重组酿酒酵母木糖发酵生产乙醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
D-木糖是自然界中含量仅次于葡萄糖的碳水化合物,在全球化石能源日渐枯竭,环境污染日益严重形势下,将木糖高效转化为乙醇将对全球经济和环境产生巨大的影响。Saccharomyces cerevisiae在己糖发酵上具有天然的优势,但是S. serevisiae不具备代谢木糖能力。
     本研究采用重组DNA技术,化学诱变和适应性进化筛选结合起来构建工业木糖发酵菌株。首先通过重组DNA技术将P. stipitis的木糖还原酶基因XYL1和木糖醇脱氢酶基因XYL2以及酵母内源的木酮糖激酶基因XKS1,整合到经修饰的单倍体酵母工业菌株KAM-2中,所得重组菌株LEK122具备基本的代谢木糖能力,再通过化学诱变(EMS)和适应性进化筛选方法结合作用于基因工程改造菌株,获得在木糖上的生长能力,木糖代谢能力大幅提高的优势菌株LEK513。在好氧条件下木糖作为单一碳源时,LEK513最大比生长速率是0.225h-1,而LEK122是0.055h-1。当在微好氧条件下,LEK513最大比生长速率是0.205h-1,与好氧条件下相比无显著差距。在100小时分批发酵中,LEK513的最终OD可以到达60,而LEK122仅为7.5。在相同时间内,LEK513消耗掉培养基中95%的木糖,而LEK122仅消耗20%。同时,LEK513在微好氧条件下比在好氧条件下可以多生产11%的乙醇。这表明基于理性设计的基因工程改造与随机筛选方法相结合可以更有效的构建符合工业要求的木糖发酵生产乙醇的S. cerevisiae菌株。
     S. serevisiae中的非氧化磷酸戊糖途径(PPP途径)的代谢通量较低,以PGK1启动子过表达PPP全部四个基因(TAL1, TKL1, RKI1, RPE1),同时缺失促进木糖醇产生的转醛酶基因GRE3。以此作为出发菌株(LEK625),通过Western blot实验,获得在木糖为单一碳源时,调控表达强度较高的启动子作为引入木糖代谢通路的首选,将调控XYL1的启动子更换为TPI1启动子,将调控XYL2和内源XKS1的启动子更换为HXT7 truncated启动子,更换了启动子的表达系统整合到出发菌株染色体获得菌株LEK631,对比先前使用的启动子系统的菌株LEK630,结果如下:两株菌均以OD600=0.6接入YPX(50g/L)液体培养基中进行分批发酵培养,在216h发酵过程中,测得LEK630 OD600最高为7.0,而LEK631是31.2;发酵过程消耗总木糖比例LEK630为11.9%,而LEK631是96.8%;最高乙醇浓度LEK630为1.052g/L,而LEK631是7.575g/L。发酵结果显示,更换了木糖还原酶、木糖醇脱氢酶以及木酮糖激酶的启动子后,重组菌株的生长能力、木糖消耗能力和乙醇产量都大幅提高。
     使用融合PCR技术合成Piromyces的木糖异构酶基因xylA,将其与木酮糖激酶基因XKS1在HXT7 truncated启动子调控下整合到LEK625染色体上实现过量表达,所得菌株具备木糖代谢、生长能力,但是在发酵液中没有检测到乙醇的产生。
D-Xylose is the second most abundant carbohydrate in nature, which is considered to be of great economic and environmental significance for future biofuels. While Saccharomyces cerevisiae has natural advantage in ethanolic fermentation of hexose, it is incapable of xylose utilization.
     In the first part of the work, we describe the construction of a S. cerevisiae strain via combined approaches of recombinant DNA technology, chemical mutagenesis and evolutionary adaptation for an efficient xylose utilization and ethanol fermentation. A haploid derivative of an industrial ethanol fermenting strain KAM-2 was first engineered to functionally express the XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK). The resulting recombinant strain LEK122, which has acquired basic xylose-utilizing ability, was then subjected to EMS mutagenesis followed by adaptive evolution, resulting a single isolate, LEK513, that displayed significantly improved xylose-utilizing property. The specific growth rate of the LEK513 strain was 0.225h-1 under aerobic condition with xylose as the sole carbon source, while that of the LEK122 was 0.055h-1. When cultured under oxygen-limited condition, the specific growth rate of LEK513 was 0.205h-1 comparable to that under aerobic condition. During 100 hour batch cultivation, the optical density of LEK513 reached 60, while LEK122 only grew to 7.5. In the same time period, LEK513 consumed 95% of the xylose in the medium, while LEK122 only consumed 20% of the xylose in the medium. The LEK513 strain produced 11% more ethanol in oxygen-limited fermentation than it did in aerobic fermentation. The significantly improved xylose-utilizing property demonstrated the feasibility of the combination of rational and random approaches in construction of efficient xylose-utilizing, ethanol fermenting S. cerevisiae strains for industrial application.
