模块化构建高效利用木糖的酿酒酵母的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木糖是木质纤维素水解液中含量仅次于葡萄糖的单糖,高效利用木糖是纤维素乙醇进行产业化生产的必要条件。前人在构建高效代谢木糖的酿酒酵母菌株的研究中已经取得了一些成果,但是菌株的木糖利用效率还不能达到工业生产的要求,需要进一步的改善和提高。
     在本研究中设计、构建了由木糖还原酶基因XYL1、木糖醇脱氢酶突变体基因mXYL2和木酮糖激酶基因XKS1构成的木糖代谢模块,并通过优化XYL1和mXYL2的表达、强化非氧化磷酸戊糖途径功能,优化木糖代谢模块和酵母底盘细胞间的适配性,获得了木糖代谢速率为0.260g/L/h、乙醇得率为0.20g/g的酵母菌株SyBE004。通过启动子工程组合优化设计和构建由木糖异构酶基因XylA和XKS1构成的木糖代谢模块,获得了木糖代谢速率为0.081g/L/h的菌株SyBE002。基于传代限氧培养的进化工程改造,在SyBE002和SyBE004的基础上,分别获得了进化菌株SyBE003和SyBE005。与SyBE004相比,SyBE005的木糖代谢速率和乙醇产率提高2.20倍、2.67倍,乙醇得率提高到0.33g/g;SyBE003的木糖比消耗速率比SyBE002提高了4倍。以SyBE003和SyBE005为出发菌株,通过恒浊进化获得了SyBE006和SyBE007。SyBE007的木糖比消耗速率提高了34%,达到0.98g/g DW/h;SyBE006的木糖比消耗速率提高了54%,达到1.27g/gDW/h。
     为了解析进化过程中木糖代谢模块发生的重构变化,运用实时定量RT-PCR检测了SyBE002和SyBE003中相关基因表达差异。结果表明:XylA的表达显著降低,但是酶的活性保持不变;XKS1的表达增加了3倍;三羧酸循环中的基因表达显著降低,可能与增强的乙醇代谢功能有关。对菌株SyBE004、SyBE005和SyBE007的分析表明:初始木糖代谢途径基因XYL1、XYL2、XKS1和基因ZWF1的表达量显著增加,揭示强化的初始木糖代谢途径和NADPH供给可以加强木糖代谢。
     另外,在酵母中构建纤维二糖(葡萄糖二聚体)代谢途径,从而消除乙醇发酵过程中葡萄糖抑制效应的影响;并通过组合优化纤维二糖转运酶CDT-1和XYL1的表达,实现同时高效共利用纤维二糖和木糖。
Xylose is the second most abundant monosaccharide after glucose in lignocellulosichydrolysates. Efficient utilization of xylose is required for economic lignocellulosicethanol production. Some achievements in construction of xylose-fermentingSacchromyces cerevisiae have been obtained. However, the xylose fermentationcapacities of these strains cannot satisfy the industrial applications and need furtherimprovement.
     We successfully designed and expressed a xylose-utilizing module in S.cerevisiae consisting of xylose reductase gene XYL1, mutated xylitol dehydrogenasegene mXYL2and xylulose kinase gene XKS1. To optimize the compatibility of thexylose-utilizing module and host chassiss, the expression of XYL1and mXYL2wasoptimized, coupling with strengthening the function of the non-oxidative pentosephosphate pathway, enabling the construction of strain SyBE004with a xyloseconsumption rate of0.260g/L/h and a ethanol yield of0.20g/g. Moreover, axylose-utilizing strain SyBE002with a xylose consumption rate of0.081g/L/h wasconstructed by combinatorial optimization of the expression of xylose isomerase geneXylA and XKS1through promoter engineering. Strains SyBE002and SyBE004werethen subjected to repetive adaptation under oxygen-limited conditions, enabling theisolation of improved strains SyBE003and SyBE005, respectively. The xylose uptakerate and ethanol production rate of SyBE005increased by2.20-and2.67-foldcompared with strain SyBE004. Accordingly, the ethanol yield increased to0.30g/g.As for SyBE003, it showed a4-fold higher specific xylose consumption rate thanSyBE002. On the basis of strains SyBE003and SyBE005, evolved isolates ofSyBE006and SyBE007were further obtained throught continuous chemostatevolution. The specific xylose uptake rate of SyBE007increased by37%comparedwith SyBE005, reaching0.98g/gDW/h. Similarly, the specific xylose uptake rate ofSyBE006(1.27g/gDW/h) was54%higher than that of SyBE003.
