介质阻挡放电等离子体对酵母细胞作用机理及诱变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压介质阻挡放电(DBD)等离子体中含有大量的电子、离子、激发态原子和分子及自由基等活性粒子,以及电场、紫外线,能在较短时间内达到很高的灭菌效率,并不损害灭菌物质表面结构,同时具备低温、易操作等优点,受到越来越多的关注。然而DBD等离子体对微生物的作用机理还不是很清楚,将其用于诱变微生物的相关研究工作开展较少,尤其是诱变真菌尚未见报道。本论文着重研究了大气压DBD空气等离子体对酿酒酵母(Saccharomyces cerevisiae)的生物学效应以及对产乙醇菌株S. cerevisiae ATCC 4126和Candida shehatae CICC1766的诱变效应,主要研究结果如下:
     1.等离子体处理对酵母细胞具有显著的生物学效应。大气压DBD空气等离子体在均方根(root-mean-square, RMS)放电电压为12.0 kV,频率为20 kHz,放电间隙为4 mm,处理S. cerevisiae菌液深度为2 mm的条件下,引起酵母细胞在短时间内大量死亡。通过吉姆萨染色发现等离子体处理时间越长,细胞着色越深;S. cerevisiae胞外蛋白质和核酸含量随着处理时间的延长显著增加,表明等离子体可能破坏了酵母细胞的细胞膜,引起细胞通透性增加,导致胞内蛋白质和核酸渗漏到胞外。同时,等离子体处理引起细胞生长延迟,细胞周期阻滞于G1期,表明DNA可能受到损伤。
     2.等离子体诱导酵母细胞的氧化应激。等离子体处理不仅能使去离子水中的活性氧化物含量显著增加,而且也使S. cerevisiae胞内的活性氧物质(reactive oxygen species, ROS)含量显著增加,酵母胞内、外总抗氧化能力(total antioxidant capability, T-AOC)和胞内谷胱甘肽还原酶(glutathione reductase, GR)活力都有不同程度提高,丙二醛含量也随着处理时间的延长而不断增加。等离子体处理后再将细胞培养3h,胞内超氧化物歧化酶(superoxide dismutases, SOD)和过氧化氢酶(catalase, CAT)比活力依然增强。这些结果表明,DBD空气等离子体对酵母菌产生了一定的氧化损伤,并引发酵母细胞的氧化应激。除了直接作用于细胞表面导致细胞损伤甚至死亡外,等离子体引起的细胞内氧化应激也可能是引起细胞损伤、甚至死亡的重要原因之一。
     3.等离子体对酿酒酵母产乙醇能力的刺激效应。用DBD空气等离子体处理S.cerevisiae菌,筛选耐高温、耐高浓度底物的高产乙醇菌株。将等离子体处理4 min筛选的单菌落接种到葡萄糖浓度为30g/L的培养基中,在40℃下培养,获得8株具有正效应的菌株,其乙醇产量较对照菌株提高13.7~40.4%。正效应菌株在葡萄糖浓度为100 g/L的培养基中370C下培养作进一步的验证,其中的5株菌仍保持良好的乙醇生产性能,乙醇产量分别比对照提高了2.5~6.6%;提高培养温度和底物葡萄糖的初始浓度作进一步的筛选,在葡萄糖初始浓度分别为100 g/L和300 g/L的培养基中40℃培养,发现先前的几株菌未显示出高产乙醇的优势,而重新诱变筛选出的菌株则表现出高产特性,但经多次传代培养后,高产性状丧失。这些结果表明等离子体对S. cerevisiae菌体有一定的激活作用,可以获得耐高温、耐高浓度底物并高产乙醇的正效应菌株,但获得稳定遗传的正突变菌株还有待进一步研究。
     4.等离子体对利用木糖产乙醇的休哈塔假丝酵母细胞的诱变效应。用DBD空气等离子体处理C. shehatae CICC1766,诱变、筛选高效利用木糖生产乙醇的菌株。经过TTC指示剂法平板筛选和摇瓶发酵实验的验证,继代培养15次获得3株性状变化明显且稳定遗传的突变株,分别命名为C80828, C81015和C81020。其中C80828, C81015为正突变株,在TTC平板上显色比野生菌株深,在木糖培养基中的乙醇产量也显著高于野生型菌株。在50g/L木糖发酵培养基中,到发酵至120 h时,C80828的乙醇产量比对照高出8.2%;C81015的产量高出36.2%(P<0.05)。但C81015的生物量明显低于对照,表明C81015细胞的比乙醇生成速率显著提高。研究发现C81015中NADH/NADPH-木糖还原酶(xylose reductase, XR)和NAD+-木糖醇脱氢酶(xylitol dehydrogenase, XDH)比活力分别比对照提高了34.1%(P<0.01),61.5%(P<0.05)和66.3%(P<0.01)。而以葡萄糖为底物时,C81015的乙醇产量几乎与野生菌株相同,表明DBD空气等离子体影响C. shehatae木糖代谢关键酶XR和XDH的活力,从而影响C. shehatae突变株利用木糖产乙醇的能力。而菌株C81020为负突变株,与野生菌株相比,以木糖为底物产乙醇的量很低,两个关键酶活力也显著降低,但生物量有所提高。SDS-PAGE分析表明其胞内总蛋白图谱与野生型明显不同,表明等离子体可能对该菌株产生了遗传毒性。
     5.等离子体对木糖利用关键酶的突变效应。对突变株C81015和野生菌株木糖还原酶和木糖醇脱氢酶的基因XYL1和XYL2的序列进行检测和比对。序列比对结果发现,与野生型菌株相比,突变株C81015 XYL1中有3个碱基不同,从野生型菌株到突变株C81015的碱基改变(ATT→GGT, AAT→AAG)导致了氨基酸残基的变化(Ile309→Gly309, Asn314→Lys314)。而在XYL2序列对比中发现,突变株C81015与野生型有6处碱基不同,分别位于序列的前、中、后部。其中基因序列中部碱基的不同(AGT->GGT, TTC→CTC)导致了氨基酸残基变化(Ser185→Gly185, Phe189→Leu189)。而位于基因序列前、后部的不同碱基并未引起相应位置氨基酸残基的改变。
     总之,DBD空气等离子体产生的ROS是导致酵母损伤以及死亡的重要原因之一。DBD空气等离子体能引起酵母细胞的氧化应激,导致胞内DNA和蛋白质损伤、基因的改变。因此DBD空气等离子体除了应用于物质的表面灭菌外,还能用来诱变S. cerevisiae和木糖利用菌株C. shehatae,来筛选高产乙醇的突变株。
Atmospheric pressure Dielectric Barrier Discharge (DBD) air plasma composes of electron, ions, excited atoms and molecules, free radicals, and other active particles, as well as electric field and ultraviolet radiation, and thus is an efficient way for non-invasive surface sterilization. In addition, the plasma with low temperature is easy to be operated. Thus, it has attracted more and more attention. However, the mechanism of the plasma on micro-organisms sterilization is still not clear. On the other hand, the plasma, as a source of various active particles, has rarely been used as a mutagen for strain development. In this study, the biological effect of the plasma on the yeast Saccharomyces cerevisiae were investigated, and its mutagesis on ethanologenic strains, S. cerevisiae ATCC 4126 and Candida shehatae CICC1766 were further examined.
     1. The biological effect induced by the plasma on S. cerevisiae. The plasma was obtained at a root-mean-square (RMS) voltage of 12.0 kV and a frequency of 20 kHz. S. cerevisiae cells were suspended in water with a pool of 2 mm in depth. A discharge gap of 4 mm between the surface of the sample and the tip of the upper electrode was applied. After plasma discharge, the cells showed extensive death. The longer the treatment time, the more intense stained color the cells exhibited. And in the meantime, the plasma-treated cells exhibited significant increases in extracellular protein and nucleic acid concentrations, suggesting that these macromolecules were released from the cells, possibly via the leakages in the cell membranes. In addition, retardance in cell growth also occurred, and the plasma-treated cells showed cell cycle arrested at their G1 phase, and this arrest effect increased with the increase of the treatment time, indicating the presence of intracellular DNA damage.
