扩展青霉脂肪酶基因在酿酒酵母中的表达及分子突变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文报道了扩展青霉碱性脂肪酶(Penicillium expansum lipase,PEL)成熟肽基因lip及带有自身信号肽的基因lip07在酿酒酵母中的表达,对酿酒酵母表达脂肪酶的发酵条件进行了优化,并运用定点突变技术对PEL基因第227位氨基酸残基进行分子突变。
     将碱性脂肪酶基因lip、lip07分别连接到酿酒酵母表达载体,构建了重组质粒pVT102U/α-lip、pVT102U/α-L-lip07,并分别电转入酿酒酵母Saccharomycescerevisiae S78,筛选重组菌株S78-pVT102U/α-lip及S78-pVT102U/α-lip07。结果表明lip及lip07均获得了分泌表达,表达产物分泌到培养基中,分子量约为28kDa,与天然扩展青霉脂肪酶基本一致。其中,重组酵母S78-pVT102U/α-lip摇瓶发酵72h,酶活可达20U/ml;S78-pVT102U/α-L-lip07表达的脂肪酶很少,表达产物仅在三丁酸甘油酯平板上形成透明圈。
     从移种量、培养基pH、碳源及培养基组成等方面对S78-pVT102U/α-lip进行初步的发酵条件优化,结果表明:适宜的培养基组成为3%酵母抽提物、3%胰化蛋白胨、2%蔗糖;移种量为1.3%;起始pH为7.0,28℃摇瓶发酵72h,上清液酶活达56U/ml,为优化前的2.8倍。
     采用重叠延伸PCR方法将脂肪酶第227位丝氨酸突变为脯氨酸,将突变后的基因lip-S227P克隆到毕赤酵母表达载体,将构建的重组质粒pPPIC3.5K-lip-S227P电转化到毕赤酵母GSI15,摇瓶发酵72h,上清液用加有底物的平板检测酶活。与野生型相比,突变体脂肪酶的酶活很低,不能在橄榄油平板上形成透明圈,但可以在以三丁酸甘油酯为底物的平板上形成透明圈,表明第227位丝氨酸可能对脂肪酶酶酶活具有重要影响。
Expression of two genes which encode mature PEL(Penicillium expansum lipasc) and pro-PEL, optimization of fermentation conditions were studied in this research. Meanwhile, the site-directed mutagenesis technology was used to introduce the mutation into PEL.
    The genes lip, lip07 encoding mature PEL and pro-PEL were cloned into expression vector respectively, and the rccombinant plasmids pVT102U/a-lip, pVT102U/a -L-lip07 were then transformed into the Saccharomyces cerevisiae S78 competent cell by eleclToporalion, the recombinant strain S78-pVT102U/a -lip, S78-pVT102U/a-L-lip07 was obtained.The active lipase were secreted into the culture after fermentation. The expression product had a molecular mass of 28kDa,which was similar to that of the PEL from Penicullium expansion PF898. The activity of lipasc from S78- pVT102U/a -lip was up to 20U/ml after 72h fermentation; The product of S78-pVT102U/a-L-lip07 was little, only formed the halo on the tributyrin plate.
    Different strategies (different volume of inoculation, different initial pH, different carbon sources, different medium concentration ) was applied to optimized the S78-pVT102U/a -lip fermentation condition, the optimum conditions as follow: The optimum culture medium composition was 3% yeast extraction, 3% tryptone, 2% sucrose;The volume of inoculation was about 1.3%; the initial pH was 7.0. The activity of lipase was up to 56U/ml under the optimal cultivation conditions.
    The 227th Serine were replace with proline using overlap extension PCR method. The mutated gene lip-S227P was ligated into the pPPIC3.5K, the recombinants plasmid pPPIC3.5K-lip-S227P was transformed into the Pichia pastoris GS115 competent cell by electroporation. We use plate to check the lipase activity ,the lipase activity is very low, Compared to the wild type , the mutant could not form the clear halo on the olive oil plate but tributyrin plate, it showed that the 227 th Serine was essential for the lipase activity.
