strategies of wood decay in trees[M]. Berlin: Spring-Verlag,1999:22-25.
    244. Seino T, Yoshioka A, Fujiwara M, Chen KL, Erata T, Tabata M. ESR studies of radicalsgenerated by ultrasonic irradiation of lignin solution. An application of the spintrappingmethod[J]. Wood Science and Technology,2001,35:97-106.
    245. Selig A, WeissN, JiY. Laboratory Analytical Procedure (LAP):Enzymatic saccharification of lignocellulosicbiomass. Technical Report:NREL/TP-510-42629. National Renewable Energy Laboratory,2008, Golden, Co, USA.
    246. Selig M, Weiss N and Ji Y.Enzymatic Saccharifi cation ofLignocellulosicBiomass.Techical Report NREL/TP-510-42629. National RenewableEnergy Laboratory, Colorado,2008, pp.1-8.
    247. Selig MJ, Viamajala S, Decker SR. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose[J].Biotechnology Progress,2007,23:1333-1339.
    248. Shen H, Gilkes NR, Kiburn DG. Cellobiohydrolases B, a second exo-cellobiohydrolasefrom the cellulolytic bacterium Cellulomonas fimi[J]. Biochemistry Journal,1995,311:67-74.
    249. Shi J, ChinnMS, Sharma-Shivappa RR. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium[J]. Bioresource Technology,2008,99, 6556-6564.
    250. Shi J, Sharma-Shivappa RR, Chinn M, Howell N. Effect of microbial pretreatment onenzymatic hydrolysis and fermentation of cotton stalks for ethanol production[J].Biomass and Bioenergy,2009,33:88-96.
    251. Shi J.Microbial pre-treatment of cotton stalks by PhanerochaeteChrysosporium for bioethanol production[D]. NorthCarolina State University, Raleigh, NC, USA,2007, pp. 1-241.
    252. ShresthaP, RasmussenM, KhanalSK, Pometto AL, Leeuwen JV.Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol [J].Journal of Agricultural and Food Chemistry,2008,56(11):3918-3924.
    253. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J]. Bioresource Technology,2007,98:3000-3011.
    254. Singh D, Chen S. The white-rot fungus Phanerochaete chrysosporium:conditions for the production of lignin-degrading enzymes[J]. Appllied Microbiology and Biotechnology,2008,81:399-417
    255. SjostromE. Wood Chemistry, Fundamentals and Applications[M]. Academic Press,1981.
    256. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Laboratory Analytical Procedure (LAP):Determination of structural carbohydrates andlignin in biomass. Technical Report:NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, Co,2008, USA.
    257. Srebotnik E, Jensen KA, Kawai S, Hammel KE. Evidence that Ceriporiopsis subvermisporadegrades nonphenolic lignin structures by a one-electron-oxidation mechanism[J].Appllied Environmental Microbiology,1997,63:4435-4440.
    258. Srebotnik E, Messner K, Foisner R. Penetrability of white rot-degraded pine wood bythe lignin peroxidase of Phanerochaete chrysosporium[J]. Appllied Environmental Microbiology,1988,54:2608-2614.
    259. Srebotnik E, Messner K. A simple method that uses differential staining and lightmicroscopyto assess the selectivity of wood delignification by white-rot fungi[J].Appllied Environmental Microbiology,1994,60:1383-1386.
    260. Sun FH, Li J, Yuan YX, Yan ZY, Liu XF. Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover.International Biodeteriation and Biodegration,2011,65:931-938.
    261. SunN, Rahman M,QinY,Mirela L, MaximHR, Rogers, RD. Complete dissolution and partial delignification of wood in the ionic liquid1-ethyl-3methylimidazoliumacetate[J]. Green Chemistry,2009,11:646-655.
    262. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technology,2002,83,1-11.
    263. Taherzadeh MJ, Karami K. Pretreatment of lignocellulosicwastes to improve ethanol andbiogas production:a review[J]. International Journal of Molecular Sciences,2008, 9(9):1621-1651.
    264. Tan GM, Yasuda S, Terashima N. The effect of ultrasonic irradiation on delignificationreactions.2. Behavior of lignin under ultrasonic irradiation[J]. Mokuzai Gakkaishi,1985,31:388-396.