     In order to understand the reconfiguration in xylose metabolic pathway, thequantitative RT-PCR was applied to investigate the transcriptional changes inSyBE003compared to SyBE002. The expression of XylA in SyBE003wassignificantly down-regulated but the exzymatic activity kept consistent. The geneXKS1showed a3-fold higher expression level in SyBE005. Meanwhile, thetranscriptional levels of genes in the TCA cycle decreased significantly, which might contribute to enhanced ethanol production. The transcriptional analysis of genes inSyBE004, SyBE005and SyBE007demonstrated that the expression of XYL1, XYL2,XSK1and ZWF1was significantly enhanced, suggesting that increasing theexpression of XYL1, XYL2, XKS1and enhancing NADPH supply were promisingstrategies to improve xylose fermentation in recombinant S. cerevisiae.
     In addition, a cellobiose metabolic pathway was introduced into S. cerevisiae toeliminate the inhibitory effect of glucose repression during ethanol fermentation fromlignocellulosic hydrolysates. Through combinatorial optimization of cellobiosetransporter gene CDT-1and XYL1, efficient and simultaneous co-metabolism ofcellobiose and xylose was implemented.
引文
[1] Stephanopoulos G, Challenges in engineering microbes for biofuels production,Science,2007,315(5813):801-804
    [2] Hahn-Hagerdal B, Karhumaa K, Fonseca C, et al, Towards industrialpentose-fermenting yeast strains, Applied Microbiolology and Biotechnology,2007,74(5):937-953
    [3] Chu BC, Lee H, Genetic improvement of Saccharomyces cerevisiae for xylosefermentation, Biotechnology Advance,2007,25(5):425-411
    [4] Keating JD, Panganiban C, Mansfield SD, Tolerance and adaptation ofethanologenic yeasts to lignocellulosic inhibitory compounds, Biotechnology andBioengineering,2006,93(6):1196-1206
    [5] Jeffries TW, Engineering yeasts for xylose metabolism. Current Opinion inBiotechnology,2006,17(3):320-326
    [6] Matsushika A, Inoue H, Kodaki T, et al, Ethanol production from xylose inengineered Saccharomyces cerevisiae strains: current state and perspectives,Applied Microbiolology and Biotechnology,2009,84(1):37-53
    [7] Karhumaa K, Garcia Sanchez R, Hahn-Hagerdal B, et al, Comparison of thexylose reductase-xylitol dehydrogenase and the xylose isomerase pathways forxylose fermentation by recombinant Saccharomyces cerevisiae. Microbial CellFactories,2007,6:5
    [8] Scalcinati G, Otero JM, Van Vleet JRH, et al, Evolutionary engineering ofSaccharomyces cerevisiae for efficient aerobic xylose consumption, FEMS YeastResearch,2012,12(5):582-597
    [9] Kuyper M, Harhangi HR, Stave AK, et al. High-level functional expression of afungal xylose isomerase: the key to efficient ethanolic fermentation of xylose bySaccharomyces cerevisiae? FEMS Yeast Research,2003,4(1):69-78
    [10]Fernando S, Adhikari S, Chandrapal C, et al. Biorefineries: Current status,challenges, and future direction, Energy&Fuels,2006,20(4):1727-1737
    [11]曾晓安,巴西燃料乙醇产业发展情况考察,中国财政,2012,4:73-74
    [12]薛梅,李景明,中国生物质能利用现状与发展前景,中国农业科技管理,2010,29(2):1
    [13]Alterthum F, Ingram LO, Efficient ethanol production from glucose, lactose, andxylose by recombinant Escherichia coli, Applied and EnvironmentalMicrobiology,1989,55():1943-1948
    [14]Zhang M, Eddy C, Deanda K, et al, Metabolic engineering of a pentosemetabolism pathway in ethanologenic Zymomonas mobilis, Science,1995,267(5195):240-243
    [15]Aristidou A, Penttila M, Metabolic engineering applications to renewableresource utilization, Current Opinion in Biotechnology,2000,11(2):187-198
    [16] Verduyn C, Van Kleef R, Frank J, et al, Properties of the NAD(P)H-dependentxylose reductase from the xylose-fermenting yeast Pichia stipitis, BiochemicalJournal,1985,226(3):669-677
    [17] Ford G, Ellis EM, Three aldo-keto reductases of the yeast Saccharomycescerevisiae, Chemico-Biological Interactions,2001,130-132:685-698
    [18]Manfred Rizzi, Katharina Harwart, Petra Erlemann, et al, Purification andproperties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis,Journal of Fermentation and Bioengineering,1989,67(1):20-24
    [19]Richard P, Toivari MH, Penttila M, Evidence that the gene YLR070c ofSaccharomyces cerevisiae encodes a xylitol dehydrogenase, FEBS Letters,1999,457(1):135-138
    [20]Munjal N, Mattam AJ, Pramanik D, et al, Modulation of endogenous pathwaysenhances bioethanol yield and productivity in Escherichia coli, Microbial CellFactories,2012,11:145
    [21]Du J, Yuan Y, Si T, et al, Customized optimization of metabolic pathways bycombinatorial transcriptional engineering, Nucleic Acids Research,2012,40(18):e142
