白腐菌过氧化物酶对2,2’,4,4’-四溴联苯醚的去除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多溴联苯醚(polybrominated diphenyl ethers, PBDEs)作为一类已在纺织、塑料、电器等行业被广泛使用的溴化阻燃剂,因其特殊的理化性质,易在生产、使用中释放到环境中,造成污染。PBDEs具有生物累积性及内分泌干扰活性,对生态系统构成了很大的威胁。2,2',4,4'-四溴联苯醚(BDE47)作为目前分布最广、生物样品中含量最高、对生物和人体毒性最强的同系物之一,受到越来越多的关注,而生物转化是其在环境中转化的一种重要途径。白腐菌作为一种非专一性高效降解木质素类结构化合物的广谱菌,被广泛应用于多种污染物的去除。因此,研究白腐菌及其过氧化物酶对BDE47的生物转化具有重要意义。
     本研究首先优化了白腐菌分泌锰过氧化物酶的培养条件及其浓缩纯化方法;以BDE47作为研究对象,分别研究了白腐菌体系和浓缩纯化的LiP、MnP对BDE47的去除作用,并且考察了白腐菌体系下环糊精和吐温80的作用,以及浓缩酶体系下添加苯酚和NOM对BDE47去除率的影响。
     研究结果主要概括如下:
     (1)通过对比试验,得到了白腐菌产MnP的最佳培养条件,吐温80(0.05%,v/v),振荡培养(37℃,150r/min),在培养的第11天获得最大MnP活性2141.67U/L通过添加0.05%(v/v)吐温80并调整Mn2+的浓度至0.2mM,有效地实现了MnP与LiP的选择性产酶。
     (2)考察了白腐菌体系以MnP为主导时对BDE47的去除作用,经过十五天的培养期,底物的平均去除率约为70%;在培养初期,菌丝体对BDE47有一定的吸附,但到培养后期吸附量在检测限以下;实验证实细胞色素P450在降解过程中不起作用。
     (3)考察了添加吐温80和p-环糊精对BDE47去除率的影响,结果发现,添加不同浓度的吐温80或β-环糊精对去除BDE47均无明显效应,推测原因可能是BDE47特定的溶解度范围使其在较长的降解过程中能被充分利用,吐温80和p-环糊精的增溶作用对其整个降解过程作用不明显。
     (4)以浓缩纯化后的LiP和MnP分别对BDE47进行酶促降解反应,分别考察了添加不同浓度的苯酚和NOM对BDE47去除率的影响,发现添加苯酚和NOM对LiP和MnP的作用趋势不同,实验浓度范围内的苯酚和NOM对LiP降解去除BDE47的作用都表现为促进趋势一直增大,不加苯酚和NOM时BDE47去除率为33.6%,加入2mM、10mM和50mM的苯酚BDE47去除率分别提高至41.3%、47.5%和56.1%,加入20mg/L和50mg/L TOC浓度的NOM BDE47的去除率则分别提高至51.3%和53.5%。苯酚和NOM对MnP降解去除BDE47的影响则表现为促进趋势先增大后减小。但是相比不加的条件下BDE47的去除率都得到了显著提高,不加苯酚和NOM时BDE47的去除率仅4.2%,加入2mM、10mM和50mM的苯酚BDE47去除率分别提高至18.1%、22.9%和8%。添加20mg/L TOC和50mg/L TOC的NOM时则分别提高至38.8%和24.6%。
Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been widely integrated into textiles, plastics and electricity appliances for several decades. They are easily released into the environment from various commercial goods and caused pollution for their special physicochemical properties. Because of their bioaccumulative property and endocrine disrupting activity, the presence of PBDEs in the environment has potentially threatened the whole ecosystem and human health. 2,2',4,4'-tetraBDE(BDE47) which is currently the most widely distributed, with the highest concentrations in biological samples, and one of the most toxic polybrominated diphenyl ether congeners in living organisms and human beings attracts more and more attention. White rot fungi, which have high efficient and nonspecific degradation capacity to compounds with lignin structure, are widely applied on the removal of different kinds of recalcitrant pollutants. As biodegradation is an important pathway in the environment fate of PBDEs, it is of great significance to study the biotransformation of BDE47 with white rot fungi and their peroxidases.