    265. Taniguchi M, SuzukiH, Watanabe D, Sakai K, Hoshino K, Tanaka, T.Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw[J] Journal of Bioscience and Bioengineering,2005,100:637-643.
    266. Tanyildizi MS, Ozer D, Elibol M. Optimization of a-amylaseproduction by Bacillus sp. using response surface methodology [J].Process Biochemistry,2005,40:2291-2296.
    267. Tassinari T, Macy C, Spano L. Technology advances for continuous compression milling pretreatment of lignocellulosics for enzymatic hydrolysis [J]. Biotechnology and Bioengineering,1982,24(7):1495-1505.
    268. Tewalt J, Schilling J. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum. Appllied Microbiology and Biotechnology,2010,86:1785-1793.
    269. Tian X, Fang Z, Guo F. Impact and prospective of fungal pre-treatment of lignocellulosicbiomass for enzymatic hydrolysis [J]. Biofuels, Bioproducts and Biorefining,2012:335-350.
    270. TumuluruJS, SokhansanjS, HessJR, WrightCT, BoardmanRD. A review on biomasstorrefaction process and product properties for energy applications[J]. IndustrialBiotechnology,2011,7:384-401.
    271. Tuor U, Wariishi H, Schoemaker HE, Gold MH. Oxidation of phenolic arylglycerol betaarylether lignin model compounds by manganese peroxidase from Phanerochaetechrysosporium-oxidative cleavage of an alpha-carbonylmodel-compound[J]. Biochemistry,1992,31:4986-4995.
    272. Urzua U, Kersten PJ, Vicuna R. Manganese peroxidase dependent oxidation of glyoxylicand oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellularhydrogen peroxide[J]. Appllied Environmental Microbiology,1998,64:68-73.
    273. Vaidya A, Singh T. Pre-treatment of Pinus radiata substratesby basidiomycetes fungi toenhance enzymatic hydrolysis[J].Biotechnology Letters,2012,34(7):1263-1267.
    274. Van SoestPJ. Use of detergents in the analysis of fibrous feeds Ⅱ:a rapidmethod for the determination of fibre and lignin[J]. Journal of the Association of Official Analytical Chemists,1963,46:829-835.
    275. Vanhulle S, Enaud E, Trovaslet M, Billottet L, Kneipe L, Jiwan JLH, Corbisier AM,Marchand-Brynaert J. Coupling occurs before breakdownduring biotransformation of AcidBlue 62 by white rot fungi[J]. Chemosphere,2008,70(6):1097-1107.
    276. Vanhulle S, Trovaslet M, Enaud E, Lucas M, Sonveaux M, Decock C, Onderwater R,Schneider YJ, Corbisier AM. Cytotoxicity andgenotoxicity evolution during decolorizationof dyes by white rot fungi[J]. World Journal of Microbiology and Biotechnology,2008,24(3):337-344.
    277. Vicentim MP, Ferraz A. Enzyme production and chemical alterations of Eucalyptusgrandiswood during biodegradation by Ceriporiopsis subvermispora in culturessupplemented withMn2+, corn steep liquor and glucose[J]. Enzyme and Microbial Technology,2007,40:645-652.
    278. Wan C, Li Y. Effect of hot water extraction and liquid hot water pretreatment on thefungal degradation of biomass feedstocks [J]. Bioresource Technology,2011, 102:9788-9793.
    279. Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass[J]. Biotechnology Advance,2012,30:1447-1457.
    280. Wan C, Li Y. Microbial delignification of corn stover by Ceriporiopsis subvermispora forimproving cellulose digestibility[J]. Enzyme and Microbial Technology,2010b, 47:31-36.
    281. Wan C, Li Y. Microbial pretreatment of corn stover with Ceriporiopsissubvermisporafor enzymatic hydrolysis and ethanol production[J]. Bioresource Technology,2010,101:6398-6403.
    282. Wan CX, Li YB. Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks [J]. Bioresource Technology 2011,102:7507-7512.