    [22]Krahulec S, Petschacher B, Wallner M, et al, Fermentation of mixedglucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: roleof the coenzyme specificity of xylose reductase, and effect of glucose on xyloseutilization, Microbial Cell Factories,2010,9:16
    [23]Peter K tter, Ciriacy M, Xylose fermentation by Saccharomyces cerevisiae,Applied Microbiology and Biotechnology,1993,38(6):776-783
    [24]René Amore, Martin Wilhelm, Hollenberg CP, The fermentation of xylose-ananalysis of the expression of Bacillus and Actinoplanes xylose isomerase genes inyeast, Applied Microbiology and Biotechnology,1989,30(4):351-357
    [25]Ho NWY, Stevis P, Rosenfeld S, et al, Expression of the E. coli xylose isomerasegene by a yeast promoter, Biotechnology and Bioengineering,1983,3(3):245-250
    [26]Moes CJ, Pretorius IS, vanZyl WH, Cloning and expression of the Clostridiumthermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae,Biotechnology Letter,1996,18(3):269-274
    [27]Walfridsson M, Bao X, Anderlund M, et al, Ethanolic fermentation of xylose withSaccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, whichexpresses an active xylose (glucose) isomerase, Applied and EnvironmentalMicrobiology,1996,62(12):4648-4651
    [28]Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Investigation of limitingmetabolic steps in the utilization of xylose by recombinant Saccharomycescerevisiae using metabolic engineering, Yeast,2005,22(5):359-368
    [29]Madhavan A, Tamalampudi S, Ushida K, et al. Xylose isomerase frompolycentric fungus Orpinomyces: gene sequencing, cloning, and expression inSaccharomyces cerevisiae for bioconversion of xylose to ethanol, AppliedMicrobiology and Biotechnology,2009,82(6):1067-1078
    [30]Brat D, Boles E, Wiedemann B, Functional expression of a bacterial xyloseisomerase in Saccharomyces cerevisiae, Applied and EnvironmentalMicrobiology,2009,75(8):2304-2311
    [31]Ha SJ, Kim SR, Choi JH, et al, Xylitol does not inhibit xylose fermentation byengineered Saccharomyces cerevisiae expressing xylA as severely as it inhibitsxylose isomerase reaction in vitro, Applied Microbiology and Biotechnology2011,92(1):77-84
    [32]Jouhten P, Rintala E, Huuskonen A, et al. Oxygen dependence of metabolic fluxesand energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMCSystems Biology,2008,2:60
    [33]Jeppsson M, Bengtsson O, Franke K, et al, Gorwa-Grauslund MF. The expressionof a Pichia stipitis xylose reductase mutant with higher KMfor NADPH increasesethanol production from xylose in recombinant Saccharomyces cerevisiae,Biotechnology and Bioengineering,2006,93(4):665-673
    [34]Watanabe S, Abu Saleh A, Pack SP, et al. Ethanol production from xylose byrecombinant Saccharomyces cerevisiae expressing protein-engineeredNADH-preferring xylose reductase from Pichia stipitis, Microbiology,2007,153(9):3044-3054
    [35]Petschacher B, Nidetzky B, Altering the coenzyme preference of xylosereductase to favor utilization of NADH enhances ethanol yield from xylose in ametabolically engineered strain of Saccharomyces cerevisiae, Microbial CellFactories,2008,17(7):9
    [36]Xiong M, Chen G, Barford J, Alteration of xylose reductase coenzyme preferenceto improve ethanol production by Saccharomyces cerevisiae from high xyloseconcentrations, Bioresource Technology,2011,102(19):9206-9215
    [37]Watanabe S, Kodaki T, Makino K, Complete reversal of coenzyme specificity ofxylitol dehydrogenase and increase of thermostability by the introduction ofstructural zinc, Journal of Biological Chemistry,2005,280(11):10340-103409
    [38]Matsushika A, Inoue H, Watanabe S, et al. Efficient bioethanol production by arecombinant flocculent Saccharomyces cerevisiae strain with agenome-integrated NADP+-dependent xylitol dehydrogenase gene, Applied andEnvironmental Microbiology,2009,75(11):3818-3822
    [39]Krahulec S, Klimacek M, Nidetzky B, Engineering of a matched pair of xylosereductase and xylitol dehydrogenase for xylose fermentation by Saccharomycescerevisiae, Biotechnology Journal,2009,4(5):684-694
    [40]Jeppsson M, Johansson B, Hahn-Hagerdal B, et al, Reduced oxidative pentosephosphate pathway flux in recombinant xylose-utilizing Saccharomycescerevisiae strains improves the ethanol yield from xylose, Applied andEnvironmental Microbiology,2002,68(4):1604-1609
    [41]Roca C, Nielsen J, Olsson L, Metabolic engineering of ammonium assimilation inxylose-fermenting Saccharomyces cerevisiae improves ethanol production,Applied and Environmental Microbiology,2003,69(8):4732-4736
    [42]Zhang GC, Liu JJ, Ding WT, Decreased xylitol formation during xylosefermentation in Saccharomyces cerevisiae due to overexpression ofwater-forming NADH oxidase, Applied and Environmental Microbiology,2012,78(4):1081-1086