引文
1.陈玉梅(1993)酿酒酵母工程菌研究的进展。生物工程学报13(1):11-16.
    2.龚毅,陈燕,杨胜利(1998)非随机方法构建酿酒酵母基因工程菌.生物工程学报14(3):332-335.
    3.洪洄.王冬梅(1999)应用酵母进行基因表达的研究进展.生物学通报34(7):12-14.
    4.李艳,王正样,诸葛健(2001)酵母作为外源基因表达系统的研究进展.生物工程进展21(1).
    5.兰和魁,封志纯等(2001)人肺表面活性相关蛋白A1在酿酒酵母种表达、纯化、及活性分析.生物工程学报,17(4):410-413.
    6.刘志敏,蓝正道(1998)人脑源性神经营养因子cDNA克隆及在酵母中的表达,第二军医大学学报,19(3):215-218.
    7.刘志敏,王笑辛,蓝正道,谢志伟,戚正武,朱诚(1998).神经营养因子-3cDNA的克隆及在酿酒酵母中的分泌性表达.Chin J Neurosci 14(2):90-94
    8.林琳(2001)扩展青霉碱性脂肪酶基因的克隆和表达.福建农林大学博士学位论文.
    9.林琳,施巧琴,郭晓珍(2002)扩展青霉碱性脂肪酶的纯化及N—端氨基酸序列分析.厦门大学学报41:600-604.
    10.林琳,谢必锋,杨冠珍,施巧琴(2003)扩展青霉碱性脂肪酶基因组DNA的克隆和序列分析.中国生物化学与分子生物学学报19:12-14.
    11.林琳,谢必锋,杨冠珍,施巧琴(2002)扩展青霉碱性脂肪酶cDNA的克隆和序列分析.中国生物化学与分子生物学学报18:32-37.
    12.李香春,甄宗园(2003)脂肪酶特性及其应用.粮食与油脂.3:19-20
    13.聂尧,徐岩,王栋.(2002)脂肪酶不对称立体选择性能改善的研究进展.过程工程学报.2(6):570-576.
    14.毛小洪,蔡金科(1990)酵母完整细胞快速高效转化法[J].生物工程学报6(2):905-910.
    15.秦玉静,金建玲,鲍晓明,高东(1999)影响酿酒酵母电击转化率的条件.山东大学学报(自然科学版)34(2):236-240.
    16.宋磊.娄玉霞.李新国(2000)酿酒酵母细胞四种转化方法的比较.上海师范大学学报(自然科学版)29(4):97-98.
    
    
    17.唐国敏(1996)水解淀粉的酿酒酵母菌的构建.微生物学报36(4):250-255.
    18.汪天虹,Merja Penttila,李波(1999)带有木糖还原酶基因和木糖醇脱氢酶基因的重组酿酒酵母的构建.菌物系统18(3):311-315.
    19.王玉洁,黄玉屏,阮丽芳,刘楠,沈萍(2003)mel基因在酿酒酵母中的克隆和表.达.微生物学通报.30(4):43-47.
    20.吴晓萍,李文清.罗进贤,后茂立,林资诚(1999)α-淀粉酶和糖化酶的表达及酿酒酵母工程菌的构建.中山大学学报(自然科学版)38(2):80-84.
    21.邬显章,邬敏辰.(2002)脂肪酶分子生物学研究进展.食品与生物技术21(1):94-98
    22.杨艳,任健,谢明杰,曹文伟(1997)纤维紊酶酿酒酵母工程菌的研究进展.微生物学杂志17(4):45-49.
    23.袁彩.林琳.施巧琴,吴松刚(2003)扩展青霉碱性脂肪酶基因在毕赤酵母中的高效表达.生物工程学报19:231-235.
    24.袁彩,林琳(2003)脂肪酶P163A的定点突变.福建农林大学学报.
    25.张博润,何秀萍,陈玉梅(1998).酵母菌的载体系统研究进展.微生物学通报25(1)42-45.