     The flux through the nonoxidative PPP in S. cerevisiae is insufficient, so the four genes involved in nonoxidative PPP (TAL1, TKL1, RKI1, RPE1) were overexpressed by the PGK1 promoter and the GRE3 gene encoding endogenous xylose (aldose) reductase which mediates unwanted production of xylitol was deleted to construct a original strain. In consideration of Western blot results when xylose as sole carbon source, the relatively strong promoter TPI1 promoter and HXT7 truncated promoter were chosed to introduce the xylose assimilation pathway into the yeast. The new xylose assimilating cassette with ADH1 promoter replaced by TPI1 promoter and PGK1 promoter replaced by HXT7 truncated promoter was inserted into genome of original strain to generate the strain LEK631, compared with strain LEK630 in which using the ADH1 & PGK1 promoter to express xylose assimilating pathway, the fermentation results as follows: both of them were taken to inoculate YPX(50g/L) with an initial cell concentration of OD600=0.6, in 216h batch cultivation, the final OD600 of LEK630 was 7.0, whereas LEK631 was 31.2; LEK630 consumed 11.9% of total xylose, whereas LEK631 consumed 96.8%; and the highest ethanol concentration during fermentation period in LEK630 was 1.052g/L, whereas in LEK631 that was 7.575g/L. From the results, the changing of the promoters significantly improved growth ability, xylose-utilizing and ethanol-yielding property. The Piromyces xylose isomerase gene xylA that synthesized by fusion PCR and endogenous XKS1 gene were placed under the control of HXT7 truncated promoter. Both of them were inserted into original strain genome, the resulting strain could grow on the medium that xylose as sole carbon source, but no ethanol was detected in fermentation broth.
引文
[1] Hayn M., Steiner W., Klinger R., et al. Basic research and pilot studies on the enzymatic conversion of lignocellulosics. Wallingford UK: CAB International; 1993.33-72.
    [2] Mosier N., Wyman C., Dale B., et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 2005;96(6):673-686.
    [3] Galbe M.,Zacchi G. A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology. 2002;59(6):618-628.
    [4] Kellogg S. T., Chatterjee D. K.,Chakrabarty A. M. Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science. December 4, 1981 1981;214(4525):1133-1135.
    [5] Timmis K. N., Rojo F.,Ramos J. L. In Environmental Biotechnology. New York, NY: Plenum Press; 1988.61-69.
    [6] MacQuitty J. J. Impact of biotechnology on the chemical industry. ACS Symposium Series 1988;362:11-29.
    [7] Tong I. T., Liao H. H.,Cameron D. C. 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl. Environ. Microbiol. December 1, 1991 1991;57(12):3541-3546.
    [8] Nerem R. Cellular engineering. Annals of Biomedical Engineering. 1991;19(5):529-545.
    [9] Stephanopoulos G.,Vallino J. J. Network rigidity and metabolic engineering in metabolite overproduction. Science. June 21, 1991 1991;252(5013):1675-1681.
    [10] Bailey J. E. Toward a science of metabolic engineering. Science. June 21, 1991 1991;252(5013):1668-1675.
    [11] Walfridsson M., Hallborn J., Penttila M., et al. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol. Dec 1995;61(12):4184-4190.
    [12] Alterthum F.,Ingram L. O. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl. Environ. Microbiol. August 1, 1989 1989;55(8):1943-1948.
    [13] Underwood S. A., Buszko M. L., Shanmugam K. T., et al. Lack of Protective Osmolytes Limits Final Cell Density and Volumetric Productivity of Ethanologenic Escherichia coli KO11 during Xylose Fermentation. Appl. Environ. Microbiol. May 1, 2004 2004;70(5):2734-2740.
    [14] Ingram L. O., Conway T., Clark D. P., et al. Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. October 1, 1987 1987;53(10):2420-2425.
    [15] Beall D. S., Ohta K.,Ingram L. O. Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnology and Bioengineering. 1991;38(3):296-303.
    [16] Ohta K., Beall D. S., Mejia J. P., et al. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. April 1, 1991 1991;57(4):893-900.
    [17] Yomano L. P., York S. W.,Ingram L. O. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology and Biotechnology. 1998;20(2):132-138.
    [18] Tao H., Gonzalez R., Martinez A., et al. Engineering a Homo-Ethanol Pathway in Escherichia coli: Increased Glycolytic Flux and Levels of Expression of Glycolytic Genes during Xylose Fermentation. J. Bacteriol. May 15, 2001 2001;183(10):2979-2988.
    [19] Barbosa M. F., Beck M. J., Fein J. E., et al. Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl. Environ. Microbiol. April 1, 1992 1992;58(4):1382-1384.
    [20] Asghari A., Bothast R. J., Doran J. B., et al. Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineeredEscherichia coli strain KO11. Journal of Industrial Microbiology and Biotechnology. 1996;16(1):42-47.
    [21] Lawford H. G.,Rousseau J. D. Loss of ethanologenicity in Escherichia coli B recombinants pLOI297 and KO11 during growth in the absence of antibiotics. Biotechnology Letters. 1995;17(7):751-756.
    [22] Lawford H.,Rousseau J. Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pL0I297 and KO11. Applied Biochemistry and Biotechnology. 1996;57-58(1):293-305.
    [23] Dumsday G. J., Zhou B., Yaqin W., et al. Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture. Journal of Industrial Microbiology and Biotechnology. 1999;23(1):701-708.
    [24] Hespell R. B., Wyckoff H., Dien B. S., et al. Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities. Appl. Environ. Microbiol. December 1, 1996 1996;62(12):4594-4597.
    [25] Dien B. S., Hespell R. B., Wyckoff H. A., et al. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme and Microbial Technology. 1998;23(6):366-371.
    [26] Dien B. S., Iten L. B.,Bothast R. J. Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. Journal of Industrial Microbiology and Biotechnology. 1999;22(6):575-581.