    [43]Suga H, Matsuda F, Hasunuma T, et al, Implementation of atranshydrogenase-like shunt to counter redox imbalance during xylosefermentation in Saccharomyces cerevisiae, Applied and EnvironmentalMicrobiology,2013,97(4):1669-1678
    [44]Walfridsson M, Anderlund M, Bao X, et al, Expression of different levels ofenzymes from the Pichia stipitis XYL1and XYL2genes in Saccharomycescerevisiae and its effects on product formation during xylose utilization, AppliedMicrobiology and Biotechnology,1997,48(2):218-224
    [45]Eliasson A, Hofmeyr JHS, Pedler S, et al, The xylose reductase/xylitoldehydrogenase/xylulokinase ratio affects product formation in recombinantxylose-utilising Saccharomyces cerevisiae, Enzyme and Microbial Technology,2001,29(4-5):288-297
    [46]Jeppsson M, Traff K, Johansson B, et al, Effect of enhanced xylose reductaseactivity on xylose consumption and product distribution in xylose-fermentingrecombinant Saccharomyces cerevisiae, FEMS Yeast Research,2003,3(2):167-175
    [47]Matsushika A, Sawayama S, Efficient bioethanol production from xylose byrecombinant Saccharomyces cerevisiae requires high activity of xylose reductaseand moderate xylulokinase activity, Journal of Bioscience and Bioengineering,2008,106(3):306-309
    [48]Jin YS, Jeffries TW, Changing flux of xylose metabolites by altering expressionof xylose reductase and xylitol dehydrogenase in recombinant Saccharomycescerevisiae, Applied Biochemistry and Biotechnology,2003,105-108:277-285
    [49]Kim SR, Ha SJ, Kong, II, et al. High expression of XYL2coding for xylitoldehydrogenase is necessary for efficient xylose fermentation by engineeredSaccharomyces cerevisiae, Metabolic Engineering,2012,14(4):336-343
    [50]Karhumaa K, Fromanger R, Hahn-H gerdal B, et al, High activity of xylosereductase and xylitol dehydrogenase improves xylose fermentation byrecombinant Saccharomyces cerevisiae, Applied Microbiology and Biotechnology,2007,73(5):1039-1046
    [51]Johansson B, Christensson C, Hobley T, et al, Xylulokinase overexpression intwo strains of Saccharomyces cerevisiae also expressing xylose reductase andxylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosichydrolysate, Applied and Environmental Microbiology,2001,67(9):4249-4255
    [52]Toivari MH, Aristidou A, Ruohonen L, et al, Conversion of xylose to ethanol byrecombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) andoxygen availability, Metabolic Engineering2001,3(3):236-249
    [53]Parachin NS, Bergdahl B, van Niel EWJ, et al, Kinetic modelling reveals currentlimitations in the production of ethanol from xylose by recombinantSaccharomyces cerevisiae, Metabolic Engineering,2011,13(5):508-517
    [54]Jin YS, Ni HY, Laplaza JM, et al, Optimal growth and ethanol production fromxylose by recombinant Saccharomyces cerevisiae require moderateD-xylulokinase activity. Applied and Environmental Microbiology,2003,69(1):495-503
    [55]Wahlbom CF, Cordero Otero RR, van Zyl WH, et al, Molecular analysis of aSaccharomyces cerevisiae mutant with improved ability to utilize xylose showsenhanced expression of proteins involved in transport, initial xylose metabolism,and the pentose phosphate pathway, Applied and Environmental Microbiology,2003,69(2):740-746
    [56]Jin YS, Alper H, Yang YT, et al, Improvement of xylose uptake and ethanolproduction in recombinant Saccharomyces cerevisiae through an inversemetabolic engineering approach, Applied and Environmental Microbiology,2005,71(12):8249-8256
    [57]Peng B, Shen Y, Li X, et al, Improvement of xylose fermentation inrespiratory-deficient xylose-fermenting Saccharomyces cerevisiae, MetabolicEngineering,2012,14(1):9-18
    [58]Matsushika A, Goshima T, Fujii T, et al, Characterization of non-oxidativetransaldolase and transketolase enzymes in the pentose phosphate pathway withregard to xylose utilization by recombinant Saccharomyces cerevisiae, E Enzymeand Microbial Technology,2012,51(1):16-25
    [59]Hamacher T, Becker J, Gardonyi M, et al, Characterization of thexylose-transporting properties of yeast hexose transporters and their influence onxylose utilization, Microbiology,2002,148(9):2783-2788
    [60]Young E, Poucher A, Comer A, et al, Functional survey for heterologous sugartransport proteins, using Saccharomyces cerevisiae as a host. Applied andEnvironmental Microbiology,2011,77(10):3311-3319
    [61]Subtil T, Boles E. Competition between pentoses and glucose during uptake andcatabolism in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels,2012,16(5):14
    [62]Young E, Lee SM, Alper H, Optimizing pentose utilization in yeast: the need fornovel tools and approaches, Biotechnology for Biofuels,2010,16(3):24.
