烟草根黑腐病菌Thielaviopsis basicola致病力分化与遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草根黑腐病是世界性烟草病害,其病原菌为根串珠霉Thielaviopsis basicola(Berk.&Br.) Ferr.,该菌寄主范围广泛,可为害多种重要的农作物。关于该病菌形态及分子遗传多样性研究方面国内未见深入系统报道,为明确我国不同烟区烟草根黑腐病菌形态、致病力及分子遗传多样性,本论文开展了以下几方面研究:(1)对我国云南、甘肃、贵州、重庆和河南5个主要产烟省(市)烟草根黑腐病样品进行病原分离,按照柯赫氏法则对得到的病原菌进行致病性测定,结合其形态特征及rDNA-ITS分子方法鉴定其所属种。(2)测定了不同菌株菌丝生长和孢子萌发的影响因子。(3)对各地代表性菌株进行致病力差异测定,并比较了7个烟草主栽品种的室内抗性水平。(4)详细观测所有菌株在V8培养基上的菌落形态和厚垣孢子特征,参照Punja&Sun的培养方法和分群鉴定依据对其进行分群鉴定。(5)利用ISSR-PCR标记技术对86株来自烟草和胡萝卜的根串珠霉菌株进行分子遗传多样性分析。(6)利用显微及超微技术探究病原菌的侵染机理。结果表明:
     1.从我国云南、甘肃、贵州、重庆和河南5省(市)不同烟区采集具有典型根黑腐症状的烟草病害样本及病根处土壤,用改进的胡萝卜圆片法分离病原菌,共得到45个野生型单孢分离菌株,柯赫氏法则证病结果显示这些菌株均为该病的致病菌,另有13株白色变异型菌株为野生型菌株室内培养时产生。形态学及rDNA-ITS分子鉴定结果均显示:所有菌株包括两株来自胡萝卜的参试菌株,在分类上均为根串珠霉Thielaviopsis basicola(Berk.&Br.) Ferr.。病菌rDNA-ITS序列分析结果显示,白色变异型菌株与其野生型菌株序列一致,不同寄主来源根串珠霉rDNA-ITS序列有差异。
     2.选取菌落形态不同的菌株CPW1-1、CWH-1和HLL-1',测定影响其菌丝生长和孢子萌发的培养因子。结果表明:在Czapek培养基上HLL-1'不生长,CPW1-1和CWH-1可缓慢扩展形成稀薄疏松的菌落,供试培养基中最适合三者生长的分别为PDA、PSA和PCA。温度对供试菌株菌丝生长有明显影响。3个菌株在5℃-35℃间均能生长,最适温度均为25℃。供试菌株在pH=4~12范围内均能生长,CPW1-1、CWH-1和HLL-1'分别在pH=7、pH=10和pH=6时菌丝生长速度最快,在培养基偏酸或偏碱时,CPW1-1菌落易产生白色扇状变异。除木糖外两个野生型菌株都能有效利用各种供试碳源,氮源中则是牛肉膏和酪氨酸的利用效果最好。相同光照或相同温度条件下CPW1-1孢子萌发率均高于CWH-1,在有机营养存在时,情况则相反;黑暗条件有利于孢子萌发,CPW1-1.CWH-1和HLL-1'孢子萌发的最适温度分别是20℃、15℃和20℃。
     3.采用伤根接种法对15个烟草根黑腐菌株进行致病力差异测定,并比较了7个烟草主栽品种的室内抗性水平。研究结果表明:供试的15株烟草根黑腐病菌引致的病害程度不一,病情指数从19.2~62.5不等,致病力分化明显,其中4株表现强致病力,中等致病力菌株10株,白色变异体HLL-1'为弱致病力菌株,野生型菌株中未发现弱致病力菌株。不同烟草品种对同一菌株的抗性差异大,可产生高感、感病、中抗和抗病等不同抗性反应;在供试的烟草品种中,贵烟4号、秦烟96和中烟100有较强的抗病性。
     4.参照Punja&Sun的分群鉴定方法,将来自烟草的45个野生型和13株白色变异型共58个根黑腐菌株进行了分群鉴定。结果表明:我国烟草根黑腐病菌分离株存在明显形态变异,共划分出6个群,其中群Ⅰ、Ⅱ、Ⅲ为野生型,群Ⅳ、Ⅴ为白色变异型;另有白色变异型HLL-1'菌落平展白色,厚垣孢子簇生或单生,有瓶梗孢子产生,形态特征明显不同于其它群,将其建为新群——群Ⅵ。群Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ及Ⅵ的分离频率分别占41.4%、32.8%、3.4%、19.0%、1.7%和1.7%。群Ⅰ主要分布重庆和云南,群Ⅱ在五个采样省(市)均有分布,群Ⅲ和群V仅分布在贵州,群Ⅳ主要分布在重庆、河南和云南。群Ⅵ仅在河南有分布。
     5.以烟草根黑腐病菌基因组DNA为模板,采用单因素水平优化的方法对Taq DNA聚合酶、Mg2+、dNTP和模板等的浓度,以及退火温度等几个因素进行优化,建立了根串珠霉ISSR-PCR优化反应体系,利用该体系从20个ISSR引物中筛选出6个多态性较好的ISSR引物,PCR扩增86个不同菌株后获得大量清晰可重复的DNA指纹图谱,其平均多态位点百分率为70.91%。供试总样本的Shannon多样性指数I为0.5504,Nei's指数h为0.3726,种群间的基因多样度DST=0.1657,种群基因分化系数GST平均值为0.5405,大于0.5,表明供试种群具有较高的遗传多样性,不同寄主、不同地区来源根串珠霉存在着明显的遗传分化,聚类分析可将它们分成7个遗传聚类群。
     6.分析以上几个结果间的关系后发现,烟草根黑腐病原菌致病力分化与其培养特性、形态分群之间有明显的相关性,ISSR标记揭示的遗传聚类组群与菌株致病力、形态分群相关性不明显,但与不同寄主来源关系密切。
     7.烟草根黑腐病菌侵染烟苗的显微观察结果显示:该菌以直接侵入的方式侵染寄主,病菌培养时间影响分生孢子萌发时间、萌发后芽管的形态和侵染力。幼龄孢子易萌发,侵染根毛和表皮细胞形成的结构不一。老龄分生孢子侵染烟草根部表皮细胞时,萌发需要的时间长,产生的芽管短,在顶端膨大成类似附着胞的结构后再行侵染。厚垣孢子萌发亦可直接侵入,侵染时芽管顶端略有膨大。