     In this paper, we first explored the optimized cultivating conditions for white rot fungi to selectively excret manganese peroxidase (MnP) and its purification method, and then studied the removal efficiency of BDE47 with the white rot fungi cell culture, concentrated LiP, and MnP separately. The effects ofβ-CD and Tween80 on the removal of BDE47 by white rot fungi cell culture and the effects of phenol and NOM on the removal of BDE47 with the concentrated LiP and MnP were further investigated.
     The main results obtained from the studies are as follows:
     (1) Through comparative tests, we got the optimal cultivating condition of white rot fungi to selectively excret MnP:Tween80(0.05%, v/v), agitated culture(37℃,150r/min), and the MnP activity reached the maximum of 2141.67U/L at the 11th day after incubation. Effective separation of MnP and LiP was achieved by adding Tween80 and increasing the amount of Mn2+.
     (2) The average removal efficiency of BDE47 in the white rot fungi cell culture system was about 70% after incubation for 15 days; In early days of the incubation, some of the BDE47 were adsorbed by the mycelium, but the adsorption was under the detection limits in later period. The contribution of P450 enzyme on the degradation of BDE47 were also examed and no effect of P450 on the biodegradation of BDE47 were observed.
     (3) Addition of Tween80 andβ-CD in the cell culture system were studied, and no significant effects were observed on the removal efficiency of BDE47 no matter by adding Tween80 orβ-CD, which might be mainly because of the relatively high bioavailability of BDE47 which made the solubilization effects of Tween 80 andβ-CD on the apparent solubility of BDE47 not significant.
     (4) The role of purified LiP and MnP on the removal of BDE47 was also investigated. The effect of phenol and natural organic matter (NOM) on enzymatic reaction of BDE47 revealed that phenol and NOM have different effects on the LiP and MnP reaction. In the experiment concentration, phenol and NOM could increase the removal efficiency of BDE47 and removal efficiency is parallel with the concentration of phenol and NOM for LiP. The removal efficiency of BDE47 is achieved:33.6% without phenol and NOM,41.3% with 2mM phenol,47.5% with lOmM phenol,56.1% with 50mM phenol,51.3% with 20mg TOC/L and 53.5% with 50mg TOC/L. However, for MnP, the enhancement effects were increased at low concentration and decreased at high concentration both with phenol and NOM, but the removal efficiency of BDE47 was still higher than the system without phenol and NOM, it is achieved: 4.2% without phenol and NOM,18.1% with 2mM phenol,22.9% with lOmM phenol,8% with 50mM phenol,38.8% with 20mg TOC/L and 24.6% with 50mg TOC/L.
引文
[1]刘汉霞,张庆华,江桂斌.多溴联苯醚及其环境问题[J].化学进展,2005,1(3):554-562.
    [2]Cynthia, A., de Wit. An overview of brominated flame retardants in the environment [J]. Chemosphere 2002,46(5):583-624.
    [3]Kuramochi, H., Maeda, K., Kawamoto, K. Physicochemical properties of selected polybrominated diphenyl ethers and extension of the UNIFAC model to brominated aromatic compounds [J]. Chemosphere,2007,67:1858-1865.
    [4]Stapleton, H.M., Letcher, R., Baker, J.E. Debromination of polybrominated diphenyl ether congeners BDE-99 and BDE-183 in the intestinal tract of the common carp[J]. Environmental Science & Technology,2004,38:1054-1061.
    [5]Schecter, A., Pavuk, M. Polybrominated diphenyl ethers (PBDEs) in US mothers milk[J]. Environmental Health Perspectives,2003,111:1723-1729.