    283. Wan CX, ZhouYG, Li YB.Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility [J]. Bioresource Technology,2011,102:6254-6259.
    284. Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass[J]. Biotechnology Advance,2012,30:1447-1457.
    285. Wang W, Yuan TQ, Cui BK, Dai YC. Investigating lignin and hemicellulose in white rot fungus-pretreated wood that affect enzymatic hydrolysis[J]. Bioresource Technology, 2013,134:381-385.
    286. Wang W, Yuan TQ, Wang K, Cui BK, Dai YC. Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa[J]. Bioresource Technology,2012,107:282-286.
    287. WangM, SaricksC, SantiniD. Effects of fuel ethanol useon fuel-cycle energy and greenhouse gas emissions. ArgonneNational Laboratory, Argonne,1999, IL
    288. Watanabe T, Katayama S, Enoki M, Honda YH, Kuwahara M. Formation of acyl radicalin lipid peroxidation of linoleic acid by manganese-dependent peroxidase fromCeriporiopsis subvermispora and Bjerkandera adusta[J]. European Journal of Biochemistry,2000,267:4222-4231.
    289. Wei YL, Dai YC. Ecological function of wood-inhabiting fungi in forest ecosystem[J]. Chinese Journal of Applied Ecology,2004,15(10):1935-1938.
    290. Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for thetreatmentof industrial dye effluents[J]. Biotechnology Advance,2003,22:161-187.
    291. Widsten P, Kandelbauer A. Adhesion improvement of lignocellulosicproducts by enzymatic pre-treatment[J]. Biotechnology Advance,2008,26:379-386.
    292. Windeisen E, Strobel C, Wegener G. Chemical changes during the production of thermo-treated beech wood[J]. Wood Science and Technology,2007,41:523-536.
    293. Winquist E, Moilanen U, Mettala A, Leisola M, Hatakka A. Production of lignin modifyingenzymes on industrial waste material by solid-state cultivation of fungi[J]. Biochemical Engineering Journal,2008,42:128-32.
    294. Wolfaardt F, Taljaard JL, Jacobs A. Assessment of wood-inhabiting Basidiomycetes for biokraft pulping ofsoftwood chips[J].Bioresource Technology,2004,95(1):25-30.
    295. Wood TM, McCrae SI, Bhat KM.The mechanism of fungal cellulase action.Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose.Biochemistry Journal,1989,260:37-43.
    296. Worrall JW, Anagnost SE, Zabel RA. Comparison of wood decay among diverse lignicolousfungi[J].Mycologia,1997,89:199-219.
    297. Wu J, Xiao YZ, Yu HQ. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm[J].Bioresource Technology,2005,96(12):1357-1363.
    298. Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee YY, Mosier N, Pallapolu VR, Shi J, Thomas SR, Warner RE. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources[J]. Bioresource Technology,2011,102:11052-11062.
    299. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies [J]. Bioresource Technology, 2005,96:1959-1966.
    300. Xu C, Ma F, Zhang X. Lignocellulose degradation and enzyme production by Irpex lacteusCD2 during solid-state fermentation of corn stover[J]. Journal of Bioscience and Bioengineering,2009,108:372-375.
    301. Xu CY, Ma FY, Zhang XY, Chen SL. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis [J]. Journal of Agricultural and Food Chemistry, 2010,58(20):10893-10898.
    302. Xu H, Scott GM, Jiang F and Kelly C, Recombinant manganese peroxidase(rMnP) from Pichia pastoris. Part 1:Kraft pulp delignication.Holzforschung,2010,64:137-143.
    303. Xu H, Scott GM, Jiang F, Kelly C. Recombinant manganese peroxidase(rMnP) fromPichia pastoris. Part 2:Application in TCF and ECFbleaching. Holzforschung, 2010,64:145-151.
    304. Yang B, Wyman CE. Pretreatment:the key to unlocking low-cost cellulosicethanol[J]. Biofuels Bioproductand Biorefining,2008,2:26-40.
    305. Yang XW, Zeng YL, Ma FY, Zhang XY, Yu HB. Effect of biopretreatment onthermogravimetric and chemical characteristics of corn stover by different white-rot fungi[J]. Bioresource Technology,2010,101:5475-5479.