Tobacco black root rot is a worldwide disease, caused by Thielaviopsis basicola (Berk.&Br.) Ferr., the pathogen is associated with the roots of wide range of plants in nature and is recognized as a pathogen that causes black root rot on many important agricultural crops worldwide. However, until now little is known about the extent of morphological variation within T. basicola or about the level of genetic diversity within this fungal species in China.
     In order to explore the morphological, pathogenicity differentiation and molecular diversity of T. basicola, the following studies were carried out.(1) The pathogen was isolated from diseased tobacco tissues and soil samples of tobacco root rot were collected from5different Chinese geographic regions, including Yunnan, Gansu, Guizhou, Chongqing and Henan provinces. Pathogenicity of the all isolates was tested according to Koch's postulates. Then using traditional morphological classification and rDNA-ITS sequences analysis methods, the T. basicola isolates were further identified.(2) The culture characteristics of three isolates with different colony characteristics that obtained from tobacco black root rot were studied.(3)Tested the pathogenicity differentiation of some T. basicola isolates, and the disease resistances of7main tobacco cultivars against different T. basicola isolates were also evaluated.(4) According to Punja&Sun's grouping identification standard, grouping identification of all isolates was studied.(5)The molecular genetic diversity of all T. basicola isolates including32isolates from carrots was analyzed by the inter-simple sequence repeat (ISSR) technique.(6) The initial interactions between T. basicola and root hairs of tobacco were examined microscopically to make the infection mechanism of T. basicola clear. The results were as followings.
     1. The specimens of diseased tobacco plants with typical syptoms of black root rot and its soil was collected, the geographic origins of the specimens were Yunnan, Gansu, Guizhou, Chongqing and Henan provinces in China. Using the improved carrot disks methods more than20isolates were collected. After further purification and single spore isolation,45wild types and13white aberrant phenotypes of the pathogen were obtained. The results of experiments accoding Koch's postulates revealed that these wild type isolates were the pathogen of the disease. The morphology and rDNA-ITS molecular identification results show that:all the isolates including two from carrot were Thielaviopsis basicola (Berk.&Br.) Ferr. in classification. The rDNA-ITS sequence analysis suggested that the white aberrant phenotypes were identical to it's wild types in sequences, but completely different from the isolates growing on other host plants.
