2005-2008年华东地区NDV遗传进化分析和代表性毒株感染细胞的比较蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫(Newcastle disease, ND)为能感染多种禽类的一种急性、高度传染性疫病,给世界养禽业造成巨大的经济损失。新城疫病毒(Newcastle disease virus, NDV)属于副粘病毒科,禽腮腺炎病毒属,其基因组由单股负链RNA构成,基因组结构为3′-NP-P-M-F-HN-L-5′,依次编码6种结构蛋白:核衣壳蛋白(NP)、磷蛋白(P)、基质蛋白(M)、融合蛋白(F)、血凝素-神经氨酸酶蛋白(HN)和大分子蛋白(L),其中病毒囊膜表面的两种糖蛋白F和HN是构成NDV致病性的主要分子基础。本研究对2005-2008年间分离自华东地区的79株NDV的F基因和HN基因序列进行了测序和遗传进化分析,发现分离株在基因型和毒力上具有明显的多样性,但基因Ⅶd亚型仍然是我国流行的优势基因型;在NDV的遗传进化分析基础上,选取了三株不同遗传背景的NDV进行体内外的致病性试验,结果表明:基因Ⅶ型NDV对鸽、鸡和鹅均呈现出高致病性,鸽源Ⅵb亚型NDV具有明显宿主感染特异性;为了进一步探讨NDV在细胞分子水平上的致病机制以及三株NDV之间的致病性差异,本研究还运用比较蛋白质组方法对上述三株NDV感染细胞后的差异表达蛋白进行了初步分析。
     1. 2005-2008年我国华东地区新城疫病毒分离株的遗传进化分析
     对2005-2008年间从我国华东地区发病的鸡、鹅、鸽等禽类中所分离出的79株NDV进行了生物学特性和基因型鉴定。F和HN基因的遗传进化分析结果一致表明:79个分离株中,有3株弱毒为class I谱系;76株为class II谱系,其中基因Ⅰ型NDV弱毒1株,基因Ⅱ型NDV弱毒12株,基因Ⅲ型NDV强毒2株,基因Ⅵ型中等毒力NDV 4株,其它57株NDV强毒分离株均属于基因Ⅶd亚型。Ⅶd亚型毒株占到了所有分离强毒株的96%以上,表明Ⅶd亚型NDV仍然是我国当前流行的优势基因型。序列比对结果显示,基因Ⅰ型、Ⅱ型和Ⅲ型分离株与疫苗株V4、La Sota和Mukteswar的同源性分别为99.6%、96.2~99%和99.9%,由此,这些毒株可能来源于临床上广泛使用的疫苗株;4株基因Ⅵb亚型NDV均为鸽源分离株,暗示该亚型NDV具有强的宿主感染特异性。在遗传进化树上,57个Ⅶd亚型NDV可进一步分为Ⅶd1和Ⅶd2两个分支,近两年分离的大多数毒株属于Ⅶd2分支,与Ⅶd1分支中NDV相比,Ⅶd2中的NDV在F蛋白分别出现了4处突变:N145K、Q279H、K387R和F512I;在HN蛋白也出现3处突变,分别为:T102I、A118E和T443M。我国新城疫病毒分离株在毒力与基因型所呈现出的多样性,为研究不同遗传背景毒株之间的致病性差异提供了理想的生物材料。
     2.不同遗传背景NDV体内外致病性
     在NDV的遗传进化分析基础上选取鹅源毒株JS-5-05-Go(基因Ⅶd亚型)、鸽源毒株WX-10-07-Pi(基因Ⅵb亚型)和鸡源毒株JS-7-05-Ch(基因Ⅲ型)三个不同遗传背景的NDV进行体内外的致病性试验。三株不同遗传背景NDV均以0.01MOI接种量感染鸡胚成纤维细胞(CEF)、鸭胚成纤维细胞(DEF)和鹅胚成纤维细胞(GEF),结果显示JS-5-05-Go感染三种细胞的上清HA峰值均比其它两株病毒高,WX-10-07-Pi感染后三种细胞上清HA峰值相同,JS-7-05-Ch感染后三种细胞上清HA峰值差异显著;三株NDV感染GEF细胞崩解过程均比DEF缓慢。动物试验中,我们以上述三株NDV和标准强毒株F48E8经自然感染途径分别感染鸽、SPF鸡和鹅三种试验动物,结果显示,仅JS-5-05-Go和F48E8引起感染鸽的死亡,且只有JS-5-05-Go和WX-10-07-Pi毒株导致鸽泄殖腔出现间歇排毒。WX-10-07-Pi攻毒组鸽泄殖腔排毒时间最长、且病毒检出率较其它组要高,因此与其它基因型NDV相比,基因Ⅵb亚型NDV更易在鸽群中感染传播。SPF鸡感染试验结果表明,JS-7-05-Ch虽为强毒株,但是对鸡的致病性较弱,但其余3株NDV对鸡的致病力与其毒力呈正相关。四株NDV对鹅的致病力差异显著,致病力从强到弱依次为F48E8、JS-5-05-Go、JS-7-05-Ch和WX-10-07-Pi,WX-10-07-Pi几乎不引发鹅的临床症状;F48E8和JS-5-05-Go试验组在9种脏器组织中病毒检测率、喉头和泄殖腔排毒差异不显著。
     3.不同遗传背景新城疫病毒感染CEF的比较蛋白质组研究
     为了在细胞蛋白水平研究三株不同遗传背景NDV和宿主细胞之间的相互作用关系,本研究以感染了NDV的CEF为研究对象,采用双向凝胶电泳(2-DE)结合基质辅助激光解析电离飞行时间质谱鉴定技术(MALDI-TOF-MS)的比较蛋白质组研究方法,分析三株NDV感染CEF后24h和48h两个时间点细胞蛋白表达动态。双向凝胶图谱的差异表达分析显示,CEF感染三株NDV后,共有43个蛋白点出现了显著的差异表达,包括持续上调、持续下调、先期上调后期下调以及先期下调后期上调四种表达方式,部分蛋白点在不同的感染组中表达水平有所差异。采用MALDI-TOF-MS质谱法对43个差异表达蛋白点进行质谱鉴定,结果成功鉴定了41个蛋白点,对应39种蛋白质。根据蛋白的功能不同,这些差异表达蛋白涉及病毒结构蛋白(2%)、细胞骨架(43%)、应激反应(10%)、蛋白质翻译和合成(7%)、RNA加工和合成(12%)、能量代谢(7%)、泛素-蛋白酶体途径(2%)、信号传导(12%)以及一些功能未知蛋白(7%)。应用Western-blot分析方法验证了β-actin和α-tubulin的蛋白表达水平,其结果与2-DE的分析数据完全相符。根据差异表达蛋白的功能,推测在新城疫病毒感染细胞时,病毒可通过热休克蛋白27(HSP27)、硫氧还蛋白域5(TXNDC5)和核磷蛋白(NPM1)等蛋白的上调表达来抑制或延缓细胞的早期凋亡;同时,翻译延长因子Tu(EF-Tu)和40S核糖体蛋白SA(PRSA)上调表达有利于病毒自身蛋白质的合成;另外,细胞对于NDV的感染也具有一定的防御机制,热休克蛋白90kDa(GRP94)上调表达导致细胞凋亡增加。
     比较蛋白质给学试验结果显示,不同遗传背景NDV感染细胞中部分蛋白的表达水平存在明显差异。细胞微丝蛋白β-肌动蛋白(ACTB)和细胞质类型肌动蛋白8(ACTG8)、信号传导蛋白核仁素(C23)、含有TPR结构域的小的富含谷氨酰胺的蛋白(SGT)和14-3-3E蛋白(14-3-3E)以及参与蛋白翻译和合成的TXNDC5等与WX-10-07-Pi本身感染特性有关;细胞骨架蛋白中α-微管蛋白(TUBA)、角蛋白19(KRT19)、网素3(PLS3)和肌动蛋白加帽蛋白(CAPZA2),RNA加工蛋白中的不均一核糖核蛋白K(hnRNPK)以及功能未知的类人含46卷曲螺旋结构域(CCDC46)等与JS-7-05-Ch自身感染特性有关;而细胞骨架蛋白中波形纤维蛋白(VIM)和Β1-链微管蛋白(TUBA1C)、热应激蛋白Grp94、蛋白翻译蛋白EF-Tu以及早期内体抗原1(EEA1)等蛋白表达水平的变化与JS-5-05-Go本身感染特性有关。
     全文小结:
     (1) 2005-2008年间共分离鉴定NDV 79株,分离株在基因型和毒力上具有明显的多样性。基因Ⅶd亚型仍然是我国流行的优势基因型,该亚型目前已出现了Ⅶd1和基因Ⅶd2两个分支。
     (2)基因Ⅰ型、Ⅱ型、Ⅲ型NDV田间分离株与当前使用的疫苗毒株关系密切,推测这些田间分离株是疫苗株的变异株。与其它基因型毒株相比,鸽源Ⅵb亚型NDV具有明显的宿主感染特异性。
     (3)本研究首次应用比较蛋白质组方法研究不同遗传背景NDV感染CEF细胞后的差异表达的蛋白,质谱鉴定41个差异表达的蛋白,对应39种差异表达蛋白。
     (4) NDV感染细胞后改变了细胞骨架、影响泛素-蛋白酶体途径的稳定、破坏了宿主翻译机制、抑制细胞RNA的加工和能量代谢。
     (5)不同遗传背景NDV感染细胞后均出现与其本身特性相关的蛋白质。