    26.郑毅,黄建忠,施巧琴,翁丽星,吴松刚(1996)中温脂肪酶的研究Ⅲ 扩展青霉PF868变株碱性脂肪酶的纯化及其酶学性质.工业微生物26:15-18.
    27.朱国苹,滕脉坤.王玉珍(2000)脯氨酸对蛋白质热稳定性的贡献.生物工程进展20(4):48-50.
    28. Ahn JO, Choi ES, Lee HW, Hwang SH, Kim CS, Jang HW, Haam SJ, Jung JK(2004).Enhanced secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae by translational fusion to cellulose-binding domain. Appl Microbiol Biotechnol. Jan 23
    29. Alam M, Vance DE, Lehner R (2002) Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: identification of the catalytic triad and a glycosylation site. Biochemistry 41: 6679-6687.
    30. Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409: 253-257.
    31. Beer HD, McCarthy JE, Bornscheuer UT, Schmid RD (1998) Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochim Biophys Acta 1399:173-180.
    
    
    32. Beer HD, Wohlfahrt G, McCarthy JE, Schomburg D, Schmid RD (1996a) Analysis of the catalytic mechanism of a fungal lipase using computer-aided desigu and structural mutants. Protein Eng 9:507-517.
    33. Beisson F, Tiss A, Rivier C, Verger R (2002) Methods for lipase detection and assay: a critical review. Eur J Lipid Techno 133-153.
    34. Berglund P, Holmquist M, Hult K (1998) Reversed enantiopreference of Candida rugosa lipase snpports different modes of binding enantiomers of a chiral acyl donor. Journal of Molecular Catalysis B: Enzymatic 5: 283-287.
    35. Bezzine S, Roussel A, de Caro J, Gastinel L, de Caro A, Carriere F, Leydier S, Verger R, Cambillau C (1998) An inactive pancreatic—related protein is activated into a triglyceride-lipase by mutagenesis based on the 3-D structure. Chemistry and Physics of Lipids 93:103-114.
    36. Bigey F, Tuery K, Bougard D,Nicaud JM, Moulin G.Yeast(2003). Identification of a triacylglycerol lipase gene family in Candida deformans: molecular cloning and functional expression Feb;20(3):233-48.
    37. Bodmer MW, Angal S, Yarranton GT, Harris TJ, Lyons A, King DJ, Pieroni G, Riviere C, Verger R, Lowe PA (1987). Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim Biophys Acta Aug 25;909 (3):237-44.
    38. Boston M, Requadt C, Danko S, Jarnagin A, Ashizawa E, Wu S, Poulose AJ, Bott R (1997) Structure and function engineered Pseudomonas mendocina lipase. Methods Enzymol 284:298-317.
    39. Bomscheuer, Comelus Bessler, Ramisetti Srinivas and Sajja Hari Krislma.(2002).Optimizing lipases and related enzymes for efficient application.Trends in Biotechnology. 1-4.
    40. Brocca S, Schmidt-Dannert C, Lotti M, Alberghina L, Schmid RD (1998). Design, total synthesis, and functional overexpression of the Candida rugosa lipl gene coding for a major indnstrial lipase. Protein Sci Jun; 7 (6): 1415-22.
    41. Bruin T, Kastelein JJ, van Diermen DE, Ma Y, Henderson HE, Stuyt PM, Stalenhoef AF, Sturk A, Brunzell JD, Hayden MR (1992) A missense mutation Pro157 Arg in lipoprotcin lipase (LPLNijmcgcn) resulting in loss of catalytic activity. Eur J Biochcm 208: 267-272.
    
    
    42. Chang RC, Chen JC, Shaw JF (1996) Facile purification of highly active recombinant Staphylococcus hyicus lipase fragment and characterization of a putative lid region. Biochem Biophys Res Comrnun 228: 774-779.
    43. Chi-Hsien Liu, Chin-Fa Hwang, Chii-Cherng Liao (1997). Medium optimization for glutathione production by Saccharomyces cerevisiae. Process Biochemistry 34:17-23.