     2. Biological characteristics of three T. basicola isolates CPW1-1, CWH-1and HLL-1' with different colony characteristics were studied. The results showed:HLL-1'could not develop conoly on Czapek media, CPW1-1and CWH-1could but conoly is very thin. PSA, PCA and PDA were the most favorable media of three isolates respectively. The temperature has a significant effect on the mycelial growth of the tested isolates, they could grow in5℃~35℃, and the optimum temperature was25℃. The tested strains could grow under the pH=4-12, while under pH=7,10and6were optimum pH values for the mycelial growth of CPW1-1, CWH-1and HLL-1', respectively. CPW1-1and CWH-1could use all of the tested carbon sources except xylose, beef ertract and casein was their favorable nitrogen sources. Under the same culture conditions, the conidia germination rate of CPW1-1was higher than that of CWH-1, however under the organic nutrition, CWH-1was higher than CPW1-1. That showed that nutrition enhanced the conidia germination rate of CWH-1. Dark conditoin was favorable for the germination. The optimum conidia germination temperature of CPW1-1, CWH-1and HLL-1'were20℃,15℃and20℃, respectively.
     3. Pathogenicity differentiation against black root rot was compared by root cutting inoculation method within15T. basicola isolates, and their pathogenicity showed significant difference. The disease index of15isolates ranged from19.2to62.5, in which4isolates showed high pathogenicity,10isolates were at moderate level, and HLL-1'the albino shouwed weak pathogenicity, and no weak pathogenicity was found in wild type isolates. The disease resistances were significant difference among the7cultivars when different cultivars inoculated by a certain T. basicola isolate, the disease resistance changed from resistant, moderate resistant, susceptible and highly susceptible. Based on the experimental results, it was showed that the resistance of Guiyan4, Qinyan96and Zhongyan100was higher than those of other tested cultivars.
     4. According to Punja &Sun's Grouping identification standard of T. basicola, the extent of grouping identification was studied in those58T. basicola isolates from tobacco including45wild types and13albino isolates. The results showed that six general morphological groups could be distinguished among the isolates, in which group I, group II and group III were wild types, group Ⅳ and group V were aberrant phenotypes (albino and mycelial). The characteristics of colony and chlamydospores of another aberrant phenotype HLL-1'was completely different from that of the five groups above, colony of it was flat and white, the chlamydospores were borne either in clusters or singly, phialospores could be borne, so it was assigned to be the new group——group Ⅵ. The isolating ratios of groups Ⅰ, Ⅱ, Ⅲ, IV, V and VI were41.4%,32.8%,3.4%,19.0%,1.7%and1.7%respectively. Group I was mainly distributed in Chongqing and Yunnan, group III and V in Guizhou, group IV mainly in Chongqing, Henan and Yunnan, group VI only in Henan, and group II was distributed in all investigating provinces.
     5. The ISSR amplification system of T. basicola was optimized and established with the parameters, such as the concentrations of Taq DNA polymerase, Mg2+, dNTP and DNA templates, the annealing temperature. A total of6specific ISSR primers were screened from20ISSR primers, and the average percentage of polymorphic loci of populations was70.91%, which suggested all tested isolates of T. basicola had high genetic diversity (the average value of Shannon index I is0.5504). The genetic variation was significant among populations (average Nei's index h was0.3726, and average GST is0.1657). The tested isolates were clustered into7genetic lineages.
     6. The above results showed that the pathogen virulence differentiation had obvious correlation with its cultural characteristics and morphological grouping, whereas the ISSR clustering groups was insignificant correlation with the virulence and morphological grouping of the isolates, but they were closely related to the different host sources.
     7. The ultrastructure of initial interactions between T. basicola and tobacco was examined microscopically. It showed that the pathogen invaded the tobacco directly; the culture time of T. basicola affects germination time, germ tube morphology and infectivity of the conidial. The structure that formed is different when the young endoconidia invade into the root hairs from into the epidermic cells. No appressoria were formed when invade into the root hair. The maturity conidial germination time is a little longer and appressoria formed on the top of germtubes. And the chlamydospore could invaded directly, and the top of germtube swollen slightly.