     (6) NDV除通过膜融合进入细胞外,还可能通过胞吞途径进入细胞。与其它两株病毒相比,胞吞作用在JS-5-05-Go进入细胞的过程中,可以发挥更长时间的效应。
Newcastle disease (ND) is an acute and highly contagious avian disease with worldwide distribution that can cause substantial economic losses. The causative agent, Newcastle disease virus (NDV), is a member of the genus Avulavirus in the family Paramyxoviridae. The genome of NDV is a non-segmented, single-stranded, negative-sense RNA. The NDV genome contains six genes (in the following order: 3′-NP-P-M-F-HN-L-5′) which code for nucleocapsid protein (NP), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin-neuraminidase (HN) and an RNA dependent RNA polymerase (L), respectively. F and HN are the two important membrane glycoproteins which directly determine the virus virulence and pathogenicity. To elucidate the molecular epidemiology of recent NDV isolates, seventy-nine Newcastle disease viruses (NDV) isolated from clinical specimens of different poultry species including chickens, pigeons, geese and ostriches in Eastern China during 2005–2008 were characterized biologically and phylogenetically. The results showed that these viruses represented diverse phylogenetic and pathogenic phenotypes, while, the subgenotypeⅦd NDV are still the dominant strains circulating in China. Based on the phylogenic analysis of NDV isolates, three NDVs with different genetic background were chosen to conduct the pathogenicity tests both in vivo and in vitro. The results displayed that subgenotypeⅦd NDV possessed high pathogenicity to chickens, geese and pigeons, while the subgenotypeⅥb NDV only exhibited host-specificity to pigeons. To further evaluate the difference in the pathogenicity induced by these three NDVs, the differential expression of proteins in the virus-infected cells was also analyzed via comparative proteome.
     1. Characterization of the NDVs isolated during 2005-2008
     Seventy-nine Newcastle disease viruses (NDVs) isolated from clinical specimens of different poultry species including chickens, pigeons, geese and ostriches in Eastern China during 2005–2008 were characterized biologically and phylogenetically. Both the F and HN gene sequences analysis showed that these isolates could be divided into two separate clusters: classes I (3) and II (76). Three class I viruses and one genotypeⅠand 12 genotypeⅡviruses of class II were avirulent, four genotypeⅥb viruses isolated from pigeons were moderately virulent, and two genotypeⅢviruses and 57 genotypeⅦd viruses were highly virulent. The sequence identity of genotype,ⅡandⅢwith field isolates vaccine strains Queensland V4, La Sota and Mukteswar were 99.6%, 96.2-99%, and 99.9% respectively, implying that they were derivatives of the corresponding vaccine strains widely used in Chinese poultry flocks. The four genotypeⅥb NDVs were all pigeon-origin, indicating the host-specific preference of viruses in this genotype. On the phylogenic tree, the 57 subgenotypeⅦd isolates were further divided into two subgroups,Ⅶd1 andⅦd2, in which most of the strains isolated in recent two years belonged toⅦd2. Compared ofⅦd1 viruses, the viruses inⅦd2 presented the four amino acid sequence mutations of N145K, Q279H, K387R and G520V in F protein and three mutations of T102I, A118E and T443M in HN, respectively. These NDV isolates exhibited the diversity both in phylogenesis and pathogenicity, and provided suitable biomaterials to fully investigate the pathogenesis of NDVs with different genetic background.