    [6]Tjamlund, U., Ericson, G., de Wit, et al. Effects of two PBDEs on rainbow trout exposed via food[J]. Marine Environmental Research,1998:46:107-112.
    [7]Liu Z., Liu J., Zhang J., et al. Effects and toxicity mechanism of 2,2',4,4'-tetrabrominated diphenyl ethers on the homeostasis of thyroid hormone system in C57BL/6 mice[J]. Wei Sheng Yan Jiu.2009,38:522-524.
    [8]Kallqvist, T., Grung, M. Tollefsen chronic toxicity of 2,2',4,4'-tetrabromodiphenyl ther on the marine alga Skeletonema costatum and the crustacean Daphnia magna. Environmental Toxicology and Chemistry,2006,25:1657-1662.
    [9]Stoker, T.E., Cooper, R.L., Lambright, C.S., Furr, J., and Gray,L.E. In vivo and in vitro anti-androgenic effects of DE-71,a commercial polybrominated diphenyl ether (PBDE) mixture. Toxicology and Applied Pharmacology,2005,22:78-88.
    [10]吴伟,聂凤琴,瞿建宏等.2,2',4,4'-四溴联苯醚对鲫鱼离体肝脏组织的氧化胁迫[J].农业环境科学学报,2009,28:1005-1009.
    [11]张帆,余应新,张东平等.溴系阻燃剂在环境及人体中的存在和代谢转化[J].化学进展,2009,21:1364-1372.
    [12]Corsolini, S., Guerranti, C., Perra, G. and Focardi, S. Polybrominated Diphenyl Ethers, Perfluorinated Compounds and Chlorinated Pesticides in Swordfish from the Mediterranean Sea. Environmental Science&Technology,2008,42:4344-4349.
    [13]IKonomou, M.G., Rayne S., et al. Occurrence and congener profiles of polybrominated diphenyl ethers (PBDEs) in environmental samples from coastal British Columbia, Canada. Chemosphere,2002,4:649-663.
    [14]Gao, Z S, Xu, J, et al.Polybrominated diphenyl ethers in aquatic biota from the lower reach of the Yangtze River, East China. Chemosphere,2009,75:1273-1279.
    [15]de Boer, J., Wester, P.G., van der Horst, A., Leonards, P.E.G. Polybrominated diphenyl ethers in influents, sediments, sewage treatment plant and effluents and biota from the Netherlands. Environmental Pollution,2003,122:63-74.
    [16]Oros, D.R., Hoover, D., Rodigari, F., Sericano, J.Levels and distribution of polybrominated diphenyl ethers in water, surface sediments, and bivalves from San Francisco Esturary. Environmental Science&Technology,2005:39,33-41.
    [17]Boon, J.P, Lewis, W.E, et al. Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food web. Environmental Science & Technology,2002,36:4025-4032
    [18]Wolkers, H, van Bavel, B, Derocher, A.E., et al. Congener-specific accumulation and food chain transfer of polybrominated diphenyl ethers in two Arctic food chains. Environmental Science&Technology,2004,38:1667-1674
    [19]Muir, D.C.G., Backus, S., Dietz, R., et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard. Environmental Science&Technology,2006,40:449-455
    [20]Fang, L., Huang, J., Yu, G., et al. Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane[J]. Chemosphere,2008,71:258-267.
    [21]李雪,林卉,黄俊等.持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集,2008年[C].中国北京:2008
    [22]王立宁,方磊,李雪等.持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集,2008年[C].中国北京:2008
    [23]Hakk, H., Letcher, R.J..Metabolism in the toxicokinetics and fate of brominated flame retardants-a review[J].Environmental International,2003,29:801-828.
    [24]Burreau, S., Broman, D. Tissue distribution of 2,2',4,4',-tetrabromo[14C]diphenyl ether ([14C]-PBDE 47) in pike (Esox lucius) after dietary exposure-Time series study using whole body autoradiography. Chemosphere,2000,40:977-985.