引文
[1]周仕顺,掏志章.烟草的组织培养[J].云南农业科技,2005,1:22.
    [2]朱贤朝,王彦亭,王智发.中国烟草病害[M].北京:中国农业出版社,2002.
    [3]2005年全国烟草病虫害发生情况通报,云南烟叶信息网/病虫测报期刊http://www.yntsti.com/pestreport/view.asp?id=385,2007.3.29.
    [4]饶应勇,桑维钧,姜超英,吴维春.贵州赫章地膜烟根黑腐病的发生特点与防治技术[J].山地农业生物学报,2006,25(4):370-372.
    [5]赵永强,张成玲,张薇,张广民.烟草根黑腐病菌的PCR分子检测[J].植物病理学报,2009,39(1):23-29.
    [6]陆家云.植物病原真菌学[M].北京:中国农业出版社,2001.
    [7]Paulin-Mahady A E, Harrington T C, and McNew D, Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis[J]. Mycologia, 2002,94(1):62-72.
    [8]Nag Raj T R, Kendrick B. A monograph of Chalara and allied genera[M]. Waterloo:Wilfrid Laurier University Press,1975.
    [9]Yarwood C E. The occurrence of Chalara elegans[J]. Mycologia,1981,73:524-530.
    [10]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
    [11]Stover R H. The black root rot disease of tobacco Ⅰ. Studies on the causal organism Thielaviopsis basicola[J].Canadian Journal of Research Section C-Botanical Sciences,1950, 28(4):445-470.
    [12]Tsao P H, Bricker J L. Acropetal development in the "chain" formation of chlamydospores of Thielaviopsis basicola[J]. Mycologia,1970,62:960-966.
    [13]Hawthorne B T, Tsao P H. Effects of separation of spores from the chain and of culture age on germination of chlamydospores of Thielaviopsis basicola[J]. Phytopathology,1970,60:891-895.
    [14]Chritias C, Baker K F. Ultrastructure and cleavage of chlamydospore chains of Thielaviopsis basicola[J]. Canadian Journal of Botany.1970,48:2305-2308.
    [15]Christias, C., K. F. Baker.1967. Chitinase as a factor in the germination of chlamydospores of Thielaviopsis basicola[J]. Phytopathology,57:1363-1367.
    [16]Tsao P W, Tsao P H, Electron microscopic observations on the spore wall and operculum formation in chlamydospores of Thielaviopsis basicola (Abstract)[J]. Phytopathology,1970, 60(4):613-616.
    [17]King C J, Presley J T. A root rot of cotton caused by Thielaviopsis basicola[J]. Phytopathology, 1942,32(9):752-761.
    [18]Yarwood C E. Isolation of Thielaviopsis basicola from soil by means of carrot disks[J]. Mycologia,1946,38(3):346-348.
    [19]Lloyd A B, Lockwood J L. Precautions in isolation Thielaviopsis basicola with carrot discs[J]. Phytopathology,1962,52(9):1314-1315.
    [20]唐德志,何苏琴,李玉奇.根串珠霉引起豌豆根腐病的研究初报[J].植物保护,1992,18(6):13-14.
    [21]Specht L P, Griffin G J. A selective medium for enumerating low populations of Thielaviopsis basicola in tobacco field soils[J]. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie,1985,7(4):438-441.
    [22]Maduewesi J N C, Sneh B, Lockwood J L. Improved selective media for estimating populations of Thielaviopsis basicola in soil on dilution plates [J]. Phytopathology,1976,66(4):526-530.
    [23]Chittaranjan S, Punja Z K. A semiselective medium and procedures for isolation and enumeration of Chalara elegans from organic oil[J]. Plant Disease,1993,77(9):930-932.
    [24]李振岐.植物免疫学[M].北京:中国农业出版社,1995.
    [25]何家泌.植物抗病遗传学[M].北京:中国农业出版社,1994.
    [26]裘维番.菌物学大全[M].北京:科学出版社,1998.
    [27]鄢洪海,陈捷,宋希云.玉米弯孢叶斑病菌生理分化与遗传多态性研究[J].玉米科学,2009,17(1):139-142.