     2. Pathogenicity of NDVs with different genetic background
     Based on the genetic and biological characteristics, three NDV isolates with different host origins and genotypes, including a goose isolate JS-5-05-Go (subgenotypeⅦd), a pigeon isolate WX-10-07-Pi (subgenotypeⅥb ) and a chicken isolate JS-7-05-Ch (genotypeⅢ), were seleted to study their pathogenicity. On the cellular level, chicken embryo fibroblast (CEF), duck embryo fibroblast (DEF) and goose embryo fibroblast (GEF) were infected with these viruses respectively at an MOI of 0.01. The results showed that the peak HA titers in culture supernatants induced by JS-5-05-Go were higher than that induced by the other two viruses. HA titers in culture supernatants of three avian embryo fibroblasts induced by WX-10-07-Pi were similar, whereas, those induced by JS-7-05-Ch were different. Additionally, GEF exhibited a slower disintegration process than DEF or CEF afterinoculation with the three viruses. To evaluate the pathogenicity of those NDVs with different genetic background in vivo, pigeons, specific-pathogen-free (SPF) chickens and geese were infected with the three viruses via natural route, with a virulent NDV strain F48E8 as a control virus. The results showed that only JS-5-05-Go and F48E8 could cause the death in the experimental pigeons. Pigeons inoculated with WX-10-07-Pi and JS-5-05-Go shed the virus intermittently, while pigeons infected with WX-10-07-Pi experienced much longer time in virus shedding and showed higher rate of virus isolation when compared with pigeons infected by other two strains. Therefore, genotypeⅥb NDV strain exhibited host-specifity to pigeons and could spread more easily in pigeons than other genotypes. The results in SPF chickens by natural route of infection showed that virulent strain JS-7-05-Ch was not highly pathogenic to chickens, whereas, the pathogenicity of the other three strains was closely related with their virulence. According to the extent of pathological changes, four viruses presented obvious variation in pathogenicity for geese and F48E8 demonstrated the highest pathogenicity, followed by JS-5-05-Go, JS-7-05-Ch and WX-10-07-Pi. Notably, no clinical sign was detected in geese infected with WX-10-07-Pi. Although F48E8 and JS-5-05-Go showed variation in pathogenicity for geese, no apparent differences in virus shedding and virus distribution in nine tissues were detected.
     3. Comparative proteome analysis of CEFs infected with NDVs of different genetic background
     To elucidate the interactions between host cells and NDVs with different genetic background on the cellular protein level, the proteomics technology of two-dimensional gel electrophoresis (2-DE) together with matrix associated laser dissociation / ionization time of flight mass spectrometry (MALDI-TOF-MS) was used to analyze proteomes of CEFs infected with viruses of different genetic background. Protein samples of CEFs were harvested at 24h and 48h postinoculation and prepared for 2-DE analysis. The results showed that 43 protein spots in total expressed differentially during virus infection, including persistent up-regulated protein spots, persistent down-regulated protein spots, up-regulated at antephase and down-regulated at anaphase protein spots and down-regulated at antephase and up-regulated at anaphase protein spots. Some proteins have differentially expressed levels in three NDV-infected groups. With MALDI-TOF-MS, 41 protein spots representing 39 proteins were successfully identified. Cellular functional protein analysis showed that these differentially expressed proteins related to viral protein (2%), cytoskeleton (41%), stress response (10%), protein translation and elongation (7%), RNA processing and biosynthesis (12%), energy metabolism-associated proteins (7%), signal transduction (12%), ubiquitin-proteasome pathway (2%)and other proteins (7%). The result of Western-blot analysis further demonstrated thatβ-actin andα-tubulin showed difference in expression during virus infection, confirming the results of 2-DE. Based on the protein functions, we concluded that in NDV infected CEFs, the up-regulated expression proteins, heat shock 27kDa protein 1 (HSP27), thioredoxin domain containing 5 (TXNDC5) and nucleophosmin 1 (NPM1) may inhibit or delay early apoptosis, and that the up-regulated expression of Elongation factor Tu, mitochondrial precursor (EF-Tu) and 40S ribosomal protein SA, (34/67 kDa laminin receptor) (PRSA) may be conducive to the synthesis of viral proteins. Furthermore, certain kinds of host defense mechanism might be developed to antagonize virus infection, such as the increased level of apoptosis induced by up-regulated heat shock protein 90kDa beta, member 1, (GRP94).
     Changes in the expression level of cellular microfilament-associated proteins beta-actin (ACTB) and Actin, cytoplasmic type 8 (ACTG8), signal transduction protein nucleolin (C23), small glutamine-rich tetratricopeptide (SGT) and 14-3-3 protein epsilon (14-3-3E) and translation and elongation protein TXNDC5 were related to the infection of WX-10-07-Pi. Alterations of the expression of cytoskeleton protein TUBA, keratin 19 (KRT19), plastin 3 (T isoform) (PLS3) and capping protein (actin filament) muscle Z-line, alpha 2 (CAPZA2), RNA processing protein heterogeneous nuclear ribonucleoprotein K (hnRNPK) and functionally unidentified protein similar to coiled-coil domain containing 46 (CCDC46) were associated with the infection of JS-7-05-Ch. Cytoskeleton protein vimentin (VIM) and Tubulin alpha-1 chain (TUBA1C), heat shock protein Grp94, protein translation and elongation EF-Tu and early endosome antigen 1 (EEA1) were considered the symbol proteins in the cells infected by JS-5-05-Go. Taken together, the data showed that cells could give arise to different responses to the infection of NDVs with different genetic background.
     Conclusions:
     (1) Seventy nine Newcastle disease viruses isolated during 2005-2008 were characterized, indicating diversify in phylogenesis and virulence. In China, genotypeⅦNDV was still the predominant genotype which could be divided into two subgroupsⅦd1 andⅦd2.
     (2) GenotypeⅠ,ⅡandⅢfiled isolates in this study shared high homology with vaccine stains V4, LaSota and Mukteswar, respectively, indicating that they were derivatives of the vaccines viruses. Compared with other genotype strains, subgenotypeⅥb NDV exhibited host-specificity to pigeons.
     (3) In this study, we first used the comparative proteome approach to investigate the differentially expressed proteins of chicken embryo fibroblasts infected by NDVs with different genetic backgrounds, and successfully identified 41 differentially expressed spots representing 39 proteins.
     (4) NDV infection induced a series of cellular responses, including alteration of cytoskeleton networks, disorders in the ubiquitin-proteasome pathway, disruption of the host translation mechanism, and inhibition of RNA processing and energy metabolism.
     (5) Symbolic proteins had been found which was related to the infected by the viruses with different genetic background.