    [63]Katahira S, Ito M, Takema H, et al. Improvement of ethanol productivity duringxylose and glucose co-fermentation by xylose-assimilating S. cerevisiae viaexpression of glucose transporter Sut1, Enzyme and Microbial Technology,2008,43(2):115-119
    [64]Runquist D, Fonseca C, Radstrom P, et al, Expression of the Gxf1transporterfrom Candida intermedia improves fermentation performance in recombinantxylose-utilizing Saccharomyces cerevisiae, Applied Microbiology andBiotechnology,2009,82(1):123-130
    [65]Joshua CJ, Dahl R, Benke PI, et al, Absence of diauxie during simultaneousutilization of glucose and xylose by Sulfolobus acidocaldarius, Journal ofBacteriology,2011,193(6):1293-1301
    [66]Hu C, Wu S, Wang Q, et al, Simultaneous utilization of glucose and xylose forlipid production by Trichosporon cutaneum, Biotechnology and Biofuels,2011,4(1):25.
    [67]Sun L, Zeng X, Yan C, et al, Crystal structure of a bacterial homologue of glucosetransporters GLUT1-4, Nature2012,490(7420):361-366
    [68]Zhou H, Cheng JS, Wang B, et al, Xylose isomerase overexpression along withengineering of the pentose phosphate pathway and evolutionary engineeringenable rapid xylose utilization and ethanol production by Saccharomycescerevisiae, Metabolic Engineering,2012,14(6):611-622
    [69]Sonderegger M, Jeppsson M, Hahn-Hagerdal B, et al, Molecular basis foranaerobic growth of Saccharomyces cerevisiae on xylose, investigated by globalgene expression and metabolic flux analysis, Applied and EnvironmentalMicrobiology,2004,70(4):2307-2317
    [70]Klimacek M, Krahulec S, Sauer U, et al, Limitations in xylose-fermentingSaccharomyces cerevisiae, made evident through comprehensive metaboliteprofiling and thermodynamic analysis, Applied and Environmental Microbiology,2010,76(22):7566-7574
    [71]Kwon YD, Kim S, Lee SY, et al, Long-term continuous adaptation of Escherichiacoli to high succinate stress and transcriptome analysis of the tolerant strain.Journal of Bioscience and Bioengineering,2011,111(1):26-30
    [72]Huang CF, Lin TH, Guo GL, et al, Enhanced ethanol production by fermentationof rice straw hydrolysate without detoxification using a newly adapted strain ofPichia stipitis, Bioresource Technology,2009,100(17):3914-3920
    [73]Liu ZL, Slininger PJ, Gorsich SW, Enhanced biotransformation of furfural andhydroxymethylfurfural by newly developed ethanologenic yeast strains, AppliedBiochemistry and Biotechnology,2005,121-124:451-460
    [74]Herring CD, Raghunathan A, Honisch C, et al, Comparative genome sequencingof Escherichia coli allows observation of bacterial evolution on a laboratorytimescale, Nature Genetics,2006,38(12):1406-1412
    [75]Hong KK, Vongsangnak W, Vemuri GN, et al. Unravelling evolutionary strategiesof yeast for improving galactose utilization through integrated systems levelanalysis, Proceedings of the National Academy of Sciences of the United Statesof America,2011,108(29):12179-12184
    [76]Wisselink HW, Toirkens MJ, Wu Q, et al, Novel evolutionary engineeringapproach for accelerated utilization of glucose, xylose, and arabinose mixtures byengineered Saccharomyces cerevisiae strains, Applied and EnvironmentalMicrobiology,2009,75(4):907-914
    [77]Pitkanen JP, Rintala E, Aristidou A, et al, Xylose chemostat isolates ofSaccharomyces cerevisiae show altered metabolite and enzyme levels comparedwith xylose, glucose, and ethanol metabolism of the original strain, AppliedMicrobiology and Biotechnology,2005,67(6):827-837
    [78]Kuyper M, Toirkens MJ, Diderich JA, et al, Evolutionary engineering ofmixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain,FEMS Yeast Research,2005,5(10):925-934
    [79]Portnoy VA, Bezdan D, Zengler K, Adaptive laboratory evolution-harnessing thepower of biology for metabolic engineering, Current Opinion in Biotechnology,2011,22(4):590-594
    [80]Atsumi S, Wu T-Y, Machado IM, et al, Evolution, genomic analysis, andreconstruction of isobutanol tolerance in Escherichia coli, Molecular systemsbiology,2010,6:449
    [81]Shao ZY, Zhao H, Zhao HM, DNA assembler, an in vivo genetic method for rapidconstruction of biochemical pathways, Nucleic Acids Research,2009,37(2):10
    [82]Gietz RD, Schiestl RH, Willems AR, et al, Studies on the transformation of intactyeast cells by the LiAc/SS-DNA/PEG procedure, Yeast,1995,11(4):355-360