    [27] Dien B., Nichols N., O'Bryan P., et al. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology. 2000;84-86(1):181-196.
    [28] Nichols N. N., Dien B. S.,Bothast R. J. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Applied Microbiology and Biotechnology. 2001;56(1):120-125.
    [29] Jesus Zaldivar A. M. L. O. I. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering. 1999;65(1):24-33.
    [30] Jesus Zaldivar A. M. L. O. I. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering. 2000;68(5):524-530.
    [31] Jesus Zaldivar L. O. I. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnology and Bioengineering. 1999;66(4):203-210.
    [32] Alfredo Martinez, York S. W., Yomano L. P., et al. Biosynthetic Burden and Plasmid Burden Limit Expression of Chromosomally Integrated Heterologous Genes (pdc,adhB) in Escherichia coli. Biotechnology Progress. 1999;15(5):891-897.
    [33] Underwood S. A., Buszko M. L., Shanmugam K. T., et al. Flux through Citrate Synthase Limits the Growth of Ethanologenic Escherichia coli KO11 during Xylose Fermentation. Appl. Environ. Microbiol. March 1, 2002 2002;68(3):1071-1081.
    [34] Underwood S. A., Zhou S., Causey T. B., et al. Genetic Changes To Optimize Carbon Partitioning between Ethanol and Biosynthesis in Ethanologenic Escherichia coli. Appl. Environ. Microbiol. December 1, 2002 2002;68(12):6263-6272.
    [35] Rogers P. L., Lee K. J., Skotnicki M. L., et al. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. 1982;23:37-84.
    [36] Alfenore S., Cameleyre X., Benbadis L., et al. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Applied Microbiology and Biotechnology. 2004;63(5):537-542.
    [37] Sprenger G. A. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiology Letters. 1996;145(3):301-307.
    [38] Rogers P., Lee K., Skotnicki M., et al. Ethanol production by Zymomonas mobilis. Microbial Reactions; 1982:37-84.
    [39] Doelle M. B., Millichip R. J.,Doelle H. W. Production of ethanol from corn using inoculum cascading of Zymomonas mobilis. Process Biochemistry. 1989;24:137-140.
    [40] Millichip R. J.,Doelle H. W. Large-scale ethanol production from Milo (Sorghum) using Zymomonas mobilis. Process biochemistry. 1989;24(44):141-145.
    [41] Jeffries T. W. Ethanol fermentation on the move. Nat Biotechnol. Jan 2005;23(1):40-41.
    [42] Zhang M., Eddy C., Deanda K., et al. Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis. Science. January 13, 1995 1995;267(5195):240-243.
    [43] Parker C., Barnell W. O., Snoep J. L., et al. Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Molecular Microbiology. 1995;15(5):795-802.
    [44] Joachimsthal E.,Rogers P. Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Applied Biochemistry and Biotechnology. 2000;84-86(1):343-356.
    [45] Jesus Zaldivar,Ingram L. O. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnology and Bioengineering. 1999;66(4):203-210.
    [46] Lawford H., Rousseau J., Mohagheghi A., et al. Fermentation performance characteristics of a prehydrolyzate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations. Applied Biochemistry and Biotechnology. 1999;77(1):191-204.
    [47] Joachimsthal E., Haggett K.,Rogers P. Evaluation of recombinant strains of Zymomonas mobilis for ethanol production from glucose/xylose media. Applied Biochemistry and Biotechnology. 1999;77(1):147-157.
    [48] Freer S. N., Detroy R. W.,USDA A. Characterization of cellobiose fermentations to ethanol by yeasts. Biotechnology and bioengineering. 1983;25:541-557.
    [49] Ohta K., Beall D. S., Mejia J. P., et al. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl. Environ. Microbiol. October 1, 1991 1991;57(10):2810-2815.
    [50] Wood B. E.,Ingram L. O. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. July 1, 1992 1992;58(7):2103-2110.
    [51] Brooks T. A.,Ingram L. O. Conversion of Mixed Waste Office Paper to Ethanol by Genetically Engineered Klebsiella oxytoca Strain P2. Biotechnology Progress. 1995;11(6):619-625.
    [52] Doran J. B., Aldrich H. C.,Ingram L. O. Saccharification and fermentation of Sugar Cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnology and Bioengineering. 1994;44(2):240-247.
    [53] Moniruzzaman M., Dien B. S., Ferrer B., et al. Ethanol production from AFEX pretreated corn fiber by recombinant bacteria. Biotechnology Letters. 1996;18(8):985-990.
    [54] Doran J., Cripe J., Sutton M., et al. Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Applied Biochemistry and Biotechnology. 2000;84-86(1):141-152.
    [55] Golias H., Dumsday G. J., Stanley G. A., et al. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. Journal of Biotechnology. 2002;96(2):155-168.
    [56] Zhou S.,Ingram L. O. Synergistic Hydrolysis of Carboxymethyl Cellulose and Acid-Swollen Cellulose by Two Endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. J. Bacteriol. October 15, 2000 2000;182(20):5676-5682.
    [57] Zhou S., Davis F. C.,Ingram L. O. Gene Integration and Expression and Extracellular Secretion of Erwinia chrysanthemi Endoglucanase CelY (celY) and CelZ (celZ) in Ethanologenic Klebsiella oxytoca P2. Appl. Environ. Microbiol. January 1, 2001 2001;67(1):6-14.