    [28]鄢洪海,陈捷,宋希云.玉米弯孢叶斑病菌生理分化的同工酶及蛋白分析[J].中国农学通报,2009,25(06):1 86-1 89.
    [29]陈捷,鄢洪海,高增贵,薛春生,庄敬华.玉米弯孢叶斑病菌生理分化及鉴定技术[J].植物病理学报,2003,33(2):121-125.
    [30]杨致年,冷怀琼.柑桔上胶孢炭疽菌生理分化的研究Ⅰ、致病性测定[J].四川农业大学学报,1991,9(2):215-222.
    [31]杨致年,冷怀琼.柑桔上胶孢炭疽菌生理分化的研究Ⅱ、酯酶同工酶及可溶性蛋白质的凝胶电泳的测定柑桔上胶孢炭疽菌生理分化的研究[J].四川农业大学学报,1991,9(2):223-227.
    [32]Corbaz R. Pathotypes et variations du pouvoir pathogene chez Chalara elegans Nag Raj et Kendrick (= Thielaviopsis basicola)[J]. Phytopathologische Zeitschrift,1985,113:289-299.
    [33]Miki J I, Katsuya S. Virulence of Thielaviopsis basicola isolated from tobacco fields in Japan [J]. The Phytopathological Society of Japan,1998,64(5):471-473.
    [34]刘延荣,张修国,王智发,谢成颂.烟草根黑腐病菌生物学特性的研究[J].中国烟草学报,1993,4:1-7.
    [35]Punja Z K, Sun L J. Morphological and molecular characterization of Chalara elegans (Thielaviopsis basicola), cause of black root rot on diverse plant species[J]. Canadian Journal of Botany-Revue Canadienne De Botanique,1999,77(12):1801-1812.
    [36]Chumley F G, Valent B, Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea[J]. Molecular Plantmicrobe Interaction,1990,3:135-143.
    [37]Raehael M J, Beatfiz L, Gomez, Soraya D, Martha U, Stephen D M, Casadevall A, Joshua D N, Andrew J H. Synthesis of melanin pigment by Candida albicans in vitro and during infection[J]. Infection and Immunity,2005,73(9):6147-6150.
    [38]曹志艳,于清,范永山,姚晓霞,董金皋.玉米大斑病菌黑色素缺失突变体的获得及其生物学特性[J].植物保护学报,2007,34(3):268-272.
    [39]Michael H W, Robert D S, Melanin biosynthesis in Thielaviopsis basicola[J]. Experimental Mycology,1979,3:340-350.
    [40]方中达.植病研究方法[M].北京:中国农业出版社,1998.
    [41]Trojak-Goluch A, Berbec A. Potential of Nicotiana glauca (Grah.) as a source of resistance to black root rot Thielaviopsis basicola (Berk. and Broome) Ferr. in tobacco improvement[J]. Plant Breeding,2005,124(5):507-510.
    [42]Wilkinson C A, Shew H D, Rufty R C. Evaluation of components of partial resistance to black root rot in burley tobacco[J]. Plant Disease,1995,79(7):738-741.
    [43]Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root rot of tobacco[J]. Theoretical and Applied Genetics,1995,91:1184-1189.
    [44]Shew H D, Shoemaker P B. Effects of host resistance and soil fumigation on Thielaviopsis basicola and development of black root rot on burley tobacco[J]. Plant Disease,1993,77(10):1035-1039.
    [45]王元英,周健.中美主要烟草品种亲源分析与烟草育种[J].中国烟草学报,1995,2(3):11-22.
    [46]马荣群,黄粤,岳文辉,李梅.核糖体rDNA ITS区在植物病害诊断中的应用[J].内蒙古农业科技,2006,6:19-20.
    [47]李伟,纪燕玲,于汉寿,莫凌霄,李飞凤,王志伟.中国产禾本科植物内生真菌的遗传多样性及rDNA-ITS系统发育分析[J].菌物学报,2006,25(2):217-226.
    [48]赵晓瑜,李继刚.实用分子生物学技术[M].北京:化学工业出版社,2006.
    [49]Joseph N, Krauskopf E, Vera M L, Michot B. Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast[J]. Nucleic Acids Research,1999,27(23):4533-4540.
    [50]Iwen P C, Hinrichs S H, Rupp M E. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens[J]. Medical Mycology,2002, 40(1):87-109.