    44. Davis RC, Stahnke G, Wong H, Doolittle MH, Ameis D, Will H, Schotz MC (1990) Hepatic lipase: site-dlrected mutagenesis of a serine residue important for catalytic activity. J Biol Chem 265: 6291-6295.
    45. Eddine AN, Hannemann F, Schafer W (2001). Cloning and expression analysis of NhL1, a gene encoding an extracellular lipase from the fungal pea pathogen Nectria haematococca MP Ⅵ (Fusarium solani f. sp. pisi) that is expressed in planta. Mol Genet Genomics. Apr;265 (2):215-24.
    46. Elisabetta Catoni (1999),Overexpression and protein engineering of lipase A and B front Geotrichum candidum CMICC335426.
    47. Frenken LG, Egmond MR, Batenburg AM, Verrips CT (1993) Pseudomonas glumae lipase: increased proteolytic stability by protein engineering. Protein Eng 6: 637-642.
    48. Fu Y, Ibrahim AS, Fonzi W, Zhou X, Ramos CF, Ghannoum MA(1997).Cloning and characterization of a gene (LIPI) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology. Feb; 143 (Pt2):331-40.
    49. Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu Ⅰ, Feller G (1997) Psyehrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119-131
    50. Hiroyuki Shibata,Hiroaki Kato and Junichi Oda(1998).Random mutagenesis on the Pseudomonas lipase activator protein,LipB:exploring amino acid residues required for its fnnction.Protein Engineering 11 (6):467-472.
    51. Hohnquist M, Yessier DC, Cygler M (1997) Identification of residues essential for differential fatty acyl specificity of Geotrichum candidum lipases Ⅰ and Ⅱ. Biochemistry 36: 15019-15025.
    52. Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382:191-206.
    53. Jae Kwang song, Joon Shick Rhee(2000).Simultaneous enhancement of thermostability and catalytic activity of phospholipase A_1 by evolutionary molecular
    
    engineering.Applied and environmental Microbiology.890-894.
    54. Jager S, Demleitner G, Gotz F (1992) Lipase of Staphylococcus hyicus: analysis of the catalytic triad by site-directed mutagenesis. FEMS Microbiol Lett 79: 249-254.
    55. Jeff barman (2002) In vitro mutagenesis protocols.
    56. Joerger RD, Haas MJ (1994) Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis. Lipids 29: 377-384.
    57. Kauffinann I, Schmidt-Dannert C (2001) Conversion of Bacillus thermocatenulatus lipase into an efficient phospholipase with increased activity towards long-chain fatty acyl substrates by directed evolution and rational design. Protein Eng 14:919-928.
    58. Klein RR, King G, Moreau RA, Haas MJ (1997a) Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling. Lipids 32: 123-130.
    59. Kohno M, Enatsu M, Kugimiya W (1998).Cloniug of genomic DNA of Rhizopus niveus lipase and expression in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem. Dec;62 (12):2425-7.
    60. Kohno M, Enatsn M, Funatsn J, Yoshiizumi M, Kugimiya W (2001) Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation. J Biotechnol 87: 203-210.
    61. Kuipers OP, Thunnissen MMGM, De Geus P, Dijkstra BW, Drenth J, Verheij HM, de Haas GH (1989) Enhanced activity and altered specificity of phopholipase A2 by deletion of a surface loop. Science 244: 82-85.
    62. Lu T, Ito M, Tchoua U, Takemori H, Okamoto M, Tojo H (2001) Identification of essential residues for catalysis of rat intestinal phospholipase B/lipase. Biochemistry 40: 7133-7139.
    63. Manfred T. Reetz (2002).Lipases as practical biocatalysts.Current Opinion in Chcmical Biology. 6:145-150.
    64. Martinelle M, Holmquist M, Clausen IG, Patkar S, Svendsen A, Hult K (1996) The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. Protein Eng 9:519-524.
    65. Matsumoto T, Takahashi S, Kaieda M, Ueda M, Tanaka A, Fukuda H, Kondo (2001) A. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol. Nov; 57 (4): 515-20.