     (6) The entry into cells of NDV is believed to occur by direct fusion at the plasma membrane. In addition, NDV may enter host cells by an endocytic pathway.
引文
[1] Aldous EW, Alexander DJ. Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 2001 Apr;30(2):117-28.
    [2] Mayo MA. A summary of taxonomic changes recently approved by ICTV. Arch Virol 2002 Aug;147(8):1655-63.
    [3] Peeters B, de Leeuw O, Koch G, Gielkens A. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. Journal of Virology 1999;73(6):5001.
    [4] Kattenbelt JA, Stevens MP, Gould AR. Sequence variation in the Newcastle disease virus genome. Virus Res 2006 Mar;116(1-2):168-84.
    [5] Huang Y, Wan HQ, Liu HQ, Wu YT, Liu XF. Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese: a novel six nucleotide insertion in the non-coding region of the nucleoprotein gene. Brief Report. Arch Virol 2004 Jul;149(7):1445-57.
    [6] Krishnamurthy S, Samal SK. Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence. J Gen Virol 1998 Oct;79 ( Pt 10):2419-24.
    [7] Czegledi A, Ujvari D, Somogyi E, Wehmann E, Werner O, Lomniczi B. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 2006 Sep;120(1-2):36-48.
    [8] Kim L, King D, Suarez D, Wong C, Afonso C. Characterization of class I Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-PCR. Journal of Clinical Microbiology 2007;45(4):1310.
    [9] Miller PJ, Decanini EL, Afonso CL. Newcastle disease: Evolution of genotypes and the related diagnostic challenges. Infect Genet Evol 2009 Sep 30.
    [10] Nakaya Y, Nakaya T, Park MS, Cros J, Imanishi J, Palese P, et al. Induction of cellular immune responses to simian immunodeficiency virus gag by two recombinant negative-strand RNA virus vectors. Journal of virology 2004 Sep;78(17):9366-75.
    [11] Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 2004 Jan;36(1):1-10.
    [12] Romer-Oberdorfer A, Veits J, Werner O, Mettenleiter TC. Enhancement of pathogenicity of Newcastle disease virus by alteration of specific amino acid residues in the surface glycoproteins F and HN. Avian Dis 2006 Jun;50(2):259-63.
    [13] Glickman R, Syddall R, Iorio R, Sheehan J, Bratt M. Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus. Journal of Virology 1988;62(1):354.
    [14] de Leeuw OS, Hartog L, Koch G, Peeters BP. Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J Gen Virol 2003 Feb;84(Pt 2):475-84.
    [15] McGinnes LW, Wilde A, Morrison TG. Nucleotide sequence of the gene encoding the Newcastle disease virus hemagglutinin-neuraminidase protein and comparisons of paramyxovirus hemagglutinin-neuraminidase protein sequences. Virus Res 1987 May;7(3):187-202.
    [16] Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, Samal SK. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 2004 Apr;78(8):4176-84.
    [17] Seal B, Crawford J, Sellers H, Locke D, King D. Nucleotide sequence analysis of the Newcastle disease virus nucleocapsid protein gene and phylogenetic relationships among the Paramyxoviridae. Virus Research 2002;83(1-2):119-29.
    [18]巩艳艳,崔治中.细胞培养上新城疫病毒HN基因在抗体免疫选择压作用下的抗原表位变异.中国科学C辑2009;39(12):1175-80.
    [19] Alexander DJ. Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE, editors. Diseases of Poultry. 11th ed. Ames: Iowa State University Press, 2003: 64-87.
    [20] de Leeuw OS, Koch G, Hartog L, Ravenshorst N, Peeters BP. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. The Journal of general virology 2005 Jun;86(Pt 6):1759-69.
    [21] Alexander D. Newcastle disease and other avian Paramyxoviridae infections. Diseases of poultry 1997;10:541-69.
    [22] Harper DR. A novel plaque assay system for paramyxoviruses. J Virol Methods 1989Sep;25(3):347-50.
    [23] Kattenbelt JA SM, Gould AR. Sequence variation in the Newcastle disease virus genome. Virus Res 2006;116(1-2):168-84.
    [24] de Leeuw O PB. Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol 1999;80(Pt 1):131-6.
    [25] Sakaguchi T TT, Gotoh B, Inocencio NM, Kuma K, Miyata T, Nagai Y Newcastle disease virus evolution. I. Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene. Virology 1989;169(2):260-72.
    [26] Toyoda T ST, Imai K, Inocencio NM, Gotoh B, Hamaguchi M, Nagai Y. Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology 1987;158(1):242-7.
    [27] de Leeuw OS KG, Hartog L, Ravenshorst N, Peeters BP. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein J Gen Virol 2005; 86( Pt 6):1759-69.
    [28] Wei D YB, Li YL, Xue CF, Chen ZN, Bian H. Characterization of the genome sequence of an oncolytic Newcastle disease virus strain Italien. Virus Res 2008;135(2):312-9.
    [29] Ujvári D WE, Herczeg J, Lomniczi B. Identification and subgrouping of pigeon type Newcastle disease virus strains by restriction enzyme cleavage site analysis. J Virol Methods 2006;131(2):115-21.
    [30] Czegledi A UD, Somogyi E, Wehmann E, Werner O, Lomniczi B Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 2006;120(1-2):36-48.
    [31] Aldous EW MJ, Banks J, Alexander DJ. A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. 2003.
    [32] Choi KS LE, Jeon WJ, Nah JJ, Kim YJ, Lee MY, Lee H, Kwon JH. Isolation of a recent Korean epizootic strain of Newcastle disease virus from Eurasian Scops Owls affected with severe diarrhea. J Wildl Dis 2008;44(1):193-8.
    [33] Kim LM KD, Suarez DL, Wong CW, Afonso, CL. Characterization of class I Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-PCR. J Clin Microbiol 2007b;45(4):1310-4.
    [34] Lee YJ SH, Choi JG, Kim JH, Song CS Molecular epidemiology of Newcastle disease viruses isolated in South Korea using sequencing of the fusion protein cleavage site region and phylogenetic relationships. Avian Pathol 33(5), 482-91 2004;33(5):482-91.
    [35] Huang Y WH, Liu HQ, Wu YT, Liu XF. Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese: a novel six nucleotide insertion in the non-coding region of the nucleoprotein gene. Arch Virol 2004;149(7):1445-57.
    [36] Yu L WZ, Jiang Y, Chang L, Kwang J Characterization of newly emerging Newcastle disease virus isolates from the People's Republic of China and Taiwan. J Clin Microbiol 2001;39(10):3512-9.