    [58] Toivola A., Yarrow D., Van Den Bosch E., et al. Alcoholic Fermentation of D-Xylose by Yeasts. Appl. Environ. Microbiol. June 1, 1984 1984;47(6):1221-1223.
    [59] Jeffries T. W., Grigoriev I. V., Grimwood J., et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol. Mar 2007;25(3):319-326.
    [60] Klinner U., Fluthgraf S., Freese S., et al. Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Applied Microbiology and Biotechnology. 2005;67(2):247-253.
    [61] du Preez J. C. Process parameters and environmental factors affecting -xylose fermentation by yeasts. Enzyme and Microbial Technology. 1994;16(11):944-956.
    [62] Parekh S.,Wayman M. Fermentation of cellobiose and wood sugars to ethanol byCandidashehatae andPichiastipitis. Biotechnology Letters. 1986;8(8):597-600.
    [63] Nigam J. N. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. Journal of Biotechnology. 2002;97(2):107-116.
    [64] Kilian S. G.,Uden N. Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Applied Microbiology and Biotechnology. 1988;27(5):545-548.
    [65] Agbogbo F. K., Coward-Kelly G., Torry-Smith M., et al. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry. 2006;41(11):2333-2336.
    [66] Ligthelm M. E., Prior B. A., Preez J. C., et al. An investigation of d-1-13C xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Applied Microbiology and Biotechnology. 1988;28(3):293-296.
    [67] Verduyn C., Van Kleef R., Frank J., et al. Properties of the NAD (P) H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochemical Journal. 1985;226(3):669-677.
    [68] Debus D., Methner H., Schulze D., et al. Fermentation of xylose with the yeast Pachysolen tannophilus. Applied Microbiology and Biotechnology. 1983;17(5):287-291.
    [69] Jeppsson H., Alexander N. J.,Hahn-Hagerdal B. Existence of Cyanide-Insensitive Respiration in the Yeast Pichia stipitis and Its Possible Influence on Product Formation during Xylose Utilization. Appl. Environ. Microbiol. July 1, 1995 1995;61(7):2596-2600.
    [70] Shi N.-Q., Davis B., Sherman F., et al. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast. 1999;15(11):1021-1030.
    [71] Shi N. Q., Cruz J., Sherman F., et al. SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast. Oct 2002;19(14):1203-1220.
    [72] Laplaza J. M., Torres B. R., Jin Y.-S., et al. Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis. Enzyme and Microbial Technology. 2006;38(6):741-747.
    [73] Gorgens J. F., Passoth V., van Zyl W. H., et al. Amino acid supplementation, controlled oxygen limitation and sequential double induction improves heterologous xylanase production by Pichia stipitis. FEMS Yeast Research. 2005;5(6-7):677-683.
    [74] Slininger P., Dien B., Gorsich S., et al. Nitrogen source and mineral optimization enhance d -xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Applied Microbiology and Biotechnology. 2006;72(6):1285-1296.
    [75] Guebel D. V., Cordenons A., Cascone O., et al. Influence of the nitrogen source on growth and ethanol production byPichia stipitis NRRL Y-7124. Biotechnology Letters. 1992;14(12):1193-1198.
    [76] Agbogbo F.,Wenger K. Effect of pretreatment chemicals on xylose fermentation by Pichia stipitis. Biotechnology Letters. 2006;28(24):2065-2069.
    [77] Mahler G.,Nudel C. Effect of magnesium ions on fermentative and respirative functions in Pichia stipitis under oxygen-restricted growth. Microbiological research. 2000;155(1):31-35.
    [78] Skoog K.,Hahn-Hagerdal B. Effect of Oxygenation on Xylose Fermentation by Pichia stipitis. Appl. Environ. Microbiol. November 1, 1990 1990;56(11):3389-3394.
    [79] Passoth V., Zimmermann M.,Klinner U. Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Applied Biochemistry and Biotechnology. 1996;57-58(1):201-212.
    [80] Delgenes J. P., Moletta R.,Navarro J. M. The effect of aeration on D-xylose fermentation byPachysolen tannophilus,Pichia stipitis,Kluyveromycesmarxianus andCandida shehatae. Biotechnology Letters. 1986;8(12):897-900.
    [81] Grootjen D. R. J., van der Lans R. G. J. M.,Luyben K. C. A. M. Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme and Microbial Technology. 1990;12(1):20-23.
    [82] du Preez J. C., Bosch M.,Prior B. A. Xylose fermentation by Candida shehatae and Pichia stipitis: effects of pH, temperature and substrate concentration. Enzyme and Microbial Technology. 1986;8(6):360-364.
    [83] Chamy R.,Nunez M. J. Product Inhibition of Fermentation of Xylose to Ethanol by Free and Immobilized Pichia-Stipitis. Enzyme and Microbial Technology. 1994;16:622-626.
    [84] Meyrial V., Delgenes J. P., Romieu C., et al. Ethanol tolerance and activity of plasma membrane ATPase in Pichia stipitis grown on -xylose or on -glucose. Enzyme and Microbial Technology. 1995;17(6):535-540.
    [85] Parekh S. R., Parekh R. S.,Wayman M. Fermentation of wood-derived acid hydrolysates in a batch bioreactor and in a continuous dynamic immobilized cell bioreactor by Pichia stipitis R. Process biochemistry. 1987;22(3):85-91.