    
    
    66. Mitsuyoshi Ueda (2002) Exprission of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae Journal of Milecular Catlysis B: Enzymatic 17:113-124.
    67. Mitsutaka Kohno (2000). Thermal stability of Rhizopus niveus lipase expressed in a kex2 mutant yeast. Journal of Biotechnology 81: 141-150.
    68. Mitsutaka Kohno, Makoto Enatsu, Mariko Yoshiizumi and Wataru Kugimiya. (1999) High-level expression of Rhizopus niveus lipase in the Yeast Saccharomyces cerevisiae and structural properties of the expressed enzyme. Protein Expression and Purification: 15: 327-335.
    69. Mitsutaka Kohno, Makoto Enatsu, Jiro Funatsu, Mariko Yoshiizumi, Wataru Kugimiya (2001). Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation. Journal of Biotechnology87:203-210.
    70. Monfort A, Blasco A, Sanz P, Prieto JA (1999). Expression of LIP1 and LIP2 genes from Geotrichum species in Baker's yeast strains and their application to the bread-making process. J Agric Food Chem. Feb: 47 (2):803-8.
    71. Murakami H, Hohsaka T, Sisido M (2002) Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nature Biotechnology 20: 76-81.
    72. Nagao T, Shimada Y, Sugihara A, Tominaga Y (1998). C-terminal peptide of Fusarium heterosporum lipase is necessary for its increasing thermostability. J Biochem (Tokyo). Dec 1;124 (6): 1124-9.
    73. Nagao T, Shimada Y, Sugihara A, Tominaga Y (2002) Increase in stability of Fusarium heterosporum lipase. Journal of Molecular Catalysis B: Enzymatic 17:125-132.
    74. Neugnot V, Moulin G, Dubreucq E, Bigey F (2002).The lipase/acyltransferase from Candida parapsilosis: molecular cloning and characterization of purified recombinant enzymes. Eur J Biochem. Mar; 269(6): 1734-45.
    75. Okkels JS (1996). A URA3-promoter deletion in a pYES vector increases the expression level of a fungal lipase in Saccharomyces cerevisiae. Ann N Y Acad Sci May 15;782:202-7.
    76. Osterlund T, Contreras JA, Holm C (1997) Identification of essential aspartic acid and histidine residues of hormone-sensitive lipase: apparent residues of the catalytic triad. FEBS Letters 403: 259-262.
    
    
    77. Patkar S, Vind J, Kelstrup E, Christensen MW, Svendsen A, Borch K, Kirk O (1998) Effect of mutations in Candida antarctica B lipase. Chem Phys Lipids 93: 95-101.
    78. Pleiss J, Fischer M, Peiker M, Thiele C, Schmid RD (2000b) Lipase engineering database: Understanding and exploiting sequence-structure-function relationships. Journal of Molecular Catalysis B: Enzymatic 10: 491-508.
    79. Quyen DT, Schmidt-Dannert C, Schmid RD (1999) High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding. Appl Environ Microbiol 65: 787-794.
    80. Reetz, Karl-Erich Jaeger (1998). Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chemistry and Physics of Lipids 93:3-14.
    81. Sanchez M, Prim N, Randez-Gil F, Pastor FI, Diaz P (2002). Engineering of baker's yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis Lipase A. Biotechnol Bioeng May 5; 7 8(3): 339-45.
    82. Sagt CM, Kleizen B, Verwaal R, de Jong MD, Muller WH, Smits A, Visser C, Boonstra J, Verkleij AJ, Verrips CT (2000). Introduction of an N-glycosylation site increases secretion of heterologous proteins in yeasts. Appl Environ Microbiol. Nov;66 (11):4940-4.
    83. Schimid, U.Menge, D.Schomburg.F. Spener (1995). Towards novel Biocatalysts via protein design: the case of lipases. FEMS Microbiology Review 16:253-257.
    84. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Bioteclmology Advances 19:627-662
    85. Song JK, Rhee JS (2001) Enhancement of stability and activity of phospholipase Al in organic solvents by directed evolution. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1547: 370-378.