    [25]Marsh, G., Athanasiadou, M., et al. Identification of hydroxylated metabolites in 2,2',4,4'-tetrabromodiphenyl ether exposed rats[J]. Chemosphere,2006,63:690-697.
    [26]Qiu, X., Bigsby, R.M., Hites, R.A.. Hydroxylated metabolites of polybrominated diphenyl ethers in human blood samples from the United States[J]. Environmental Health Perspectives,2009,117:93-98
    [27]Teuten, E.L., Xu, L., Reddy, C.M. Two abundant bioaccumulated halogenated compounds are natural products[J]. Science,2005,307:917-920.
    [28]Malmarn, Zebuhr, Y., Kautsky, L., Bergman, A., Asplund, L..Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea.Chemosphere,2008,72:910-916
    [29]罗孝俊,麦碧娴等.PBDEs研究的最新进展[J].化学进展,2009,21:359-368.
    [30]卢晓霞,陈超琪,李秀利等.2,2',4,4'-四溴联苯醚的厌氧微生物降解[A].持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会[C].北京:中国环境科学出版社,2008.
    [31]Kristin, Robrock R., et al. Pathways for the Anaerobic Microbial Debromination of PBDEs [J]. Environmental Science & Technology,2008,42:2845-2852.
    [32]Schmidt, S., Fortnagel, P., Wittich, R. M. Biodegradation and transformation of 4,4'-dihalodiphenyl and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33[J]. Applied and Environment Microbiology,1993,59 (11):3931-3933.
    [33]Kim, Y.M., Nam, I.H., Chang, Y.S. Biodegradation of diphenyl etherandtransformation of selected brominated congeners by Sphingomonas sp. PH-07[J]. Applied Microbiology and Biotechnology,2007,77:187-194.
    [34]Robrock, K.R., Coelhan M., et al. Aerobic Biotransformation of PBDEs by Bacterial Isolates[J]. Environmental Science & Technology,2009,43(15): 5705-5711.
    [35]Tuour U, et al. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay [J]. Journal of biotechnology,1995,41: 1-17.
    [36]Martinek K, et al. Colloidal solution of water in organic-solvents-A microheterogeneous medium for enzymatic-reactions[J]. Science,1982,218:889-891.
    [37]Asgher, M., Legge, R.L. Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels[J]. World Journal of Microbiology and Biotechnology,2007,23:525-531.
    [38]Mao, L., et al. Ligninase-Mediated Removal of Natural and Synthetic Estrogens from Water (I) [J]. Environmental Science & Technology,2009,43:374-379.
    [39]Khindaria, A., Yamazaki, I., Aust, S.D. Veratryl alcohol oxidation by lignin peroxidase[J]. Biochemistry,1995,34:16860-16869.
    [40]Hammel, K.E., Jensen, K.A., Mozuch, M.D., et al. Ligninolysis by a purified lignin peroxidase [J]. Journal of Biochemistry,1993,268:12274-12281.
    [41]Sundaramoorthy, M., Kishi, K., Gold, M.H., et al. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06A resolution[J]. Journal of Biological Chemistry,1994,269:32759-32767.
    [42]Kishi, K., Gold, M.H.. Mechanism of manganese peroxidase Ⅱ reduction. Effect of organic acid and chelators and pH [J]. Biochemistry,1994,34:8694-8701.
    [43]Sergei, L., et al. Reading substrate specificity of lignin peroxidase and a S168W variant of manganese peroxidase[J]. Archives of Biochemistry and Biophysics, 2000,373:147-153.
    [44]Raziye O., et al. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium[J]. Process Biochemistry,2005,40:83-87.
    [45]Tien, M., Kirk, T.K.. Lignin peroxidase of phanerochaete chrysosporium [J]. Methods in Enzymology,1988,161:238-249.