     2. Oxidative stress induced by the plasma on S. cerevisiae. For the plasma-treated S. cerevisiae cells, the concentration of reactive oxygen species (ROS) within the cells increased significantly, leading to the activation of total intracellular and extracellular antioxidant capability (T-AOC), and intracellular glutathione reductase (GR). Intracellular malondialdehyde (MDA) content also increased with the increase of the plasma treatment time. After 3 h of re-incubation following plasma treatment, the specific activities of intracellular superoxide dismutases (SODs) and catalase increased. These results indicated that the plasma might have inflicted oxidative damage on the yeast cells and exerted oxidative stress, witch could be the cause of cell damage, or even cell death.
     3. The stimulation effect of the plasma on ethanol production of S. cerevisiae. The plasma was used to improve the ethanol production of S. cerevisiae isolates when they were cultured under high temperature and substrate concentration conditions. Using the medium containing 30 g/L glucose and incubated at 40℃,8 clones were isolated as positive strains, and their ethanol production was enhanced from 13.7 to 40.4%, compared to their wild type. When they were cultured with the medium containing 100 g/L glucose under 37℃,5 isolates could maintain their improved ethanol production, which was enhanced from 2.5 to 6.6%, compared to their wild type. When these isolates were subsequently cultured under 100 g/L and 300 g/L glucose at 40℃, their ethanol production couldn't maintain. More plasma-treated clones with improved ethanol production were selected with 300 g/L glucose medium and under 40℃; however, they couldn't maintain their improved ethanol production with subcultures, either, indicating that the plasma might have some stimulate effect on S. cerevisiae cells for a while, and further work needs to be done to obtain stable positive mutants.
     4. The mutation effect of the plasma on the xylose-fermenting yeast C. shehatae. The plasma was used to enhance ethanol production of the xylose-fermenting yeast, C. shehatae CICC1766. Three stable mutants, C80828, C81015 and C81020 were isolated by 15 subcultures that switched between TTC medium incubation and flask culture. Among them, C80828 and C81015, which showed more intense red color on the TTC plate, and exhibited higher ethanol production, compared to the wild type were designated as positive mutants. With the medium containing 50 g/L xylose, C80828 enhanced ethanol production by 8.2%, and C81015 by 36.2%, compared to their wild type (P<0.05). However, the biomass production of C81015 was significantly lower than that of its wild type, indicating its specific ethanol productivity of C81015 increased significantly. At the same time, the specific activities of NADH- and NADPH-linked xylose reductases (XR) and NAD+-linked xylitol dehydrogenase (XDH) of C81015 (as measured in the cell extract) increased by 34.1%(P<0.01),61.5%(P<0.05) and 66.3%(P<0.01), respectively, compared to its wild type. However, no difference in ethanol production from glucose between C81015 and its wild type was detected. In contrast, C81020 was a negative mutant and showed decrease in ethanol production, with significantly lower XR and XDH specific activities. These results indicated that the DBD air plasma might affect with XR and XDH to influent the ethanol production of mutant C81015. In addition, more biomass was harvested in xylose-containing medium of C81020. SDS-PAGE of the total intracellular proteins of C81020 showed bands that differed from its wild type, suggesting that the plasma might have genotoxic effect on the C. shehatae.