    306. Yelle DJ, Ralph J, Lu F, Hammel KE. Evidence for cleavage oflignin by a brown rotbasidiomycete[J]. Environmental Microbiology,2008,10:1844-1849.
    307. Yelle DJ, Wei D, Ralph J, Hammel KE. Multidimensional NMRanalysis revealstruncated lignin structures in wood decayedby the brown rot basidiomycete Postia Placenta[J].EnvironmentalMicrobiology,2011,13:1091-1100.
    308. Yoon JJ, Cha CJ, Kim YS, Son DW, Kim YK. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose [J]. Journal of Microbiology and Biotechnology,2007,17:800-805.
    309. Yoon JJ, Kim YK.Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris[J]. Journal of Microbiology,2005,43:487-492.
    310. Yu H, Guo G, Zhang X, Yan K and Xu C. The effect of biological pretreatmentwith the selective white-rot fungus Echinodontium taxodii onenzymatic hydrolysis of softwoods and hardwoods[J]. Bioresource Technol,2009,100:5170-5175.
    311. Yu HB, Du WQ, Zhang J, Ma FY, Zhang XY, Zhong WX.Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan[J]. Bioresource Technology,2010,101(17): 6728-6734.
    312. Yu J, Zhang JB, He J, Liu ZD, Yu ZN. Combinations of mild physicalor chemical pre-treatment with biological pre-treatment for enzymatichydrolysis of rice hull[J]. Bioresource Technology,2009,100:903-908.
    313. Yu Q, Zhuang XS, Yuan ZH, Wang Q, Wei Q, Wang W, Zhang Y, Xu JL, Xu H. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose[J].Bioresource Technology,2010,101:4895-4899.
    314. Yu QA, Zhuang XS, Yuan ZH, QiW, Qiong W, Tan XS. The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water[J]. Bioresource Technology,2011,102:3445-3450.
    315. Yuan TQ, Wang W, Xu F, Sun RC. Synergistic benefits of ionic liquid and alkalinepretreatments of poplar wood. Part 1:Effect of integrated pretreatment on enzymatic hydrolysis[J]. Bioresource Technology,2013,144:429-434.
    316. Zadrazil F, Puniya AK. Studies on the effect of particle size on solid-state fermentationofsugarcane bagasse into animal feed using white-rot fungi [J]. Bioresource Technology,1995,54:85-87.
    317. Zeng JJ, Singh D, Chen SL. Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts[J]. Bioresource Technology, 2011,102:3206-3214.
    318. Zeng M, MosierNS, Huang C, Sherman DM, Ladisch MR.Microscopic examination of changes of plant cell structure in cornstover due to hot water pretreatment and enzymatichydrolysis[J].Biotechnology and Bioengineering,2007,97:265-278.
    319. Zhang X, Xu C, Wang H. Pretreatment of bamboo residues with Coriolus versicolor forenzymatic hydrolysis [J]. Journal of Bioscience and Bioengineering,2007a,104:149-151.
    320. Zhang X, Yu H, Huang H, Liu Y. Evaluation of biological pretreatment with white rot fungifor the enzymatic hydrolysis of bamboo culms. International Biodeteriation and Biodegradation,2007b,60:159-164.
    321. Zhang YHP, Berson E, Sarkanen S, Dale BE. Sessions 3 and 8:pretreatment and biomass recalcitrance, fundamentals and progress[J]. Appllied Biochemistry and Biotechnology,2009,153:80-83.
    322. Zhao XB, Zhang L, Liu DH. Biomass recalcitrance. Part Ⅱ:Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose[J]. Biofuels Bioproduct andBiorefining,2012,6:561-579.
    323. Zheng Y, Pan Z, Zhang R. Overview of biomass pretreatmentfor cellulosic ethanolproduction[J]. International Journal of Agricultural Biology and Engineering, 2009,2(3):51-68.
    324. Zhu L, O'Dwyer JP, Chang VS, Granda CB, Holtzapple MT. Structurefeatures affecting biomass enzymatic digestibility [J]. Bioresource Technology,2008,99:3817-3828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700