    [83]Schmittgen TD, Livak KJ, Analyzing real-time PCR data by the comparative CTmethod, Nature Protocols,2008,3(6):1101-1108
    [84]Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF, Xylose reductase fromPichia stipitis with altered coenzyme preference improves ethanolic xylosefermentation by recombinant Saccharomyces cerevisiae, Biotechnology forBiofuels,2009,5(2):9
    [85]Matsushika A, Watanabe S, Kodaki T, et al, Expression of protein engineeredNADP plus-dependent xylitol dehydrogenase increases ethanol production fromxylose in recombinant Saccharomyces cerevisiae, Applied Microbiology andBiotechnology,2008,81(2):243-255
    [86]Onnela M-L, Suihko M-L, Penttil M, et al, Use of a modified alcoholdehydrogenase, ADH1, promoter in construction of diacetyl non-producingbrewer's yeast, Journal of Biotechnology,1996,49(1):101-109
    [87]Hector RE, Mertens JA, Bowman MJ, et al, Saccharomyces cerevisiae engineeredfor xylose metabolism requires gluconeogenesis and the oxidative branch of thepentose phosphate pathway for aerobic xylose assimilation, Yeast,2011,28(9):645-660
    [88]Matsushika A, Inoue H, Murakami K, et al, Bioethanol production performanceof five recombinant strains of laboratory and industrial xylose-fermentingSaccharomyces cerevisiae, Bioresource Technology,2009,100(8):2392-2398
    [89]Boghigian BA, Salas D, Ajikumar PK, et al, Analysis of heterologous taxadieneproduction in K-and B-derived Escherichia coli, Applied Microbiolology andBiotechnology,2012,93(4):1651-1661
    [90]Lee SM, Jellison T, Alper HS, Directed evolution of xylose isomerase forimproved xylose catabolism and fermentation in the yeast Saccharomycescerevisiae. Applied and Environmental Microbiology,2012,78(16):5708-5716
    [91]Lonn A, Traff-Bjerre KL, Otero RRC, et al, Xylose isomerase activity influencesxylose fermentation with recombinant Saccharomyces cerevisiae strainsexpressing mutated xylA from Thermus thermophilus, Enzyme and MicrobialTechnology,2003,32(5):567-573
    [92]Futcher AB, Copynumber amplification of the2μm circle plasmid ofSaccharomyces cerevisiae, Journal of Theoretical Biology,1986,119(2):197-204
    [93]Kuyper M, Winkler A, Vandijken J, et al, Minimal metabolic engineering of forefficient anaerobic xylose fermentation: a proof of principle, FEMS YeastResearch,2004,4(6):655-664
    [94]Chen SH, Hwang DR, Chen GH, et al, Engineering transaldolase in Pichiastipitis to improve bioethanol production, ACS Chemical Biology,2011,7(3):481-486
    [95]Zhang A, Cheng T-O, Wu X, et al, Extracellular Mg2+regulates intracellular Mg2+and its subcellular compartmentation in fission yeast, Schizosaccharomycespombe, Cellular and Molecular Life Sciences,1997,53(1):69-72
    [96]Salusjarvi L, Kankainen M, Soliymani R, et al, Regulation of xylose metabolismin recombinant Saccharomyces cerevisiae, Microbial Cell Factories,2008,7:18
    [97]Karhumaa K, Pahlman AK, Hahn-Hagerdal B, et al, Proteome analysis of thexylose-fermenting mutant yeast strain TMB3400, Yeast,2009,26(7):371-382
    [98]Gonzalez R, Tao H, Shanmugam KT, et al, Global gene expression differencesassociated with changes in glycolytic flux and growth rate in Escherichia coliduring the fermentation of glucose and xylose, Biotechnology Progress,2002,18(1):6-20
    [99]Smith KM, Liao JC. An evolutionary strategy for isobutanol production straindevelopment in Escherichia coli, Metabolic Engineering,2011,13(6):674-681
    [100] Martin C, Marcet M, Almazan O, et al, Adaptation of a recombinantxylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagassehydrolysate with high content of fermentation inhibitors, Bioresource Technology,2007,98(9):1767-1773
    [101] Sonderegger M, Jeppsson M, Larsson C, et al, Fermentation performance ofengineered and evolved xylose-fermenting Saccharomyces cerevisiae strains,Biotechnology and Bioengineering,2004,87(1):90-98
    [102] Lee DH, Palsson B, Adaptive evolution of Escherichia coli K-12MG1655during growth on a nonnative carbon source, L-1,2-propanediol, Applied andEnvironmental Microbiology,2010,76(13):4158-4168
    [103] Garcia Sanchez R, Karhumaa K, Fonseca C, et al, Improved xylose andarabinose utilization by an industrial recombinant Saccharomyces cerevisiaestrain using evolutionary engineering, Biotechnology and Biofuels,2010,3:13.