    86. Song JK, Rhee JS (2000) Simultaneous enhancement of thermostability and catalytic activity of phospholipase A (1) by evolutionary molecular engineering. Appl Environ Microbiol 66: 890-894.
    87. Stralton J, Chiruvolu V, Meagher M (1998) High cell-density fermcntation. Mcthods in molecular biology 103: 120.
    88. Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543: 223-238.
    
    
    89. Svendsen A, Clausen IG, Patkar SA, Borch K, Thellersen M (1997) Protein engineering of microbial lipases of industrial interest. Methods in Enzymology 284:317-340.
    90. Thomas Crabbe, A.Neil Weir (1996).The Secretion of Active Recombinant Human Gastric Lipase by Saccharomyces cerevisiae PROTEIN EXPRESSION AND PURIFICATION 7:227-236.
    91. Takahashi, Mitsuyoshi Ueda, Atsuo Tanaka (1999). Independent productiou of two molecular forms of a recombinant Rhizopus oryzae lipase by KEX2-engineered strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol. Oct; 52 (4) : 534-40.
    92. Takahashi, Mitsuyoshi Ueda, Atsuo Tanaka (2000). Effect of the truncation of the C-terminal region of Kex2 endoprotease on processing of the recombinant Rhizopus oryzae lipase precnrsor in the co-expression system in yeast.Journal of Melocular Catalysis B:Enzymatic 10:233-240.
    93. Takahashi M (2001). Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in saccharomyces cerevisiae. Appl Microbiol Biotechno155: 454-462.
    94. Thunnissen MMGM, Kalk KH, Drenth J, Dijkstra BW (1990) Structnre of an engineered porcine phospholipase A2 with enhanced activity at 2.1 A resolution. Comparison with the wild-type porcine and Crotalus atrox phospholipase A2. Journal of Molecular Biology 216: 425-439.
    95. Toshihiro Nagao (1996). Expression of Lipase cDNAfrom Fusarium heterosporum by Saccharomyces cerevisiae: High-Level Production and Purification Journal of Fermentation AND Bioengineering Vol.81, NO. 6488-492.
    96. Toshihiro Nagao, Yuji Shimada, Akio Sugihara, Yoshio Tominaga (2002). Increase in stability of Fusarium heterosporum lipase. Journal of Molecular Catalysis B: Enzymatic 17:125-132.
    97. Ueda M, Takahashi S, Washida M, Shiraga S, Tanaka A (2002) Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic 17: 113-124.
    98. Vega, Sabatie, Brown (1994)
    99. Vernet T, Ziomek E, Recktenwald A, Sclrag JD, de Montigny C, Tessier DC, Thomas DY, Cygler M (1993). Cloning and expression of Geotrichum candidum lipase Ⅱ gene in yeast. Probing of the enzyme active site by site-directed mutagenesis. J Biol Chem
    
    Dec 15;268(35):26212-9.
    100. Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. Journal of Molecular Catalysis B: Enzymatic 9:113-148.
    101. Yamaguchi S, Mase T, Takeuchi K (1992). Secretion of mono- and diacylglycerol lipase from Penicillium camembertii U-150 by Saccharomyces cerevisiae and site-directed mutagenesis of the putative catalytic sites of the lipase. Biosci Biotechnol Biochem. Feb;56(2):315-9.
    102. Yamaguchi S, Takeuchi K, Mase T, Oikawa K, MeMullen T, Derewenda U, McElhaney RN, Kay CM, Derewenda ZS (1996) The consequences of engineering an extra disulfide bond in the Penicillium camembertii mono- and diglyceride specific lipase. Protein Eng 9: 789-795.
    103. Yang J, Kobayashi K, Iwasaki Y, Nakano H, Yamane T (2000) In vitro analysis of roles of a disulfide bridge and a calcium binding site in activation of Pseudomonas sp. strain KWI-56 lipase. Journal of Bacteriology 182: 295-302.
    104. Zhang, M. Moo-Young,Chisti (1996).Plasmid stability in recombinant saccharomyces cerevisiae.Bioteclmology Advances.14(4):401-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700