     5. The mutagenesis of the plasma on key enzymes for xylose consumption. The genes XYL1 and XYL2, which encodes for XR and XDH, respectively, in the mutant C81015 and the wild type were sequenced. The XYL1 sequence of C81015 had three nucleotide changes compared to its wild type, resulting in the codon changes ATT->GGT and AAT→AAG, which corresponds to two amino acid substitutions, Ile309→Gly309 and Asn314→Lys314. In the XYL2 sequence of C81015, six nucleotides were found to be different from the wild type, covering the beginning, middle and end parts of the sequence. However, only the nucleotide changes in the middle of the sequence, AGT→GGT and TTC→CTC, resulted in amino acid substitution, Ser185→Gly185 and Phe189→Leu189, respectively.
     In conclusion, ROS produced in the DBD air plasma was one of the most important factors causing cell damage, even cell death. The DBD air plasma can induce oxidative stress in yeast cells, cause DNA damage, protein leakage and gene changes, which can be used to generate mutants from yeast with improved ethanol production, either regular S. cerevisiae or xylose-fermenting C. shehatae in addition to sterilization.
引文
[1]孙杏凡.等离子体及其应用[M].北京:高等教育出版社.1982.
    [2]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社.1983.
    [3]任兆杏,丁振峰.低温等离子体技术[J].自然杂志,1996,18(4):201-207.
    [4]马腾才.低温等离子体物理进展[J].力学进展,1990,20(3):373-378.
    [5]孙爱萍.低温等离子体应用中的几个理论问题[D].成都:核工业西南物理研究院,2000.
    [6]吴承康.我国等离子体工艺研究进展[J].物理,1999,7:388-393.
    [7]孟月东,钟少锋,熊新阳.低温等离子体技术应用研究进展[J].物理,2006,35(2):140-146.
    [8]张玉文.冷等离子体氢还原金属氧化物的基础研究[D].上海:上海大学,2004.
    [9]冯允平.高电压技术中的气体放电及其应用[M].水利电力出版社.1989.
    [10]于红.大气压下等离子体失活微生物的机理研究[D].大连:大连理工大学,2006.
    [11]Yagi S, Kuzumoto M. Silent discharges in ozonisers and CO2 lasere [J], Australian Journal of Physics, (48):411-418.
    [12]Eliasson B, Kogelschatz U. Nonequilibrium bolume plasma chemical procession [J]. IEEE Transactions on Plasma Science,1991,19(6):10633-1077.
    [13]Diaz R, Menendez D, Tabares F. High frequency ozone generation system [J]. Ozone Science & Engineering,2001,23(2):171-176.
    [14]Xu X J. Dielectric barrier discharge properties and applications [J]. Thin Solid Films,2001,390:237-242.
    [15]Gaunt L F, Beggs C B, Georghiou G E. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure:A review [J]. IEEE Transactions on Plasma Science,2006,34(4):1257-1269.
    [16]Menashi W P. Treatment of surfaces [P]. US 3383163,1968.
    [17]Kylian O, Rauscher H, Gilliland D, et al. Removal of model proteins by means of low-pressure inductively coupled plasma discharge [J]. Journal of Physics D:Applied Physics,2008,41(9): 5201.1-5201.8.
    [18]Deng X T, Shi J J, Chen H L, et al. Protein destruction by atmospheric pressure glow discharges [J]. Applied Physics Letters,2007,90(1):3903.1-3903.3.
    [19]Coulombe S, Leveille V, Yonson S, et al. Miniature atmospheric pressure glow discharge torch (APGD-t) for local biomedical applications [J]. Pure and Applied Chemistry,2006,78(6):1147-1156.
    [20]Kieft I E, Kurdi M, Stoffels E. Reattachment and apoptosis after plasma-needle treatment of cultured [J]. IEEE Transactions on Plasma Science,2006,34:1331-1336.
    [21]Stoffels E, Kieft I E, Sladek R E J, et al. Plasma needle for in vivo medical treatment:recent developments and perspectives [J]. Plasma Sources Science and Technology,2006,15:169-180.
    [22]Fridman G, Peddinghaus M, Ayan H, et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air [J]. Plasma Chemistry and Plasma Processing, 2006,26:425-442.
    [23]Shekhter A B, Serezhenkov V A, Rudenko T G, et al. Beneficial effect of gaseous nitric oxide on the healing of skin wounds [J]. Nitric Oxide-Biology and Chemistry,2005,12(4):210-219.
    [24]Akitsu T, Ohkawa H, Tsuji M, et al. Plasma sterilization using glow discharge at atmospheric pressure [J]. Surface & Coatings Technology,2005,193:29-34.
    [25]Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine [J]. Plasma Processes and Polymers, 2008,5:1-31.