    [51]马荣群,宋正旭,黄粤,李梅,岳文辉.葡萄炭疽菌和辣椒炭疽菌rDNA-ITS区序列比较[J].山东农业科学,2009,3:41-42.
    [52]Einsele H, Hebart H, Roller G, Loffler J, Rothenhofer I, Muller C A, Bowden R A, Burik J V, Engelhard D, Kanz L, Schumacher U. Detection and identification of fungal pathogens in blood by using molecular probes[J]. Journal of Clinical Microbiology,1997,35(6):1353-1360.
    [53]Henrion B, Le Tacon F, Martin F. Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes[J]. New Phytologist,1992,122(2):289-298.
    [54]Raffle V L, Anderson N A, Furnier-whitelaw G R, Doudrick R L. Variation in mating competence and random amplified polymorphic DNA in Laccaria bicolor(Agaricales) associated with three tree host species(Abstract)[J]. Canadian Journal of Botany,1995,73(6):884-890.
    [55]Karen O, Hogberg N, Dahlberg A, Jonsson L, Nylund J E. Inter-and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis[J]. New Phytologist,1997,136(2):313-325.
    [56]Pritsch K, Boyle H, Munch J C, Buscot F. Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS)[J]. New Phytologist,1997,137(2):357-369.
    [57]朱有勇,王云月,Lyon B R大丽轮枝菌核糖体基因ITS区段的特异扩增[J].植物病理学报,1999,29(3):250-255.
    [58]陈怀谷,方正,陈厚德,林玲,王裕中.小麦纹枯病菌的分子检测[J].植物保护学报,2005, 32(3):261-265.
    [59]杨佩文,李家瑞,杨勤忠,曾莉,王群.根肿病菌核糖体基因ITS区段的克隆测序及其在检测中的应用[J].云南农业大学学报,2003,18(3):228-233.
    [60]谢勇,王云月,陈建斌,王扬,罗文富,朱有勇.烟草黑胫病分子检测[J].云南农业大学学报,2000,15(2):176.
    [61]Zhang A W, Riccioni L, Pedersen W L, Kollipara K P, Hartman G L. Molecular identification and phylogenetic grouping of Diaporthe phaseolorum and Phomopsis longicolla isolates from soybean [J]. Phytopathology,1998,88(12):1306-1314.
    [62]陈永青,姜子德,戚佩坤RAPD分析与ITS序列分析在拟茎点霉分类鉴定上的应用[J].菌物系统,2002,21(1):39-46.
    [63]陈怀谷,方正,陈厚德,林玲,王裕中.小麦纹枯病菌核糖体基因内转录区序列比较[J].植物病理学报,2005,35(1):24-29.
    [64]于金凤.中国冬小麦主产区及云南丝核菌属真菌的遗传多样性研究[D].山东农业大学博士学位论文,2003.
    [65]王旭丽,康振生,黄丽丽,杨鹏.ITS序列结合培养特征鉴定梨树腐烂病菌[J].菌物学报,2007,26(4):517-527.
    [66]季维智,宿兵.遗传多样性研究的原理与方法[M].杭州:浙江科学技术出版社,1999.
    [67]王金生.分子植物病理学[M].北京:中国农业出版社,1999.
    [68]祝雯,詹家绥.植物病原物的群体遗传学[J].遗传,2012,34(2):157-166.
    [69]魏麟,黎晓英,黄英,史宪伟.遗传标记及其发展概述[J].动物科学与动物医学,2004,21(10):42-45.
    [70]赵志模,周远新.生态学引论[M].重庆:科学技术文献出版社重庆分社,1984.
    [71]周延清,DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005.
    [72]徐玉梅,刘小妹,王建明ISSR标记技术在植物病原真菌研究中的应用[J].中国农学通报,2011,27(9):358-361.
    [73]Menzies J G, Bakkeren G, Matheson F, Procunier D, Woods S. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of Ustilago[J]. Ecology and Population Biology,2003,93(2):167-175.
    [74]贾少锋,段霞瑜,周益林,鲁国东,王宗华.小麦白粉菌ISSR分子标记体系构建及其分离菌株的多样性分析[J].植物保护学报,2007,34(5):493-499.