    [104] Fong SS, Burgard AP, Herring CD, et al, In silico design and adaptiveevolution of Escherichia coli for production of lactic acid, Biotechnology andBioengineering,2005,91(5):643-648
    [105] Runquist D, Hahn-Hagerdal B, Bettiga M, Increased ethanol productivity inxylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylosereductase, Applied and Environmental Microbiology,2010,76(23):7796-7802
    [106] Yu X, Liu T, Zhu F, et al, In vitro reconstitution and steady-state analysis ofthe fatty acid synthase from Escherichia coli, Proceedings of the NationalAcademy of Sciences,2011,108(46):18643-18648
    [107] Liu T, Vora H, Khosla C, Quantitative analysis and engineering of fatty acidbiosynthesis in Escherichia coli, Metabolic Engineering,2010,12(4):378-386
    [108] Gautier EL, Shay T, Miller J, et al, Gene expression profiles andtranscriptional regulatory pathways that underlie the identity and diversity ofmouse tissue macrophages, Nature immunology,2012,13(11):1118-1128
    [109] Tanghe A, Van Dijck P, Dumortier F, et al, Aquaporin expression correlateswith freeze tolerance in baker's yeast, and overexpression improves freezetolerance in industrial strains, Applied and Environmental Microbiology,2002,68(12):5981-5989
    [110] Jin YS, Laplaza JM, Jeffries TW, Saccharomyces cerevisiae engineered forxylose metabolism exhibits a respiratory response, Applied and EnvironmentalMicrobiology,2004,70(11):6816-6825
    [111] Overkamp KM, Bakker BM, Kotter P, et al, In vivo analysis of themechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiaemitochondria, Journal of Bacteriology,2000,182(10):2823-2830
    [112] Herrero P, Galindez J, Ruiz N, et al, Transcriptional regulation of theSaccharomyces cerevisiae HXK1, HXK2and GLK1genes, Yeast,1995,11(2):137-144
    [113] Pearce AK, Crimmins K, Groussac E, et al, Pyruvate kinase (Pyk1) levelsinfluence both the rate and direction of carbon flux in yeast under fermentativeconditions, Microbiology,2001,147(2):391-401
    [114] Westfall PJ, Pitera DJ, Lenihan JR, et al, Production of amorphadiene inyeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarialagent artemisinin, Proceedings of the National Academy of Sciences of theUnited States of America,2012,109(3):111-118
    [115] Ajikumar PK, Xiao WH, Tyo KEJ, et al, Isoprenoid pathway optimization fortaxol precursor overproduction in Escherichia coli, Science,2010,330(6000):70-74
    [116] Metzger MH, Hollenberg CP, Isolation and characterization of the Pichiastipitis transketolase gene and expression in a xylose-utilising Saccharomycescerevisiae transformant, Applied Microbiolology and Biotechnology,1994,42(2-3):319-325
    [117] Larsson C, Pahlman IL, Gustafsson L, The importance of ATP as a regulatorof glycolytic flux in Saccharomyces cerevisiae, Yeast,2000,16(9):797-809
    [118] Wisselink HW, Cipollina C, Oud B, et al, Metabolome, transcriptome andmetabolic flux analysis of arabinose fermentation by engineered Saccharomycescerevisiae, Metabolic Engineering,2010,12(6):537-551
    [119] Usher J, Balderas-Hernandez V, Quon P, et al, Chemical and syntheticgenetic array analysis identifies genes that suppress xylose utilization andfermentation in Saccharomyces cerevisiae, G3: Genes, Genomes, Genetics,2011,1(4):247-258
    [120] FitzPatrick M, Champagne P, Cunningham MF, et al, A biorefineryprocessing perspective: Treatment of lignocellulosic materials for the productionof value-added products, Bioresource Technology,2010,101(23):8915-8922
    [121] Fatih Demirbas M. Biorefineries for biofuel upgrading: a critical review.Applied Energy,2009,86:151-161.