    [26]de Jonge E, Levi M. Effects of different plasma substitutes on blood coagulation:A comparative review [J]. Critical Care Medicine,2001,29(6):1261-1267.
    [27]Laroussi M, Richardson J P, Dobbs F C. Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology [J]. Applied Physics Letters,2002, 81(4):772-774.
    [28]Montie T C, Kimberly K W, Roth J R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials [J]. IEEE Transactions on Plasma Science,2000,28(1):41-50.
    [29]Abramzon N, Joaquin J C, Bray J, et al. Biofilm destruction by RF high-pressure cold plasma jet [J]. IEEE Transactions on Plasma Science,2006,34(4):1304-1309.
    [30]Laroussi M. Sterilization of contamined matter with an atmospheric pressure plasma [J]. IEEE Transactions on Plasma Science,1996,24(3):1188-1191.
    [31]Laroussi M, Sayler G S, Glascock B B, et al. Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure [J]. IEEE Transactions on Plasma Science,1999,27(1): 34-35.
    [32]Garate E, Gomostaeva O, Alexeff I, et al. Sterilization and decontamination of sufaces using atmospheric pressure plasma discharges [C].26th IEEE International Conference on Plasma Science, Monterey, California, USA,1999, P.202.
    [33]Kelly-Wintenberg K, Hodge A, Montie T C, et al. Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms [J]. The Journal of Vacuum Science and Technology A,1999,17(4):1539-1544.
    [34]Birmingham J, Chemical and bacterial decontamination using a micromachined plasma discharge [C]. 27th IEEE International Conference on Plasma Science, New Orleans, LA,2000, P.108.
    [35]Bray J, Joaquin J C, Brelles M G, et al. Destruction of bacterial communities using gas discharge plasma [C].32nd IEEE International Conference on Plasma Science, Monterey, California, USA,2005, P.154.
    [36]Joaquin J C, Kwan C, Bray J D, et al. Kinetics and microscopic studies of plasma-assisted biofilm destruction [C].33rd IEEE International Conference on Plasma Science, Traverse City, Michgan, USA 2006, P.404.
    [37]Goree J, Liu B, Drake D, et al. Killing of S. mutants Bacteria using a plasma needle at atmospheric pressure [J]. IEEE Transactions on Plasma Science,2006,34(4):1317-1324.
    [38]Cooper M, Fridman G, Vaze N, et al. Sterilization and complete removal of bacteria using atmospheric pressure plasmas [C].35th IEEE International Conference on Plasma Science, Karlsruhe, Germany, 2008, P.162.
    [39]Gallagher M J, Gutsol A, Fridman A, et al. Non-thermal plasma applications in air sterilization [C]. 31st IEEE International Conference on Plasma Science, Baltimore Maryland, USA,2004, P.198.
    [40]Tak G, Gallagher M, Gangoli S, et al. Use of non-thermal atmospheric pressure plasma for air cleaning and sterilization [C].32nd IEEE International Conference on Plasma Science, Monterey, California, USA,2005, P.259.
    [41]Balasundaram A, Alexeff I, Pradeep E P, et al. Sterilization of spores using a direct current steady state atmospheric pressure plasma pischarge apparatus [C].34th IEEE International Conference on Plasma Science, New Mexico, USA,2007, P.262.
    [42]Vicoveanu D, Ohtsu Y, Fujita H. Pulsed discharge effects on bacteria inactivation in low-pressure radio-frequency oxygen plasma [J]. Japanese Journal of Applied Physics,2008,47(2):1130-1135.
    [43]Venezia R A, Orrico M, Houston E, et al. Lethal activity of nonthermal plasma sterilization against microorganisms [J]. Infection Control and Hospital Epidemiology,2008,29(5):430-436.
    [44]Yu H, Xiu Z L, Ren C S, et al. Inactivation of yeast by dielectric barrier discharge(DBD) plasma in helium at atmospheric pressure [J]. IEEE Transactions on Plasma Science,2005,33(4):145-1409.
    [45]Hou Y M, Dong X Y, Xiu Z L, Hydrolysis of biomacromolecules by dielectric barrier discharge plasma in helium at atmospheric pressure [J]. IEEE Transactions on Plasma Science,2008,36(4): 1633-1637.
    [46]Laroussi M, Minayeva O, Dobbs F C, et al. Spores survivability after exposure to low-temperature plasmas [J]. IEEE Transactions on Plasma Science,2006,34(4):1253-1256.
    [47]Fridman G, Ayan H, Fridman A, et al. Sterilization of living human and animal tissue by non-thermal atmospheric pressure dielectric barrier discharge plasma [C]. IEEE Pulsed Power and Plasma Science Conference, Albuquerque, New Mexico,2007, P.673.
    [48]Nojima H, Inseon S, Shin M H, et al. Atmospheric pressure plasma device releasing atomic hydrogen: experimental study on skin cell protective effect [C]. IEEE Pulsed Power and Plasma Science Conference, Albuquerque, New Mexico,2007, P.341.
    [49]Beggs C B. A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms [J]. Photochemical & Photobiological Science,2002,1(6):431-437.
    [50]Pierce B, Malott C, Sayler G S, et al. Decontamination of media by a gaseous discharge at atmospheric pressure [C].25th IEEE International Conference on Plasma Science,1998, P.287.
    [51]Choi J H, Baik H K. Analysis about sterilization by patterned surface discharge in air [C].31st IEEE International Conference on Plasma Science, Baltimore Maryland, USA,2004, P.109.