    [86] Eken-Sara?o?lu N.,Arslan Y. Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnology Letters. 2000;22(10):855-858.
    [87] Van Zyl C., Prior B.,Du Preez J. Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Applied Biochemistry and Biotechnology. 1988;17(1):357-369.
    [88] Agbogbo F.,Wenger K. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. Journal of Industrial Microbiology and Biotechnology. 2007;34(11):723-727.
    [89] Tran A. V.,Chambers R. P. Ethanol fermentation of red oak acid prehydrolysate by the yeast Pichia stipitis CBS 5776. Enzyme and Microbial Technology. 1986;8(7):439-444.
    [90] Delgenes J. P., Moletta R.,Navarro J. M. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology. 1996;19(3):220-225.
    [91] Liu Z. L., Slininger P. J., Dien B. S., et al. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. Journal of Industrial Microbiology and Biotechnology. 2004;31(8):345-352.
    [92] Liu Z., Slininger P.,Gorsich S. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Applied Biochemistry and Biotechnology. 2005;121(1):451-460.
    [93] Delgenes J. P., Moletta R.,Navarro J. M. The ethanol tolerance of Pichia stipitis Y 7124 grown on a d-xylose, d-glucose and l-arabinose mixture. Journal of Fermentation Technology. 1988;66(4):417-422.
    [94] Agbogbo F., Haagensen F., Milam D., et al. Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis. Applied Biochemistry and Biotechnology. 2008;145(1):53-58.
    [95] Chiang L.-C., Gong C.-S., Chen L.-F., et al. D-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl. Environ. Microbiol. August 1, 1981 1981;42(2):284-289.
    [96] Wang P. Y., Shopsis C.,Schneider H. Fermentation of a pentose by yeasts. Biochemical and Biophysical Research Communications. 1980;94(1):248-254.
    [97] Ho N. W., Chen Z., Brainard A. P., et al. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol. 1999;65:163-192.
    [98] Zaldivar J., Borges A., Johansson B., et al. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol. Aug 2002;59(4-5):436-442.
    [99] Wahlbom C. F., van Zyl W. H., Jonsson L. J., et al. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res. May 2003;3(3):319-326.
    [100] Sedlak M.,Ho N. W. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol. Spring 2004;113-116:403-416.
    [101] Sonderegger M., Jeppsson M., Larsson C., et al. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng. Jul 5 2004;87(1):90-98.
    [102] Karhumaa K., Wiedemann B., Hahn-Hagerdal B., et al. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact. 2006;5:18.
    [103] Hahn-Hagerdal B., Karhumaa K., Fonseca C., et al. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol. Apr 2007;74(5):937-953.
    [104] Hahn-Hagerdal B.,Pamment N. Microbial pentose metabolism. Appl Biochem Biotechnol. 2004;113-116:1207-1209.
    [105] ?hgren K., Bengtsson O., Gorwa-Grauslund M. F., et al. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology. 2006;126(4):488-498.
    [106] Olsson L., Soerensen H., Dam B., et al. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology. 2006;129(1):117-129.
    [107] Helle S. S., Murray A., Lam J., et al. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresource Technology. 2004;92(2):163-171.
    [108] Katahira S., Mizuike A., Fukuda H., et al. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Applied Microbiology and Biotechnology. 2006;72(6):1136-1143.
    [109] Walker G. M. Yeast physiology and biotechnology. New York: Wiley; 1998.
    [110] Chen W. Process Biochemistry. 1980;15:30-35.
    [111] Hickman J.,Ashwell G. Purification and propertites of D-Xylulokinase in liver. J. Biol. Chem. June 1, 1958 1958;232(2):737-748.
    [112] Harhangi H. R., Akhmanova A. S., Emmens R., et al. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol. Aug 2003;180(2):134-141.
    [113] Bruinenberg P. M., Bot P. H. M., Dijken J. P., et al. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology. 1984;19(4):256-260.
    [114] Bolen P. L., Roth K. A.,Freer S. N. Affinity Purifications of Aldose Reductase and Xylitol Dehydrogenase from the Xylose-Fermenting Yeast Pachysolen tannophilus. Appl. Environ. Microbiol. October 1, 1986 1986;52(4):660-664.
    [115] Rizzi M, Erlemann P, Bui-Thanh N-A, et al. Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Applied Microbiology and Biotechnology. 1988;29:148-154.
    [116] Rizzi M., Harwart K., Bui-Thanh N.-A., et al. A kinetic study of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. Journal of Fermentation and Bioengineering. 1989;67(1):25-30.
    [117] Yang V.,Jeffries T. Purification and properties of xylitol dehydrogenase from the xylose-fermenting yeast Candida shehatae. Applied Biochemistry and Biotechnology. 1990;26(2):197-206.
    [118] Deng X.,Ho N. Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Applied Biochemistry and Biotechnology. 1990;24-25(1):193-199.
    [119] Rodriguez-Pe?a J.M., Cid V. J., Arroyo J., et al. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 1998;162(1):155-160.
    [120] Kuhn A., van Zyl C., van Tonder A., et al. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. April 1, 1995 1995;61(4):1580-1585.
    [121] Richard P., Toivari M. H.,Penttil M. Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Letters. 1999;457(1):135-138.
    [122] Toivari M. H., Salusjarvi L., Ruohonen L., et al. Endogenous Xylose Pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. June 1, 2004 2004;70(6):3681-3686.