    [46]Archibald, F.S.. A new assay for lignin-type peroxidase employing the dye Azure B[J]. Applied and Environmental Microbiology,1992,58(9):3110-3116.
    [47]Wariishi H., Valli K. and Gold M.H... Manganese(II)Oxidation by Manganese Peroxidase from the Basidiomycete phanerochaete chrysosporium[J]. Biological Chemistry,1992,267:23688-23695.
    [48]Faison, B.D., Kirk, T.K., Farrell, R.L.. Role of veratryl alcohol in regulating ligninase activity in Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology,1986,52 (2):251-254.
    [49]张朝晖,夏黎明,林建平.岑沛霖黄孢原毛平革菌培养合成木素过氧化物酶研究[J].浙江大学学报(自然科学版),1999,33(2):132-136.
    [50]Mester, T.. Optimization of manganese peroxidase production by the white rot fungus Bjerkandera sp.strain BOS55[J]. FEMS Microbiology letters,1997,155:161-168.
    [51]Novotny C, et al. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate[J]. Soil Biology and Biochemistry,2004,36: 1545-1551.
    [52]Urek R O, et al. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporim[J]. Process Biochemistry,2005,40: 83-87.
    [53]Koshland, D.E. The key-lock theory and the induced fit theory[J]. Angewandte chemie-international edition,1994,33:2375-2378.
    [54]Woggon, W.D., Wagenknecht, H.A.& Claude, C. Characterization and identification of intermediates of the catalytic cycles of cytochrome P450cam and chloroperoxidase[J]. Journal of Inorganic Biochemistry,2001,83:289-300.
    [55]Podust, L.M., Kim, Y.C., et al. A new monooxygenase that functionalizes macrolide ring systems[J]. Biological Chemistry,2003,278(14):12214-12221.
    [56]Achazi R K, Flenner C, Livingstone D R, et al. Cytochrome P450 and dependent activities in unexposed and PAH-exposed terrestrial annelids[J]. Comparative Biochemistry and Physiology Part C,1998,121:339-350.
    [57]Hiratsuka, N., et al. Metabolic mechanisms involved in hydroxylation reactions of diphenyl compounds by the lignin-degrading basidiomycete Phanerochaete chrysosporium[J]. Biochemical Engineering Journal,2005,23(3):241-246.
    [58]Marco-Urrea, E., M. Perez-Trujillo, et al. Dechlorination of 1,2,3-and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor[J].Journal of Hazardous Materials,2009,166(2-3):1141-1147.
    [59]Marco-Urrea, E., M. Perez-Trujillo, et al. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor[J]. Chemosphere,2009,74(6):765-772.
    [60]Hundt, K., et al. Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products[J]. Biodegradation,1999,10(4): 279-286.
    [61]丁娟,周娟,姜玮颖,高士祥.多溴联苯醚好氧微生物降解研究[J].环境科学2009,29(11):3179-3184.
    [62]LEE S.M., KOO B.W, CHOI J.W., et al. Degradation of Bisphenol A by White Rot Fungi, Stereum hirsutum and Heterobasidium insulare, and Reduction of Its Estrogenic Activity[J]. Biological and Pharmaceutical Bulletin,2005,28(2):201—207.
    [63]Christiana V., Shrivastavaa R., Shuklaa D.,et al. Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol brilliant blue R[J]. Enzyme and Microbial Technology,2005,36:426-431.
    [64]Mohammadi, A., Enayatzadeh, M., et al. Enzymatic degradation of anthracene by the white rot fungus Phanerochaete chrysosporium immobilized on sugarcane bagasse[J]. Journal of Hazardous Materials,2009,161:534-537.
    [65]Wen, X., Y. Jia, et al. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium [J]. Journal of Hazardous Materials,2010,177(1-3):924-928.
    [66]Zhang, Y.J.. In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase [J]. Journal of Hazardous Materials,2010,176:1089-1092.