    [52]Herrmann H W, Henins I, Park J, et al. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet [J]. Physics Plasmas,1999,6(5):2284-2289.
    [53]Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure [J]. International Journal of Mass Spectrometry,2004,233(1-3):81-86.
    [54]Challenger O, Braven J, Harwooda D, et al. Negative air ionisation and the generation of hydrogen peroxide [J]. The Science of the Total Environment,1996,177:215-219.
    [55]Goldstein N I, Goldstein R N, Merzlyak M N. Negative air ions as a source of superoxide [J]. International Journal of Biometeorology,1992,36:118-122.
    [56]Deng X, Shi J, Kong M G. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas [J]. IEEE Transactions on Plasma Science,2006,34(4):1310-1316.
    [57]Nagatsu M, Terashita F, Nonaka H, et al. Effects of oxygen radicals in low-pressure surface-wave plasma on sterilization [J]. Appllied Physics Letters,2005,86(21):211502.1-3.
    [58]Mendis D A, Rosenberg M, Azam F. A note on the possible electrostatic disruption of bacteria [J]. IEEE Transactions on Plasma Science,2000,28(4):1304-1306.
    [59]Laroussi M, Mendis D A, Rosenberg M. Plasma interaction with microbes [J]. New Journal of Physics, 2003,5:41.1-10.
    [60]Boudam M K, Moisan M, Saoudi B, et al. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture [J]. Journal of Physics D:Applied Physics,2006,39(16):3494-3507.
    [61]Moisan M, Barbeau J, Moreau S, et al. Low-temperature sterilization using gas plasmas:a review of the experiments and an analysis of the inactivation mechanisms [J]. International Journal of Pharmaceutics,2001,226(1-2):1-21.
    [62]Fridman G, Fridman A, Gutsol A, et al. Comparison of direct and indirect effects of non-thermal atmospheric pressure plasma on bacteria and mechanisms of such interaction [C]. IEEE Pulsed Power and Plasma Science Conference, Albuquerque, New Mexico,2007, P.322.
    [63]廖耀平,陈钊明,何秀英,等.水稻高压诱变效应研究[J].广东农业科学,2007,6:11-14.
    [64]龙国徽,纪媛,余涛,等.高压对大麦种子萌发的影响及诱变的DNA分子指纹分析[J].吉林大学学报(理学版),2007,45(2):305-310.
    [65]王岁楼,吴晓宗,郝莉花,等.(超)高压对微生物的影响及其诱变效应探讨[J].微生物学报,2005,45(6):970-973.
    [66]王岁楼,吴晓宗,段旭昌等.超高压对漆酶产生菌的诱变效应研究[J].工业微生物,2006,36(2):31-35.
    [67]张晓霞,王莹,刘长江.甜高粱茎秆汁液酒精发酵高产菌株的选育[J].研究与试验,2006,126:32-37.
    [68]Lotfy W A, Ghanem K M, El-Helow E R. Citric acid production by a novel Aspergillus niger isolate: Mutagenesis and cost reduction studies [J]. Bioresource Technology,2007,98(18):3464-3469.
    [69]徐丽,张怡轩,王勇60Co-γ射线技术在阿维菌素产生菌诱变育种中的应用[J].安徽农业科学,2007,35(13):3797-3799.
    [70]Sun N, Lee S, Song K B. Characterization of a carotenoid-hyperp roducing yeast mutant isolated by low-dose gamma irradiation [J]. Food Microbiology,2004,94:263-267.
    [71]桑庆华,梁景乐,宋爱刚,等.微波诱变头孢菌素C产生顶头孢霉菌的研究[J],齐鲁药事,2007,126(19):615-616.
    [72]朱传合,贺亚男,路福平,等.微波对阿维拉霉素产生菌诱变效应的研究[J].现代生物医学进展,2006,6(4):32-34.
    [73]王璋,王灼维,莫湘筠.微生物转谷氨酰胺酶的生产菌种诱变和发酵生产分析[J].生物加工过程,2003,1(1):52-59.
    [74]谈重芳,陈林海,王雁萍,等.离子束注入提高Trichosporon lactis可立体拆分布洛芬水平的研究[J].微生物学报,2006,46(2):306-309.
    [75]Gu S B, Yao J M, Yuan Q P, et al. A novel approach for improving the productivity of ubiquinone-10 producing strain by low-energy ion beam irradiation [J]. Appllied Microbiology and Biotechnology, 2006,72(3):456-461.
    [76]周希贵,戴鹏高,刑维玲.粘杆菌素高产菌株的选育[J].微生物学通报,2001,28(5):49-51.
    [77]王世梅,黄为一,崔凤元.阿扎霉素B产生菌吸水链霉菌NND252的诱变筛选[J].微生物学通报,2001,28(1):64-67.
    [78]李春丽,金国英,李桃生.原生质体融合和秋水仙素染色体加倍构建强发酵淀粉的糖化酶酵母研究[J].河南农业大学学报,2002,36(1):1-6.
    [79]李荣杰.微生物诱变育种方法研究进展[J].河北农业科学,2009,13(10):73-76,78.
    [80]齐秀兰,方常福,唐国新等.妥布霉素产生菌诱变育种的研究[J].微生物学杂志,1995,15(1):9-13.