    [123] Attfield P. V.,Bell P. J. L. Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Research. Sep1 2006;6(6).
    [124] K?tter P, Amore R, Hollenberg CP, et al. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet. 1990;18(6):493-500.
    [125] K?tter P.,Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 1993;38(6):776-783.
    [126] Tantirungkij M., Nakashima N., Seki T., et al. Construction of xylose-assimilating Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering. 1993;75(2):83-88.
    [127] McMillan J.,Boynton B. Arabinose utilization by xylose-fermenting yeasts and fungi. Applied Biochemistry and Biotechnology. 1994;45-46(1):569-584.
    [128] Bruinenberg P. M., Bot P. H. M., Dijken J. P., et al. The role of redox balances in the anaerobic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology. 1983;18(5):287-292.
    [129] Eliasson A., Hofmeyr J.-H. S., Pedler S., et al. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology. 2001;29(4-5):288-297.
    [130] Walfridsson M., Anderlund M., Bao X., et al. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol. Aug 1997;48(2):218-224.
    [131] Jin Y. S.,Jeffries T. W. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol. Spring 2003;105 -108:277-286.
    [132] Karhumaa K., Fromanger R., Hahn-Hagerdal B., et al. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol. Jan 2007;73(5):1039-1046.
    [133] Cornishbowden A., Hofmeyr J. H. S.,Cardenas M. L. Strategies for Manipulating Metabolic Fluxes in Biotechnology. Bioorganic Chemistry. 1995;23(4):439-449.
    [134] Gong C.-S., Chen L.-F., Flickinger M. C., et al. Production of Ethanol from D-Xylose by Using D-Xylose Isomerase and Yeasts. Appl. Environ. Microbiol. February 1, 1981 1981;41(2):430-436.
    [135] Briggs K. A., Lancashire W. E.,Hartley B. S. Molecular cloning, DNA structure and expression of the Escherichia coli D-xylose isomerase. Embo J. Mar 1984;3(3):611-616.
    [136] Sarthy A. V., McConaughy B. L., Lobo Z., et al. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol. Sep 1987;53(9):1996-2000.
    [137] Amore R., Wilhelm M.,Hollenberg C. P. The fermentation of xylose—an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Applied Microbiology and Biotechnology. 1989;30(4):351-357.
    [138] Moes C. J., Pretorius I. S.,Zyl W. H. Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xyLA) in Saccharomyces cerevisiae. Biotechnology Letters. 1996;18(3):269-274.
    [139] Schründer J., Gunge N.,Meinhardt F. Extranuclear Expression of the Bacterial Xylose Isomerase ( xyl A) and the UDP-Glucose Dehydrogenase ( has B) Genes in Yeast with Kluyveromyces lactis Linear Killer Plasmids as Vectors. Current Microbiology. 1996;33(5):323-330.
    [140] Gárdonyi M.,Hahn-H?gerdal B. The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme and Microbial Technology. 2003;32(2):252-259.
    [141] Dekker K., Yamagata H., Sakaguchi K., et al. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J Bacteriol. May 1991;173(10):3078-3083.
    [142] Karhumaa K., Hahn-Hagerdal B.,Gorwa-Grauslund M. F. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast. Apr 15 2005;22(5):359-368.
    [143] Kuyper M., Harhangi H. R., Stave A. K., et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. Oct 2003;4(1):69-78.
    [144] Haynes G. S. F. R. J. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. European Journal of Soil Science. 1993;44(4):10.
    [145] Schleif R. Regulation of the -arabinose operon of Escherichia coli. Trends in Genetics. 2000;16(12):559-565.
    [146] Watanabe S., Shimada N., Tajima K., et al. Identification and Characterization of L-Arabonate Dehydratase, L-2-Keto-3-deoxyarabonate Dehydratase, and L-Arabinolactonase Involved in an Alternative Pathway of L-Arabinose Metabolism: NOVEL EVOLUTIONARY INSIGHT INTO SUGAR METABOLISM. J. Biol. Chem. November 3, 2006 2006;281(44):33521-33536.
    [147] Aarnikunnas J. S., Pihlajaniemi A., Palva A., et al. Cloning and Expression of a Xylitol-4-Dehydrogenase Gene from Pantoea ananatis. Appl. Environ. Microbiol. January 1, 2006 2006;72(1):368-377.
    [148] Stephens C., Christen B., Fuchs T., et al. Genetic Analysis of a Novel Pathway for D-Xylose Metabolism in Caulobacter crescentus. J. Bacteriol. March 1, 2007 2007;189(5):2181-2185.
    [149] Richard P., Londesborough J., Putkonen M., et al. Cloning and Expression of a Fungal L-Arabinitol 4-Dehydrogenase Gene. J. Biol. Chem. October 26, 2001 2001;276(44):40631-40637.
    [150] Richard P., Putkonen M., Vaananen R., et al. The Missing Link in the Fungal l-Arabinose Catabolic Pathway, Identification of the l-Xylulose Reductase Gene. Biochemistry. 2002;41(20):6432-6437.
    [151] Fonseca C., Spencer-Martins I.,Hahn-H?gerdal B. l-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Applied Microbiology and Biotechnology. 2007;75(2):303-310.
    [152] Barnett J. A. A Biochemical Interpretation of Some Taxonomic Differences Between Yeasts[ast]. Nature. 1966;210(5036):565-568.