    [67]Chigu, N.L., Hirosue, S., et al. Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium [J]. Applied Microbiology and Biotechnology,2010,87(5): 1907-1916.
    [68]Ning, D., et al. Induction of functional CYP450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium [J]. Biodegradation,2010,21:297-308.
    [69]Subramanian, V. and Yadav, J.S.. Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium [J]. Applied and Environmental Microbiology,2009,75(17):5570-5580.
    [70]Aronstein, B.N., Calvillo, Y.M., Alexande,r M. Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil [J]. Environmental Science & Technology,1991,25 (10):1728-1731.
    [71]Zhao, B.W., Zhu, L.Z., et al. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions [J]. Chemosphere,2005,58(1):33-40.
    [72]Cabaniss S., et al. A Stochastic Model for the Synthesis and Degradation of Natural Organic Matter(Part Ⅰ.) [J]. Biogeochemistry,2005,76:319-347.
    [73]Weber, W.J., Huang, Q.G.. Inclusion of persistent organic pollutants in humification processes. Direct chemical incorporation of phenanthrene via oxidative coupling[J]. Environmental Science & Technology,2003,37:4221-4227
    [74]毛丽,余益军,孙兆海.Cu2+对商用腐殖酸增溶4,4’-二溴联苯醚的影响[J].环境科学,2010,31(1):199-204.
    [75]彭剑飞,饶俊文,沈咏美.天然土壤中典型多溴联苯醚解吸过程的初步研究[J].农业环境科学学报,2009,28(7):1404-1409.
    [76]Sayadi S., Ellouz, R.. Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters [J]. Applied Environmental Microbiology.1995,61:1098-1103
    [77]Paszczynski, A., Huynh, V.B.. Manganese peroxidase of Phanerochaete chrysosporium:purification [J]. Method in Enzymology,1988,161:264-270
    [78]Kuramochi, H., Maeda, K., Kawamoto, K.. Physicochemical properties of selected polybrominated diphenyl ethers and extension of the UNIFAC model to brominated aromatic compounds [J]. Chemosphere,2007,67:1858-1865.
    [79]Stapleton, H.M., Letcher, R., Baker, J.E. Debromination of polybrominated diphenyl ether congeners BDE-99 and BDE-183 in the intestinal tract of the common carp[J]. Environmental Science & Technology,2004,38:1054-1061.
    [80]Schecter, A., Pavuk, M. Polybrominated diphenyl ethers (PBDEs) in US mothers milk[J]. Environmental Health Perspectives,2003,111:1723-1729.
    [81]Schenkman, J.B, Jansson, I. Spectral analyses of cytochrome P450[J]. Methods in Molecular Biology,1998,107:25-33.
    [82]Glenn, J.K., Akileswaran, L., Gold, M.H. Mn(Ⅱ) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics,1986,251:688-696.
    [83]Kullman, S.W, Matsumura, F.. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Applied and Environment Microbiology,1996,62:593-600.
    [84]Teramoto, H., Tanaka, H., Wariishi, H.. Fungal cytochrome P450s catalyzing hydroxylation of substituted toluenes to form their hydroxymethyl derivatives. FEMS Microbiology Letters,2004b,234:255-260.
    [85]Roper, J.C., Bollag, J.M. Enhanced enzymatic removal of chlorophenols in the presence of cosubstrates[J]. Water Research,1995,29:2720-2724.
    [86]Lisa, M., Daniel, J.. Peroxidase-Mediated Removal of a Polychlorinated Biphenyl Using Natural Organic Matter as the Sole Cosubstrate[J]. Environmental Science & Technology,2007,41:891-896
    [87]Lu, J.H. and Huang, Q.G.. Removal of Acetaminophen Using Enzyme-Mediated Oxidative Coupling Processes:Ⅱ. Cross-Coupling with Natural Organic Matter[J]. Environmental Science & Technology,2009,43(18):7068-7073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700