    [81]Wang L Y, Huang Z L, Li G, et al. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma [J]. Journal of Appllied Microbiology,2009, 108(3):851-858.
    [82]Dong X Y, Xiu Z L, Hou Y M, et al. Enhanced production of 1,3-Propanediol in Klebsiella pneumoniae induced by dielectric barrier discharge plasma in atmospheric air [J]. IEEE Transaction on Plasma Science,2009,37(6):920-926.
    [83]Dong X Y, Xiu Z L, Li S, et al. Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumoniae [J]. Biotechnology Letters, DOI 10.1007/s 10529-010-0284-y.
    [84]Farrell A E, Plevin R J, Turner B T, et al. Ethanol can contribute to energy and environmental goals [J]. Science,2006,311(5760):506-508
    [85]刘铁男,熊必琳.燃料乙醇与中国[M].北京:经济科学出版社,2004.
    [86]朱百鸣,陈奕,付桂明.燃料酒精的发展进程及研究方向[J].食品科技,2005,2:17-19.
    [87]黄祖新,陈由强,张彦定,等.甘蔗生产燃料乙醇发酵技术的进展[J].酿酒科技,2007,10:81-84
    [88]毛忠贵,张建华.燃料乙醇制造的”零能耗零污染”趋势[J].生物工程学报,2008,24:946-949.
    [89]Gnansounou E, Dauriat A, Wyman C E. Refining sweet sorghum to ethanol and sugar:economic trade-offs in the context of North China [J]. Bioresource Technology,2005,96:985-1002.
    [90]Nigam J N. Development of xylose fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehycrolysate [J]. Applied Microbiology,2001,90: 208-215.
    [91]Lynd L R, Cushman J H, Nichols R J. Fuel ethanol from cellulosic biomass [J]. Science,1991, 251(4999):1318-1323.
    [92]Dodds D R, Gross R A. Chemicals from biomass [J]. Science,2007,318(5854):1250-1251.
    [93]Jordan N, Boody G, Broussard W, et al. Sustainable development of the agricultural bioeconomy [J]. Science,2007,316(5831):1570-1571.
    [94]阴春梅,刘忠,齐宏升.生物质发酵生产乙醇的研究进展[J].酿酒科技,2007,1:87-90.
    [95]王倩,张伟,王颉,等.生物质生产酒精的研究进展[J].酿酒科技,2003,3:56-58.
    [96]Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization [J]. Current Opinion in Biotechnology,2000,11(2):187-198.
    [97]Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks [J]. Biotechnology Advances,2008,26(1):89-105.
    [98]Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J]. Applied Energy,2009,86(11):2273-2282.
    [99]Aden A, Ruth M, Ibsen K, et, al. Lignocellulosic biomass to ethanol process design and economics utilizing cocurrent dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical Report NREL/TP-510-32438 [R]. National Renewable Energy Laboratory,Golden, CO, USA,2002.
    [100]张继泉,王瑞明,孙玉英.利用木质纤维素生产燃料酒精的研究进展[J].酿酒科技,2003,1:39-41.
    [101]许凤,孙润仓,詹怀宇.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术,2004,12(1):45-54.
    [102]Lee W J, Ryu Y W, Seo J H. Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene [J]. Process Biochemistry,2000,35(10):1199-1203.
    [103]Meinander N Q, Boels I, Hahn-Hagerdal B. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TALI [J]. Bioresource Technology,1999,68:79-87.
    [104]Grotkj(?)r T, Christakopoulos P, Nielsen J, et al. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains [J]. Metabolic Engineering,2005,7: 437-444.
    [105]Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae [J]. Journal of Applied Microbiology and Biotechnology,1993,38:776-783.
    [106]Karhumaa K, Fromanger R, Hahn-Hagerdal B, et al. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology,2007,73(5):1039-1046.
    [107]Bruinenberg P M. The NADP (H) redox couple in.yeast metabolism [J]. Antonie van Leeuwenhoek, 1986,52(5):411-429.
    [108]Walfridsson M, Hallborn J, Penttila M, et al. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase [J]. Applied and Environmental Microbiology,1995,61(12): 4184-4190.
    [109]Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges [J]. Journal of Physics D:Applied Physics,1987,20:1421-1437.
    [110]Carratore R D, Croce C D, Simili M, et al. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2002,513(1-2):183-191.
    [111]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-254.
    [112]Hu C K, Bai F W, An L J. Enhancing ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae by Mg2+ via reduction in plasma membrane permeability [J]. Biotechnology Letters, 2003,25(14):1191-1194.
    [113]Bezerra D P, Mourab D J, Rosa R M, et al. Evaluation of the genotoxicity of piplartine, an alkamide of Piper tuberculatum, in yeast and mammalian V79 cells [J]. Mutation Research,2008,652: 164-174.
    [114]Elledge S J. Cell cycle checkpoints:Preventing an identity crisis [J]. Science,1996,274(5293): 1664-1672.
    [115]Murray A W. Creative blocks:cell cycle checkpoints and feedback controls [J]. Nature,1992,359, 599-604.
    [116]Wang C H, Wu Y, Li G F. Inactivation of E. coli with plasma generated by bipolar pulsed discharge in a three-phase discharge plasma reactor [J]. Journal of Electrostatics,2008,66(1-2):71-78.
    [117]Cerutti P A. Prooxidant states and tumor promotion [J]. Science,1985,227:375-380.
    [118]吴其夏,余应年,卢建.病理生理学[M].北京:中国协和医科大学出版社,2003.