    [153] Shi N.-Q., Prahl K., Hendrick J., et al. Characterization and complementation of a Pichia stipitis mutant unable to grow on d -xylose or l -arabinose. Applied Biochemistry and Biotechnology. 2000;84-86(1):201-216.
    [154] Van Kuyk P. A., de Groot M. J., Ruijter G. J., et al. The Aspergillus nigerd-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on d-xylose and l-arabinose. European Journal of Biochemistry. 2001;268(20):5414-5423.
    [155] Dien B., Kurtzman C., Saha B., et al. Screening forl -arabinose fermenting yeasts. Applied Biochemistry and Biotechnology. 1996;57-58(1):233-242.
    [156] Sedlak M.,Ho N. W. Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol. Jan 2 2001;28(1):16-24.
    [157] Becker J.,Boles E. A Modified Saccharomyces cerevisiae Strain That Consumes L-Arabinose and Produces Ethanol. Appl. Environ. Microbiol. July 1, 2003 2003;69(7):4144-4150.
    [158] Kou S.-C., Christensen M. S.,Cirillo V. P. Galactose Transport in Saccharomyces cerevisiae II. Characteristics of Galactose Uptake and Exchange in Galactokinaseless Cells. J. Bacteriol. September 1, 1970 1970;103(3):671-678.
    [159] Richard P., Verho R., Putkonen M., et al. Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Research. 2003;3(2):185-189.
    [160] Alexander N. J. Acetone stimulation of ethanol production from d-xylose by Pachysolen tannophilus. Applied Microbiology and Biotechnology. 1986;25(3):203-207.
    [161] Ligthelm M. E., Prior B. A.,Du Preez J. C. Effect of hydrogen acceptors on D-xylose fermentation by anaerobic culture of immobilized Pachysolen tannophilus cells. Biotechnology and Bioengineering. 1989;33(7):839-844.
    [162] Wahlbom C. F.,Hahn-Hagerdal B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering. 2002;78(2):172-178.
    [163] Visser W., Scheffers W. A., Batenburg-van der Vegte W. H., et al. Oxygen requirements of yeasts. Appl. Environ. Microbiol. December 1, 1990 1990;56(12):3785-3792.
    [164] Hamacher T., Becker J., Gardonyi M., et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. Sep 2002;148(Pt 9):2783-2788.
    [165] Sedlak M.,Ho N. W. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast. Jun 2004;21(8):671-684.
    [166] Saloheimo A., Rauta J., Stasyk O. V., et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol. Apr 2007;74(5):1041-1052.
    [167] Leandro M. J., Gon?alves P.,Spencer-martins I. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J. May 1, 2006 2006;395(3):543-549.
    [168] Jeppsson M., Bengtsson O., Franke K., et al. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng. Mar 5 2006;93(4):665-673.
    [169] Saleh A. A., Watanabe S., Annaluru N., et al. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. NUCLEIC ACIDS SYMP SER (OXF). November 1, 2006 2006;50(1):279-280.
    [170] Johansson B.,Hahn-Hagerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. Aug 2002;2(3):277-282.
    [171] Kuyper M., Winkler A. A., van Dijken J. P., et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. Mar 2004;4(6):655-664.
    [172] Karhumaa K., Garcia Sanchez R., Hahn-Hagerdal B., et al. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact. 2007;6:5.
    [173] Jeppsson M., Tr?ff K., Johansson B., et al. Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research. 2003;3(2):167-175.
    [174] Yamanaka K. Inhibition of D-xylose isomerase by pentitols and D-lyxose. Archives of biochemistry and biophysics. 1969;131(2):502-506.
    [175] Traff K. L., Otero Cordero R. R., van Zyl W. H., et al. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol. Dec 2001;67(12):5668-5674.
    [176] L?nna A., Tr?ff-Bjerrea K. L., Cordero Oterob R. R., et al. Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme and Microbial Technology. 2003;32(5):567-573.
    [177] Kuyper M., Hartog M. M., Toirkens M. J., et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. Feb 2005;5(4-5):399-409.
    [178] Tr?ff-Bjerre K. L., Jeppsson M., Hahn-H?gerdal B., et al. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast. 2004;21(2):141-150.
    [179] Eliasson A., Boles E., Johansson B., et al. Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol. Apr 2000;53(4):376-382.
    [180] Toivari M. H., Aristidou A., Ruohonen L., et al. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng. Jul 2001;3(3):236-249.
    [181] Tantirungkij M., Izuishi T., Seki T., et al. Fed-batch fermentation of xylose by a fast-growing mutant of xylose-assimilating recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 1994;41(1):8-12.
    [182] Ho N. W., Chen Z.,Brainard A. P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol. May 1998;64(5):1852-1859.
    [183] Eliasson A., Christensson C., Wahlbom C. F., et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol. Aug 2000;66(8):3381-3386.
    [184] Teusink B., Walsh M. C., van Dam K., et al. The danger of metabolic pathways with turbo design. Trends in Biochemical Sciences. 1998;23(5):162-169.
    [185] Johansson B., Christensson C., Hobley T., et al. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol. Sep 2001;67(9):4249-4255.
    [186] Jin Y. S., Ni H., Laplaza J. M., et al. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol. Jan 2003;69(1):495-503.
    [187] Fiaux J., Cakar Z. P., Sonderegger M., et al. Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell. Feb 2003;2(1):170-180.