    [122] Kumar S, Singh SP, Mishra IM, et al, Ethanol and xylitol production fromglucose and xylose at high temperature by Kluyveromyces sp. IIPE453. Journal ofIndustrial and Microbiology Biotechnology,2009,36(12):1483-1489
    [123] Granstrom TB, Izumori K, Leisola M, A rare sugar xylitol. Part I: thebiochemistry and biosynthesis of xylitol, Applied Microbiology andBiotechnology,2007,74(2):277-281
    [124] Wang X, Lussi A, Functional foods/ingredients on dental erosion. EuropeanJournal of Nutrition,2012,51(2):39-48
    [125] Kim YS, Kim SY, Kim JH, et al, Xylitol production using recombinantSaccharomyces cerevisiae containing multiple xylose reductase genes atchromosomal delta-sequences, Journal of Biotechnology,1999,67(2-3):159-171
    [126] Hallborn J, Walfridsson M, Airaksinen U, et al, Xylitol production byrecombinant Saccharomyces cerevisiae, Nature Biotechnology,1991,9(11):1090-1095
    [127] Carlson M, Glucose repression in yeast, Current Opinion in Microbiology1999,2(2):202-207
    [128] Trumbly RJ, Glucose repression in the yeast Saccharomyces cerevisiae,Molecular microbiology,1992,6(1):15-21
    [129] Westergaard SL, Oliveira AP, Bro C, et al, A systems biology approach tostudy glucose repression in the yeast Saccharomyces cerevisiae, Biotechnologyand Bioengineering,2007,96(1):134-145
    [130] Bae SM, Park YC, Lee TH, et al, Production of xylitol by recombinantSaccharomyces cerevisiae containing xylose reductase gene in repeated fed-batchand cell-recycle fermentations, Enzyme and Microbial Technology,2004,35(6-7):545-549
    [131] Thestrup HN, Hahn-Hagerdal B, Xylitol formation and reduction equivalentgeneration during anaerobic xylose conversion with glucose as cosubstrate inrecombinant Saccharomyces cerevisiae expressing the xyl1gene, Applied andEnvironmental Microbiology,1995,61(5):2043-2045
    [132] Ha SJ, Galazka JM, Kim SR, et al, Engineered Saccharomyces cerevisiaecapable of simultaneous cellobiose and xylose fermentation, Proceedings of theNational Academy of Sciences of the United States of America,2011,108(2):504-509.
    [133] Oh EJ, Ha SJ, Rin Kim S, et al, Enhanced xylitol production throughsimultaneous co-utilization of cellobiose and xylose by engineeredSaccharomyces cerevisiae, Metabolic Engineering,2013,15:226-234
    [134] Cheng KK, Zhang JA, Chavez E, et al, Integrated production of xylitol andethanol using corncob, Applied Microbiolology and Biotechnology,2010,87(2):411-417
    [135] Hector RE, Qureshi N, Hughes SR, et al, Expression of a heterologousxylose transporter in a Saccharomyces cerevisiae strain engineered to utilizexylose improves aerobic xylose consumption, Applied Microbiology andBiotechnology,2008,80(4):675-684
    [136] Roca E, Meinander N, Hahn–H gerdal B, Xylitol production by immobilizedrecombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor.Biotechnology and Bioengineering,1996,51(3):317-326
    [137] Nair NU, Zhao H, Selective reduction of xylose to xylitol from a mixture ofhemicellulosic sugars, Metabolic Engineering,2010,12(5):462-468
    [138] Lee WJ, Kim MD, Ryu YW, et al, Kinetic studies on glucose and xylosetransport in Saccharomyces cerevisiae, Applied Microbiology and Biotechnology,2002,60(1):186-191
    [139] Jojima T, Omumasaba CA, Inui M, et al, Sugar transporters in efficientutilization of mixed sugar substrates: current knowledge and outlook, AppliedMicrobiology and Biotechnology,2010,85(3):471-480
    [140] Sun Y, Cheng J, Hydrolysis of lignocellulosic materials for ethanolproduction: a review, Bioresource Technology,2002,83(1):1-11
    [141] Cheng H, Wang B, Lv J, et al, Xylitol production from xylose mother liquor:a novel strategy that combines the use of recombinant Bacillus subtilis andCandida maltose, Microbial Cell Factories,2011,10:5
    [142] Kato H, Suyama H, Yamada R, et al, Improvements in ethanol productionfrom xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiaestrains, Applied Microbiolology and Biotechnology,2012,94(6):1585-1592

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700