    [37] Mase M IK, Sanada Y, Sanada N, Yuasa N, Imada T, Tsukamoto K, Yamaguchi S. Phylogenetic analysis of Newcastle disease virus genotypes isolated in Japan. J Clin Microbiol 2002;40(10): 3826-30.
    [38] Cho SH KH, Kim TE, Kim JH, Yoo HS, Kim SJ. Variation of a newcastle disease virus hemagglutinin-neuraminidase linear epitope. J Clin Microbiol 2008;46(4):1541-4.
    [39] Dai Y LM, Li W. Protective efficacy of commercial Newcastle disease vaccines against challenge of goose origin virulent Newcastle disease virus in geese. Avian Dis 2008; 52(3):467-71.
    [40] Liu XF WH, Ni XX, Wu YT, Liu WB. Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions ofChina during 1985-2001. Arch Virol 2003;148(7):1387-403.
    [41] Yang CY SH, Lin YL, Chang PC. Newcastle disease virus isolated from recent outbreaks in Taiwan phylogenetically related to viruses (genotype VII) from recent outbreaks in western Europe. Avian Dis 1999; 43(1):125-30.
    [42] Alexander DJ BJ, Collins MS, Manvell RJ, Frost KM, Speidel EC, Aldous EW. Antigenic and genetic characterisation of Newcastle disease viruses isolated from outbreaks in domestic fowl and turkeys in Great Britain during 1997. Vet Rec 1999; 145(15):417-21.
    [43] Yoshimura M, Tsubaki S, Yamagami T, Sugimoto R, Ide S. The effectiveness of immunization to Newcastle disease, avian infectious bronchitis and avian infectious coryza with inactivated combined vaccines. The Kitasato archives of experimental medicine 1972 Dec;45(3):165-79.
    [44] Vallat B, Edwards S. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees). Paris: Office International Des Epizooties, 2004.
    [45] Toyoda T, Sakaguchi T, Hirota H, Gotoh B, Kuma K, Miyata T, et al. Newcastle disease virus evolution. II. Lack of gene recombination in generating virulent and avirulent strains. Virology 1989 Apr;169(2):273-82.
    [46] McGinnes L, Morrison T. Disulfide bond formation is a determinant of glycosylation site usage in the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. Journal of Virology 1997;71(4):3083.
    [47] Cho SH, Kwon HJ, Kim TE, Kim JH, Yoo HS, Kim SJ. Variation of a newcastle disease virus hemagglutinin-neuraminidase linear epitope. J Clin Microbiol 2008 Apr;46(4):1541-4.
    [48] Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 2001 Sep 25;98(20):11609-14.
    [49] Yu SQ, Kishida N, Ito H, Kida H, Otsuki, K, Kawaoka Y, et al. Generation of velogenic Newcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens. Virology 2002; 301(2), 206-11.
    [50] Miller P, King D, Afonso C, Suarez D. Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine 2007;25(41):7238-46.
    [51] Miller PJ, Kim LM, Ip HS, Afonso CL. Evolutionary dynamics of Newcastle disease virus. Virology 2009 Aug 15;391(1):64-72.
    [52] Lien YY, Lee JW, Su HY, Tsai HJ, Tsai MC, Hsieh CY, et al. Phylogenetic characterization of Newcastle disease viruses isolated in Taiwan during 2003-2006. Veterinary microbiology 2007 Jul 20;123(1-3):194-202.
    [53] Cho SH, Kim SJ, Kwon HJ. Genomic sequence of an antigenic variant Newcastle disease virus isolated in Korea. Virus Genes 2007 Oct;35(2):293-302.
    [54]胡顺林.鹅源新城疫病毒反向遗传技术平台的建立及其应用[D].扬州:扬州大学, 2007.
    [1] Ballagi-Pordany A, Wehmann E, Herczeg J, Belak S, Lomniczi B. Identification and grouping of Newcastle disease virus strains by restriction site analysis of a region from the F gene. Archives of virology 1996;141(2):243-61.
    [2] Lomniczi B, Wehmann E, Herczeg J, Ballagi-Pordany A, Kaleta EF, Werner O, et al. Newcastle disease outbreaks in recent years in western Europe were caused by an old (VI) and a novel genotype (VII). Archives of virology 1998;143(1):49-64.
    [3] Alexander DJ. Newcastle disease and other Paramyxoviridae infections. In: Calnek BW, Barnes HJ, Beard CW, McDougald L, Saif YM, editors. Diseases of poultry Ames: Iowa State University Press 1997:541-69.
    [4] Abolnik C, Horner RF, Bisschop SP, Parker ME, Romito M, Viljoen GJ. A phylogenetic study of South African Newcastle disease virus strains isolated between 1990 and 2002 suggests epidemiological origins in the Far East. Archives of virology 2004 Mar;149(3):603-19.
    [5] Herczeg J, Wehmann E, Bragg RR, Travassos Dias PM, Hadjiev G, Werner O, et al. Two novel genetic groups (VIIb and VIII) responsible for recent Newcastle disease outbreaks in Southern Africa, one (VIIb) of which reached Southern Europe. Archives of virology 1999;144(11):2087-99.
    [6] Lee YJ, Sung HW, Choi JG, Kim JH, Song CS. Molecular epidemiology of Newcastle disease viruses isolated in South Korea using sequencing of the fusion protein cleavage site region and phylogenetic relationships. Avian Pathol 2004 Oct;33(5):482-91.
    [7] Liu H, Wang Z, Wu Y, Zheng D, Sun C, Bi D, et al. Molecular epidemiological analysis of Newcastle disease virus isolated in China in 2005. Journal of virological methods 2007 Mar;140(1-2):206-11.
    [8] Liu XF, Wan HQ, Ni XX, Wu YT, Liu WB. Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001. Archives of virology 2003 Jul;148(7):1387-403.
    [9] Alexander D, Russell P, Parsons G. Antigenic and biological characterization of paramyxovirus type 1 isolates from pigeons an international collaborative study. Avian Pathology 1985;34:365-76.
    [10] Kim LM, King DJ, Guzman H, Tesh RB, Travassos da Rosa AP, Bueno R, Jr., et al. Biological and phylogenetic characterization of pigeon paramyxovirus serotype 1 circulating in wild North American pigeons and doves. Journal of clinical microbiology 2008 Oct;46(10):3303-10.
    [11] Kaleta EF, Alexander DJ, Russell PH. The first isolation of the avian PMV-1 virus responsible for the current panzootic in pigeons ? Avian Pathol 1985 Oct;14(4):553-7.