    [75]朱海荣,段霞瑜,周益林,邱永春.小麦白粉病菌基因组DNA的微量提取及ISSR-PCR反应体系的优化[J].植物保护,2010,36(3):125-129.
    [76]李莹,文景芝,刘春来.大豆疫霉ISSR-PCR反应体系的建立[J].东北农业大学学报,2005,36(2):153-155.
    [77]李海连.茄子黄萎病病菌鉴定及其ISSR分子指纹分析[D].南京:南京农业大学博士论文,2003.
    [78]宋培玲,杨家荣,毛岚.正交设计优化棉花黄萎病菌ISSR-PCR反应体系[J].西北农业学报,2009,18(1):194-197.
    [79]周善跃,纪震,赵川德,刘颖,李宝笃.山东省玉米纹枯菌融合群类型及遗传多样性[J].菌物学报,2012,31(1):31-39.
    [80]李挺丹,彭世文,王宗华,鲁国东.应用ISSR-PCR分析福建水稻纹枯菌的遗传多样[J].植 物病理学报,2010,40(2):186-194.
    [81]宋培玲,李子钦,杨家荣.棉花黄萎病菌遗传多样性的ISSR分析[J].西北农林科技大学学报(自然科学版),2011,39(1):113-118,125.
    [82]赵云福,刘翠,梁晨,李宝笃.白粉寄生孢ISSR-PCR体系的建立及遗传多样性的初步分析[J].菌物学报,2010,29(5):653-664.
    [83]王子迎,王源超,张正光,郑小波.中国和美国大豆疫霉群体遗传结构的ISSR分析[J].生物多样性,2007,15(3):215-223.
    [84]李蕊倩,何瑞,张跃兵,徐玉梅,王建明.镰刀菌ISSR标记体系的建立及遗传多样性分析[J].中国农业科学,2009,42(9):3139-3146.
    [85]余仲东,刘小勇,曹支敏.松树栅锈菌的ITS序列和微卫星分析[J].中国农业科学,2006,39(6):1159-1165.
    [86]Zhou S G, Smith D R, Stanosz G R. Differentiation of Botryosphaeria species and related anamorphic fungi using Inter Simple or Short Sequence Repeat (ISSR) fingerprinting[J]. Mycological Research,2001,105(8):919-926.
    [87]徐怡心,杨世刚.陆地棉黑根病初步研究[J].新疆农业科学,1989,4:20-21.
    [88]贾中和,杨屾,方向军.胡麻根黑腐病病原菌鉴定[J].新疆农业科技,1991,1:170-172.
    [89]唐德志,何苏琴,李玉奇,朱润身.甘肃豌豆根病的病原菌种类及致病力研究[J].西北农业学报,1993,2(2):37-39.
    [90]窦彦霞,肖崇刚,蒋茜,马啸.重庆烟草根黑腐病菌的生物学特性[J].烟草科技,2009,11:56-60.
    [91]赵永强,张薇,张广民.防治烟草根黑腐病的药剂筛选[J].山东农业科学,2008,2:81-82.
    [92]罗文富.土壤抑制烟草黑根腐病的机制[J].云南农业大学学报,1997,12(3):214-218.
    [93]康振辉,黄俊丽.土壤中烟草根黑腐病菌的实时定量PCR检测技术研究[J].植物病理学报,2010,40(2):210-213.
    [94]杨水英,肖崇刚,韩海波,杨静,彭洪江,何霞红.重庆稻瘟病菌不同菌株DNA指纹图谱分析[J].西南农业大学学报,2002,24(3):235-237.
    [95]梁茵,王芳,李安娜,李多川.耐热真菌的分类鉴定及rDNA-ITS系统发育分析[J].菌物学报,2011,30(4):542-550.
    [96]王义勋,贾凤姣,李阳,黄俊斌.苍术黑斑病菌(Alternaria tenuissima)生物学特性研究[J].植物保护,2007,33(3):107-110.
    [97]王福妹,宋云锦,刘志恒,樊慧梅,闫建芳.番茄煤霉病菌生物学特性研究[J].沈阳农业大学学报,2006,37(2):186-190.
    [98]谈文,吴元华.烟草病理学[M].北京:中国农业出版社,2003.
    [99]韩珍珍,谢映平,薛皎亮,樊金华.不同基质多代培养对蚧虫病原真菌蜡蚧霉致病力的影响[J].微生物学报,2010,50(2):211-221.