    [119]周丛照.酿酒酵母氧化应激系统的结构生物学基础[J].中国科学技术大学学报,2008,38(8):923-929.
    [120]Herrero E, Ros J, Belli G, et al. Redox control and oxidative stress in yeast cells [J], Biochimica et BiophysicaActa(BBA),2008, 1780(11):1217-1235.
    [121]田影,何克江,朱靖博.丹酚酸B的体外抗氧化活性[J].大连工业大学学报,2008,4:304-308.
    [122]余晓云,陈婕,侯晓华.丹酚酸B的抗氧化作用对胰腺纤维化形成的影响[J].中华消化杂志,2007,27(6):409-410.
    [123]Favre C, Aguilar P S, Carrillo M C. Oxidative stress and chronological aging in glycogen-phosphorylase-deleted yeast [J]. Free Radical Biology and Medicine,2008,45(10): 1446-1456.
    [124]Zhu H, Bannenberg G L, Moldeus P, et al. Oxidation pathways for the intracellular probe 2',7'-dichlorofluorescein [J]. Archives of Toxicology,1994,68(9):582-587.
    [125]Lushchak V I, Gospodaryov D V. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae [J]. Cell Biology International,2005,29:187-197.
    [126]李庆雯,南亚昀,姜希娟,等.丹酚酸B对离体内皮祖细胞黏附,趋化和增值的影响[J].天津中医药大学学报,2009,28(1):20-23.
    [127]张良,袁冬平,徐立,等.丹酚酸B对大鼠心肌缺血再灌注损伤的保护作用机制研究[J].中药新药与临床药理,2008,19(6): 467-469.
    [128]Schutze A, Jeong J Y, Babayan S E, et al. The atmospheric-pressure plasma jet:A review and comparison to other plasma sources [J]. IEEE Transactions on Plasma Science,1998,26(6): 1685-1694.
    [129]Liu H X, Chen J R, Yang L Q, et al. Long-distance oxygen plasma sterilization:Effects and mechanisms [J]. Applied Surfaces Science,2008,254(6):1815-1821.
    [130]Perrone G G, Tan S X, Dawes I W. Reactive oxygen species and yeast apoptosis [J]. BBA-Molecular Cell Research,2008,1783(7):1354-1368.
    [131]Lee J, Romeo A, Kosman D J. Transcriptional remodeling and G1 arrest in dioxygen stress in Saccharomyces cerevisiae [J]. The Journal of Biological Chemistry,1996,271(40):24885-24893.
    [132]Riley P A. Free radicals in biology:oxidative stress and the effects of ionizing radiation [J]. International Journal of Radiation Biology,1994,65(1):27-33.
    [133]Sies H. Oxidative stress:oxidants and antioxidants [J]. Experimental physiology,1997,82(2): 291-295.
    [134]Ryter S W, Tyrrell R M. Singlet molecular oxygen (1O2):A possible effecter of eukaryotic gene expression [J]. Free Radiccal Biology and Medicine,1998,24(9):1520-1534.
    [135]张斌,夏作理,赵晓民,等.氧化应激模型的建立及其评价[J].中国临床康复,2006,10(44):112-114.
    [136]D'Amore T, Panchal C J, Russell I, et al. A study of ethanol tolerance in yeast [J]. Critical Reviews in Biotechnology,1990,9:287-304.
    [137]Seki T, Myoga S, Limtong S, et al. Genetic construction of yeast strains for high ethanol production [J]. Biotechnology Letters,1983,5:351-356.
    [138]Kavanagh K, Whittaker P A. Application of protoplast fusion to the nonconventional yeast [J]. Enzyme and Microbial Technology,1996,18:45-51.
    [139]孙君社,李雪,李军席.原生质体融合构建耐高温酵母菌株[J].食品与发酵工业,2002,28(5):1-5.
    [140]D'Amore T, Celotto G, Russell I, et al. Selection and optimization of yeast suitable for ethanol production at 40℃ [J]. Enzyme and Microbial Technology,1989,11:411-416.
    [141]Banat I M, Marchant R. Characterization and potential industrial applications of five novel, thermotolerant, fermentative yeasts strains [J]. World Journal of Microbiology and Biotechnology, 1995,11:304-306.
    [142]Banat I M, Singh D, Marchant R. The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production [J]. Acta Biotechnologica,1996,16:215-223.
    [143]Gregory W C. X-ray breeding of peanuts (Arachis hypogaea L.) [J]. Agronomy Journal,1955,47: 396-399.
    [144]Predieri S, Magli M, Zimmerman R H. Pear mutagenesis:In vitro treatment with gamma-rays and field selection for vegetative form traits [J]. Euphytica,1997,93(2):227-237.
    [145]Mazza C A, Battista D, Zima A M, et al. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses [J]. Plant, Cell & Environment,1999,22(1):61-70.
    [146]Chen Y P, Yue M, Wang X L. Influence of He-Ne laser irradiation on seeds thermodynamic parameters and seedlings growth of Isatis indogotica [J]. Plant Science,2005,168(3):601-606.
    [147]Kayhart M. A comparative study of dose-action curves for visible eye-color mutations indued by X-Rays, thermal neutrons, and fast neutrons in Mormoniella vitripennis [J]. Radiation Research, 1956,4:65-76.