    [12] Kissi B. Studies on the virulence of pigeon paramyxovirus-1 (PMV-1). I. Changes in the virulence of pigeon PMV-1 strains isolated in Hungary upon passage in chickens, embryonated hen's eggs and pigeons. Acta veterinaria Hungarica 1988;36(3-4):283.
    [13]王永坤,田慧芳,周继宏.鹅副黏病毒病的研究.江苏农学院学报1998;19(1):59-62.
    [14] Alexander DJ. Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE, editors. Diseases ofPoultry. 11th ed. Ames: Iowa State University Press, 2003: 64-87.
    [15] Harper DR. A novel plaque assay system for paramyxoviruses. Journal of virological methods 1989 Sep;25(3):347-50.
    [16] Alexander DJ. Newcastle disease. In: Purchase, H.G., Arp, L.H., Domermuth, C.H., Pearson, J.E. (Eds.), A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd ed. American Association of Avian Pathologists, Kenneth Square, PA 1989:p.114-20.
    [17]殷震,刘景华.动物病毒学. 1997年;652.
    [18]曹军平,胡顺林,吴双,等.基于M基因的新城疫病毒实时荧光定量RT-PCR的建立及其对临床样品中新城疫病毒检测的研究.畜牧兽医学报2009(007):1120-5.
    [19]单松华,邵朝纲,邹键,等.鸽基因VII型新城疫病毒的分离鉴定.病毒学报2003;19(4).
    [20]万洪全,卢军,刘秀梵,等.致病性鹅源新城疫病毒对鸡胚成纤维细胞的致病变特性.动物医学进展2004;25(005):89-91.
    [21]万洪全.鹅源新城疫病毒部分生物学特性鉴定及其囊膜糖蛋白基因序列分析[D]; 2002.
    [22] de Oliveira Torres Carrasco A, Seki MC, de Freitas Raso T, Paulillo AC, Pinto AA. Experimental infection of Newcastle disease virus in pigeons (Columba livia): humoral antibody response, contact transmission and viral genome shedding. Vet Microbiol 2008 May 25;129(1-2):89-96.
    [23] Kapczynski DR, Wise MG, King DJ. Susceptibility and protection of naive and vaccinated racing pigeons (Columbia livia) against exotic Newcastle disease virus from the California 2002-2003 outbreak. Avian diseases 2006 Sep;50(3):336-41.
    [24] Spalatin J, Hanson R. Epizootiology of Newcastle disease in waterfowl. Avian Diseases 1975;19(3):573-82.
    [25]刘文博,郁炳贤.鸡新城疫标准强毒感染鹅试验.中国家禽2001;23(019):10-1.
    [26]陈立功,万洪全,宋红芹,等.不同基因型新城疫病毒株对鹅的致病性.中国兽医学报2005;25(002):131-4.
    [27]周继宏,田慧芳.鹅副粘病毒的人工感染试验.中国预防兽医学报1999;21(001):51-2.
    [28]韦天超,韦平.新城疫病毒致病性和免疫原性研究概况.畜牧与兽医2004;36(006):36-9.
    [29]黄瑜,苏敬良.企鹅新城疫强毒人工感染北京雏鸭的研究.中国预防兽医学报2000;22(003):177-9.
    [30]郭墨.新编兽医兽药手册[M]. 2000:204-6.
    [1] Lam K. Apoptosis in chicken embryo fibroblasts caused by Newcastle disease virus. Veterinary microbiology 1995;47(3-4):357-63.
    [2] Lam K. Newcastle disease virus-induced apoptosis in the peripheral blood mononuclear cells of chickens. Journal of comparative pathology 1996;114(1):63-71.
    [3] Lam K, Vasconcelos A. Newcastle disease virus-induced apoptosis in chicken peripheral blood lymphocytes. Veterinary immunology and immunopathology 1994;44(1):45.
    [4] Lam K, Vasconcelos A. Apoptosis in peripheral blood lymphocytes induced by the Newcastle disease virus. Veterinary immunology and immunopathology 1994;44(1):45-56.
    [5]冉旭华.鸡新城疫病毒诱导鸡胚成纤维细胞凋亡的研究[D]:黑龙江八一农垦大学; 2003.
    [6]崔玉东,冉旭华,宋佰芬,等.新城疫病毒I系毒株通过Caspase途径诱导鸡胚成纤维细胞凋亡.中国兽医学报2006;26(003):254-6.
    [7]李翔.新城疫F48E8病毒体内诱导鸡胸腺和法氏囊淋巴细胞凋亡的研究[D]:广西大学; 2005.
    [8] Emmett SR, Dove B, Mahoney L, Wurm T, Hiscox JA. The cell cycle and virus infection. Methods Mol Biol 2005;296:197-218.
    [9] Smith W. Virus-host cell interactions. Proc R Soc Lond B Biol Sci 1958 Mar 18;148(932):370-84.
    [10] Knipe D, Samuel C, Palese P. Virus-host cell interactions. Fields virology 1996:273–99.
    [11] Maxwell KL, Frappier L. Viral proteomics. Microbiol Mol Biol Rev 2007 Jun;71(2):398-411.
    [12] Viswanathan K, Fruh K. Viral proteomics: global evaluation of viruses and their interaction with the host. Expert Rev Proteomics 2007 Dec;4(6):815-29.
    [13] Zheng X, Hong L, Shi L, Guo J, Sun Z, Zhou J. Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics 2008 Mar;7(3):612-25.
    [14] Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, et al. Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 2009 Nov;8(11):5111-9.
    [15] Liu HC, Soderblom EJ, Goshe MB. A mass spectrometry-based proteomic approach to study Marek's Disease Virus gene expression. J Virol Methods 2006 Jul;135(1):66-75.
    [16] Thanthrige-Don N, Abdul-Careem MF, Shack LA, Burgess SC, Sharif S. Analyses of the spleen proteome of chickens infected with Marek's disease virus. Virology 2009 Aug 1;390(2):356-67.
    [17] Sun J, Jiang Y, Shi Z, Yan Y, Guo H, He F, et al. Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J Proteome Res 2008 Dec;7(12):5263-9.
    [18] Rodriguez JM, Salas ML, Santaren JF. African swine fever virus-induced polypeptides in porcine alveolar macrophages and in Vero cells: two-dimensional gel analysis. Proteomics 2001 Nov;1(11):1447-56.
    [19] Alfonso P, Rivera J, Hernaez B, Alonso C, Escribano JM. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 2004 Jul;4(7):2037-46.