    [100]Deng F Y, Allen T D, Hillman B I, Nuss D L. Comparative analysis of alterations in host phenotype and transcript accumulation following Hypovirus and Mycoreovirus infections of the chestnut blight fungus Cryphonectria parasitica[J]. Eukaryotic Cell August,2007,6(8): 1286-1298.
    [101]Bottacin A M, Levesque C A, Punja Z K. Characterization of dsRNA in Chalara elegans and effects on growth and virulence[J]. Phytopathology,1994,83(3):303-312.
    [102]唐庆华,崔林开,李德龙,戴婷婷,阴伟晓,董莎萌,邢邯,郑小波,王源超.黄淮地区大豆种质资源对疫霉根腐病的抗病性评价[J].中国农业科学,2010,43(11):2246-2252.
    [103]刘永刚,张海英,郭建国,吕和平,贺春贵,宋尚有.甘肃省辣椒疫霉菌的交配型分布及其致病力差异[J].植物保护学报,2008,35(5):448-452.
    [104]梁元存,刘延荣,王玉军,王智发,张广民.烟草黑胫病菌致病性分化和烟草品种的抗病性差异[J].植物保护学报,2003,30(2):143-147.
    [105]薛春生,肖淑芹,翟羽红,高颖,高增贵,陈捷.玉米弯孢叶斑病菌致病类型分化研究[J].植物病理学报,2008,38(1):6-12.
    [106]戴芳澜.中国真菌总汇[M].北京:科学出版社,1979.
    [107]Coumans J V, Harvey J, Backhouse D, Poljak A, Raftery M J, Nehl D, Katz M E, Pereg L. Proteomic assessment of host-associated microevolution in the fungus Thielaviopsis basicola[J]. Enviromental Microbiology,2011,13(3):576-588.
    [108]Punja Z K. Virulence of Chalara elegans on bean leaves, and host-tissue responses to infection[J]. Canadian Journal of Plant Pathology,2004,26(1):52-56.
    [109]Geldenhuis M M, Roux J, Wingfield M J, Wingfield B D. Development of polymorphic markers for the root pathogen Thielaviopsis basicola using ISSR-PCR[J]. Molecular Ecology Notes,2004,4(4):547-550.
    [110]李培旺,李昌珠,饶力群,张良波,肖志红.光皮树ISSR-PCR扩增条件和反应体系优化[J].湖南林业科技,2008,35(4):11-13,19.
    [111]杨帆,胡小虎,刁英,邓凤娇,胡中立,舒新亚.克氏原螯虾ISSR体系优化[J].中国农学通报,2010,26(21):432-435.
    [112]肖祖梅,汤青林,王志敏,宋明.观赏南瓜ISSR反应体系优化[J].南方农业,2008,2(2):16-18.
    [113]潘坤,王文泉,吴翼,唐龙祥.椰子[SSR体系优化[J].中国农学通报,2009,25(4):24-29.
    [114]李旻,王四宝,樊美珍,李增智,黄勇平.森林生态系中球孢白僵菌遗传多样性的ISSR分析[J].遗传,2006,28(8):977-983.
    [115]宋小亚,肖扬,边银丙ISSR标记在黑木耳单核体遗传分析中的应用[J].菌物学报,2007,26(4):528-533.
    [116]闫路娜,张德兴.种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响[J].动物学报,2004,50(2):279-290.
    [117]景岚,王丽芳,康俊,韩青梅,康振生.向日葵锈菌侵染过程的超微结构研究[J].中国汕料作物学报,2009,31(1):70-74.
    [118]Hood M E, Shew H D. Pathogenesis of Thielaviopsis basicola on a susceptible and a resistant cultivar of burley tobacco[J]. Phytopathology,1996,86(1):38-44.
    [119]Charles W M, Warren E C, Elizabeth A R. Ultrastructure of the penetration and infection of pansy roots by Thielaviopsis basicola[J]. Phytopathology,2000,90 (8):843-850.
    [120]许志刚.普通植物病理学[M].北京:中国农业出版社(第2版),2001.
    [121]张敬泽,胡东维,徐同.柿树炭疽菌侵染柿树叶柄的超微结构观察[J].植物病理学报,2005,35(5):434-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700