    [148]Ghaly A E, Ben-Hassan R M. Dehydrogenase activity measurement in yeast fermentation [J]. Applied Biochemistry and Biotechnology,1993,43(2):77-92.
    [149]董博宇,陈叶福,岳瑞雪,等.TTC在发酵木糖高产乙醇的休哈塔假丝酵母选育中的应用[J].酿酒科技,2008,10:40-43.
    [150]陈卫平,涂谨,熊建华,等.红四氮唑在酒精酵母选育中的应用效果研究[J].酿酒斟技,2003,6:35-37.
    [151]张彭湃,杨生玉,林标声.TTC-CaC03复合平板法快速筛选丙酮酸高产菌株[J].微生物学通报,34(3):472-474.
    [152]Sun L H, Jiang B, Xiu Z L. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths by isopropanol/ammonium sulfate system [J]. Biotechnology Letters,2009,31(3):371-376.
    [153]王剑峰,修志龙,范圣第.甘油转化生产1,3-丙二醇发酵液中甘油含量的测定[J].工业微生物;2001,31(2):33-35.
    [154]Bideaux C, Alfenore S, Cameleyre X, et al. Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool [J]. Applied and Environmental Microbiology,2006,72(3): 2134-2140.
    [155]Makenete A, Lemmer W, Kupka J. The impact of biofuel production on food security:A briefing paper with a particular emphasis on maize-to-ethanol production [J]. IFAMR,2008,11(2):101-110.
    [156]Chu B C H, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation [J]. Biotechnology Advances,2007,25(5):425-441.
    [157]Bruinenberg P M, Bot H P M, Dijken J P, et al. NADH-linked aldose reductase:the key to anaerobic alcoholic fermentation of xylose by yeasts [J]. Appllied Microbiology and Biotechnology,1984, 19(4):256-260.
    [158]Verduyn C, Van Kleef R, Frank J, et al. Properties of the NAD(P)H-dependent xylose reductase from the xylose fermenting yeast Pichia stipitis [J]. Biochemical Journal,1985,226(3):669-677.
    [159]Neuhauser W, Haltrich D, Kulbe K D, et al. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis:Isolation, characterization and biochemical properties of the enzyme [J]. Biochemical Journal,1997,326:683-692.
    [160]Huang Y R, Hua, Y F, Qiu A Y. Soybean protein aggregation induced by lipoxygenase catalyzed linoleic acid oxidation [J]. Food Research International,2006,39:240-249.
    [161]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytical Chemistry,1959,31(3):426-428.
    [162]黄爱玲,周美华.玉米秸秆水解的酶法与稀酸法比较[J].东华大学学报(自然科学版),2005,31(5):110-114.
    [163]Moreau M, Orange N, Feuilloley M G J. Non-thermal plasma technologies:New tools for bio-decontamination [J]. Biotechnology Advances,2008,26(6):610-617.
    [164]Mφller P, Wallin H. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product [J]. Mutatation Research-Reviews in Mutation Research,1998,410(3):271-290.
    [165]Diaz-Llera S, Podlutsky A, Osterholm A M, et al. Hydrogen peroxide induced mutations at the HPRT locus in primary human T-lymphocytes [J]. Mutatation Research-Genetic Toxicology and Environmental Mutagenesis,2000,469(1):51-61.
    [166]Ng C H, Tan S X, Perrone G G, et al. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: The role of NADPH-generating systems and the SKN7 transcription factor [J], Free Radical Biology & Medicine,2008,44 (6):1131-1145.
    [167]Ralser M, Wamelink M M, Kowald A, et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress [J]. Journal of Biology,2007,6:10.1-10.18.
    [168]Lebeau T, Jouenne T, Junter G A. Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor [J]. Enzyme and Microbial Technology,1997,21(4):265-272.
    [169]Meinander N Q, Hahn-Hagerdal B. The influence of cosubstrate concentration on xylose conversion by recombinant XYL1 expressing Saccharomyces cerevisiae:a comparison of different sugars and ethanol as cosubstrates [J]. Appllied and Environment Microbiolgy,1997,63(5):1959-1964.
    [170]Girio F M, Peito M A, Amaral-Collaco M T. Enzymatic and physiological study of D-xylose metabolism by Candida shehatae [J]. Appllied Microbiology and Biotechnology,1989,32(2): 199-204.
    [171]王国平,宋育阳,裴颖芳,等.宁夏御马葡萄酒厂野生酵母菌株的分离筛选及分子鉴定[J].中国酿造,2009,8:38-41.
    [172]Fell J W, Boekhout T, Fonseca A, et al. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis [J]. International Journal of Systematic and Evolutionary Microbiology,2000,50:1351-1371.
    [173]Kuptzman C P, Robnett C J. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 59 end of the large-subunit (26S) ribosomal DNA Gene [J]. Journal of Clinical Microbiology,1997,35(5):1216-1223.
    [174]Wang X X, Fang B S, Luo J X, et al. Heterologous expression, purification, and characterization of xylose reductase from Candida shehatae [J], Biotechnology Letters,2007,29:1409-1412.
    [175]Lima L H A, Pinheiro C G A, Moraes L M P, et al. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein [J]. Appllied Microbiology and Biotechnology,2006,73:631-639.
    [176]洛雪,葛菁萍,平文祥.休哈塔假丝酵母(Candida shehatae)木糖醇脱氢酶基因(XYL2)克隆与序列分析[J].生物信息学,2009,7(3):240-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700