    [20] Skiba M, Mettenleiter TC, Karger A. Quantitative whole-cell proteome analysis of pseudorabies virus-infected cells. J Virol 2008 Oct;82(19):9689-99.
    [21] Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 2009 May;9(9):2399-407.
    [22]许斌.鸭原代肝细胞对鸭乙型肝炎病毒易感性相关蛋白的研究[D]:复旦大学; 2006.
    [23] Liu N, Song W, Wang P, Lee K, Chan W, Chen H, et al. Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics 2008 May;8(9):1851-8.
    [24] Zhang H, Guo X, Ge X, Chen Y, Sun Q, Yang H. Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J Proteome Res 2009 Jun;8(6):3091-7.
    [25]殷震,刘景华.动物病毒学(第二版)[M].北京:科学出版社. 1997.
    [26] MM B. A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
    [27] Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G, Carnemolla B, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004;25(9):1327-33.
    [28] Turner KE, Kumar HR, Hoelz DJ, Zhong X, Rescorla FJ, Hickey RJ, et al. Proteomic analysis of neuroblastoma microenvironment: effect of the host-tumor interaction on disease progression. J Surg Res 2009 Sep;156(1):116-22.
    [29] Wang S, Hu Q, Sommerfeld M, Chen F. An optimized protocol for isolation of solubleproteins from microalgae for two-dimensional gel electrophoresis analysis. Journal of Applied Phycology 2003;15(6):485-96.
    [30] Pantua HD, McGinnes LW, Peeples ME, Morrison TG. Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol 2006 Nov;80(22):11062-73.
    [31]王蕾,陈福勇,郑世军,等.新城疫病毒(NDV)基质(M)蛋白在体外对炎症因子诱导的作用.中国兽医杂志2008;44(4).
    [32] Naghavi M, Goff S. Retroviral proteins that interact with the host cell cytoskeleton. Current opinion in immunology 2007;19(4):402-7.
    [33] Dohner K, Sodeik B. The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol 2005;285:67-108.
    [34] Hamaguchi M, Nishikawa K, Toyoda T, Yoshida T, Hanaichi T, Nagai Y. Transcriptive complex of Newcastle disease virus. II. Structural and functional assembly associated with the cytoskeletal framework. Virology 1985 Dec;147(2):295-308.
    [35] Rogers SL, Gelfand VI. Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 2000 Feb;12(1):57-62.
    [36] Giuffre R, Tovell D, Kay C, Tyrrell D. Evidence for an interaction between the membrane protein of a paramyxovirus and actin. Journal of virology 1982;42(3):963.
    [37] Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol 1999 Feb;11(1):81-94.
    [38] Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997;13:83-117.
    [39] Kotsakis A, Pomeranz LE, Blouin A, Blaho JA. Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein. J Virol 2001 Sep;75(18):8697-711.
    [40] Avitabile E, Di Gaeta S, Torrisi M, Ward P, Roizman B, Campadelli-Fiume G. Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis. The Journal of Virology 1995;69(12):7472.
    [41] Kelkar S, De B, Gao G, Wilson J, Crystal R, Leopold P. A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes. The Journal of Virology 2006;80(15):7781.
    [42] Greber UF, Way M. A superhighway to virus infection. Cell 2006 Feb 24;124(4):741-54.
    [43] Ferreira LR, Moussatche N, Moura Neto V. Rearrangement of intermediate filament network of BHK-21 cells infected with vaccinia virus. Arch Virol 1994;138(3-4):273-85.
    [44] Nedellec P, Vicart P, Laurent-Winter C, Martinat C, Prevost MC, Brahic M. Interaction of Theiler's virus with intermediate filaments of infected cells. J Virol 1998 Dec;72(12):9553-60.
    [45]聂忠清,吴永刚,蒙建洲.分子伴侣的功能和应用. Chinese Bulletin of Life Sciences 2006;18(1).
    [46] Wynn R, Davie J, Cox R, Chuang D. Molecular chaperones: heat-shock proteins, foldases, and matchmakers. The Journal of laboratory and clinical medicine 1994;124(1):31-6.
    [47] Schlesinger M. Heat shock proteins. The Journal of biological chemistry 1990;265(21):12111-4.
    [48] Lim SO, Park SG, Yoo JH, Park YM, Kim HJ, Jang KT, et al. Expression of heat shockproteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 2005 Apr 14;11(14):2072-9.
    [49] Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 2004 Sep 15;64(18):6595-602.
    [50] Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA. Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 1993 Oct 6;85(19):1558-70.
    [51] Mosser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004 Apr 12;23(16):2907-18.
    [52] Miron T, Vancompernolle,K., Vandekerckhove,J., Wilchek,M., Geiger,B., . A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 1991;114:255-61.
    [53] Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacology & therapeutics 1998 Nov;80(2):183-201.
    [54] Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999 Dec 3;286(5446):1882-8.
    [55]李明,丁健,缪泽鸿.未折叠蛋白反应的信号转导.生命科学2008;20(2):2-8.
    [56] Argon Y, Simen BB. GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol 1999 Oct;10(5):495-505.
    [57] Qu D, Mazzarella RA, Green M. Analysis of the structure and synthesis of GRP94, an abundant stress protein of the endoplasmic reticulum. DNA and cell biology 1994 Feb;13(2):117-24.
    [58] Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacology & therapeutics 1998 Aug;79(2):129-68.
    [59] Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 1994;4(1):1-18.
    [60] Sarnow P. Translation of glucose-regulated protein 78/immunoglobulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proceedings of the National Academy of Sciences 1989;86(15):5795.
    [61] Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994 Oct 7;79(1):13-21.
    [62] Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life. The EMBO journal 1998 Dec 15;17(24):7151-60.
    [63] Gao G, Luo H. The ubiquitin-proteasome pathway in viral infections. Can J Physiol Pharmacol 2006 Jan;84(1):5-14.
    [64] Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 2004 Oct;40(15):2217-29.
    [65] Knoblach B, Keller BO, Groenendyk J, Aldred S, Zheng J, Lemire BD, et al. ERp19 and ERp46, new members of the thioredoxin family of endoplasmic reticulum proteins. Mol Cell Proteomics 2003 Oct;2(10):1104-19.
    [66] Muniyappa H, Song S, Mathews CK, Das KC. Reactive oxygen species-independent oxidation of thioredoxin in hypoxia: inactivation of ribonucleotide reductase and redox-mediated checkpoint control. The Journal of biological chemistry 2009 Jun 19;284(25):17069-81.
    [67] Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009 Nov;11(11):2807-50.