    [188] Gancedo J. M.,Lagunas R. Contribution of the pentosephosphate pathway to glucose metabolism in S. cerevisiae: a critical analysis on the use of labelled glucose. Plant Sci Letters 1973;1:193-198.
    [189] Schaaff I., Hohmann S.,Zimmermann F., K. . Molecular analysis of the structural gene for yeast transaldolase. European Journal of Biochemistry. 1990;188(3):597-603.
    [190] Senac T.,Hahn-Hagerdal B. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts. Appl. Environ. Microbiol. June 1, 1991 1991;57(6):1701-1706.
    [191] Sonderegger M., Jeppsson M., Hahn-Hagerdal B., et al. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol. Apr 2004;70(4):2307-2317.
    [192] Pitk?nen J.-P., Rintala E., Aristidou A., et al. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Applied Microbiology and Biotechnology. 2005;67(6):827-837.
    [193] Jin Y. S., Alper H., Yang Y. T., et al. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol. Dec 2005;71(12):8249-8256.
    [194] Metzger M. H.,Hollenberg C. P. Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant. Applied Microbiology and Biotechnology. 1994;42(2):319-325.
    [195] Johansson B.,Hahn-H?gerdal B. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast. 2002;19(3):225-231.
    [196] Jeppsson M., Johansson B., Hahn-Hagerdal B., et al. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol. Apr 2002;68(4):1604-1609.
    [197] Verho R., Londesborough J., Penttila M., et al. Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. October 1, 2003 2003;69(10):5892-5897.
    [198] Nissen T. L., Anderlund M., Nielsen J., et al. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast. 2001;18(1):19-32.
    [199] Jeppsson M., Johansson B., Jensen P. R., et al. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast. 2003;20(15):1263-1272.
    [200] Verho R., Richard P., Jonson P. H., et al. Identification of the First Fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry. 2002;41(46):13833-13838.
    [201] Bro C., Regenberg B., F?rster J., et al. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metabolic Engineering. 2006;8(2):102-111.
    [202] Roca C., Nielsen J.,Olsson L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol. Aug 2003;69(8):4732-4736.
    [203] Muller S., Boles E., May M., et al. Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J. Bacteriol. August 1, 1995 1995;177(15):4517-4519.
    [204] Meinander N. Q.,Hahn-Hagerdal B. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol. May 1997;63(5):1959-1964.
    [205] Jin Y. S., Laplaza J. M.,Jeffries T. W. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol. Nov 2004;70(11):6816-6825.
    [206] Roca C., Haack M. B.,Olsson L. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol. Feb 2004;63(5):578-583.
    [207] Sonderegger M., Schumperli M.,Sauer U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl Environ Microbiol. May 2004;70(5):2892-2897.
    [208] Ruohonen L., Aristidou A., Frey A. D., et al. Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions. Enzyme and Microbial Technology. 2006;39(1):6-14.
    [209] Sauer U. Evolutionary Engineering of Industrially Important Microbial Phenotypes. Metabolic Engineering; 2001:129-169.
    [210] Sonderegger M.,Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol. Apr 2003;69(4):1990-1998.
    [211] Hahn-H?gerdal B., Jeppsson H., Olsson L., et al. An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydroysate. Applied Microbiology and Biotechnology. 1994;41(1):62-72.
    [212] Klinke H. B., Thomsen A. B.,Ahring B. K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology. 2004;66(1):10-26.
    [213] Hahn-H?gerdal B., Galbe M., Gorwa-Grauslund M. F., et al. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends in Biotechnology. 2006;24(12):549-556.
    [214] Bothast R. J., Nichols N. N.,Dien B. S. Fermentations with New Recombinant Organisms. Biotechnology Progress. 1999;15(5):867-875.
    [215] Liu Z. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Applied Microbiology and Biotechnology. 2006;73(1):27-36.
    [216] von Sivers M.,Zacchi G. Ethanol from lignocellulosics: A review of the economy. Bioresource Technology. 1996;56:131-140.
    [217] Schell D. J., Dowe N., Ibsen K. N., et al. Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresource Technology. 2007;98(15):2942-2948.
    [218] Zhang Z., Moo-Young M.,Chisti Y. Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnology Advances. 1996;14(4):401-435.
    [219] Hahn-Hagerdal B., Karhumaa K., Larsson C., et al. Role of cultivation media in the development of yeast strains for large scale industrial use. Microbial Cell Factories. 2005;4(1):31.
    [220] Bruinenberg P. M. The NADP(H) redox couple in yeast metabolism. Antonie van Leeuwenhoek. 1986;52(5):411-429.
    [221] Boles E., Lehnert W.,Zimmermann F. K. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. European Journal of Biochemistry. 1993;217(1):469-477.
    [222] Kuyper M., Toirkens M. J., Diderich J. A., et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. Jul 2005;5(10):925-934.
    [223] Wisselink H. W., Toirkens M. J., Wu Q., et al. A novel evolutionary engineering approach for accelerated utilization of glucose, xylose and arabinose mixtures by engineered Saccharomyces cerevisiae. Appl Environ Microbiol. Dec 12 2008.
    [224] Hauf J., Zimmermann F. K.,Muller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol. Jun 1 2000;26(9-10):688-698.
    [225] Walfridsson M., Bao X., Anderlund M., et al. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol. Dec 1996;62(12):4648-4651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700