    [68] Nissom P, Lo S, Lo J, Ong P, Lim J, Ou K, et al. Hcc-2, a novel mammalian ER thioredoxin that is differentially expressed in hepatocellular carcinoma. FEBS letters 2006;580(9):2216-26.
    [69]卢占军.感染马立克氏病病毒SPF鸡法氏囊蛋白质组学研究[D]:扬州大学; 2009.
    [70] LaRiviere FJ, Wolfson AD, Uhlenbeck OC. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 2001 Oct 5;294(5540):165-8.
    [71] Roy H, Becker HD, Mazauric MH, Kern D. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity. Nucleic Acids Res 2007;35(10):3420-30.
    [72] Jiang X, Tang L, Dai J, Zhou H, Li S, Xia Q, et al. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches. Molecular & Cellular Proteomics 2005;4(7):902.
    [73] Yuan X, Kuramitsu Y, Furumoto H, Zhang X, Hayashi E, Fujimoto M, et al. Nuclear protein profiling of Jurkat cells during heat stress-induced apoptosis by 2-DE and MS/MS. Electrophoresis 2007 Jun;28(12):2018-26.
    [74] Krecic AM, Swanson MS. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 1999 Jun;11(3):363-71.
    [75] Weighardt F, Biamonti G, Riva S. The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. Bioessays 1996 Sep;18(9):747-56.
    [76] Kim J, Hahm B, Kim Y, Choi M, Jang S. Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm1. Journal of molecular biology 2000;298(3):395-405.
    [77] Ostrowski J, Kawata Y, Schullery DS, Denisenko ON, Higaki Y, Abrass CK, et al. Insulin alters heterogeneous nuclear ribonucleoprotein K protein binding to DNA and RNA. Proc Natl Acad Sci U S A 2001 Jul 31;98(16):9044-9.
    [78] Hsieh TY, Matsumoto M, Chou HC, Schneider R, Hwang SB, Lee AS, et al. Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K. The Journal of biological chemistry 1998 Jul 10;273(28):17651-9.
    [79] Schaub MC, Lopez SR, Caputi M. Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. The Journal of biological chemistry 2007 May 4;282(18):13617-26.
    [80] Taylor MJ, Peculis BA. Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res 2008 Oct;36(18):6021-34.
    [81] McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci 2006 Jan;63(2):123-43.
    [82] de Hoog C, Foster L, Mann M. RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell 2004;117(5):649-62.
    [83] Sanford JR, Ellis J, Caceres JF. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochemical Society transactions 2005 Jun;33(Pt 3):443-6.
    [84] Dai RM, Chen E, Longo DL, Gorbea CM, Li CC. Involvement of valosin-containing protein,an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. The Journal of biological chemistry 1998 Feb 6;273(6):3562-73.
    [85] Dai R, Li C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation. Nature cell biology 2001;3(8):740-4.
    [86]Wojcik C, Yano M, DeMartino GN. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. Journal of cell science 2004 Jan 15;117(Pt 2):281-92.
    [87] Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 2003 Jul 25;301(5632):513-7.
    [88] Tsujimoto Y, Shimizu S. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 2002;84(2-3):187-93.
    [89] Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 2002 Feb;39(2 Pt 2):690-4.
    [90] Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. The Biochemical journal 1999 Dec 1;344 Pt 2:281-92.
    [91] Coppolino M, Woodside M, Demaurex N, Grinstein S, St-Arnaud R, Dedhar S. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. 1997.
    [92] Mery L, Mesaeli N, Michalak M, Opas M, Lew DP, Krause KH. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. The Journal of biological chemistry 1996 Apr 19;271(16):9332-9.
    [93]汤晓燕.钙网蛋白的生物学功能及其与自身免疫疾病的关系.国外医学:免疫学分册2005;28(004):230-3.
    [94] Winnefeld M, Rommelaere J, Cziepluch C. The human small glutamine-rich TPR-containing protein is required for progress through cell division. Exp Cell Res 2004 Feb 1;293(1):43-57.
    [95] Wang H, Shen H, Wang Y, Li Z, Yin H, Zong H, et al. Overexpression of small glutamine-rich TPR-containing protein promotes apoptosis in 7721 cells. FEBS letters 2005 Feb 14;579(5):1279-84.
    [96]宋玲,阮元元,王彦林,等. SGT蛋白在小鼠脑发育过程中的表达.复旦学报(医学版) 2007;6.
    [97] Cziepluch C, Kordes E, Poirey R, Grewenig A, Rommelaere J, Jauniaux JC. Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. Journal of virology 1998 May;72(5):4149-56.
    [98] Takahashi Y. The 14-3-3 proteins: gene, gene expression, and function. Neurochemical research 2003 Aug;28(8):1265-73.
    [99] Luk SC, Ngai SM, Tsui SK, Fung KP, Lee CY, Waye MM. In vivo and in vitro association of 14-3-3 epsilon isoform with calmodulin: implication for signal transduction and cell proliferation. Journal of cellular biochemistry 1999 Apr 1;73(1):31-5.
    [100] Wakabayashi H, Yano M, Tachikawa N, Oka S, Maeda M, Kido H. Increased concentrations of 14-3-3 epsilon, gamma and zeta isoforms in cerebrospinal fluid of AIDS patients with neuronal destruction. Clinica chimica acta; international journal of clinical chemistry 2001 Oct;312(1-2):97-105.
    [101] Ginisty H, Sicard H, Roger B, Bouvet P. Structure and functions of nucleolin. Journal of cell science 1999 Mar;112 ( Pt 6):761-72.
    [102] Yang C, Maiguel D, Carrier F. Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Research 2002;30(10):2251.
    [103] Otake Y, Sengupta T, Bandyopadhyay S, Spicer E, Fernandes D. Retinoid-induced apoptosis in HL-60 cells is associated with nucleolin down-regulation and destabilization of Bcl-2 mRNA. Molecular pharmacology 2005;67(1):319.
    [104] Liu X, Liu Z, Jang SW, Ma Z, Shinmura K, Kang S, et al. Sumoylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival. Proc Natl Acad Sci U S A 2007 Jun 5;104(23):9679-84.
    [105] Dhar SK, St Clair DK. Nucleophosmin blocks mitochondrial localization of p53 and apoptosis. The Journal of biological chemistry 2009 Jun 12;284(24):16409-18.
    [106] Stinton LM, Eystathioy T, Selak S, Chan EK, Fritzler MJ. Autoantibodies to protein transport and messenger RNA processing pathways: endosomes, lysosomes, Golgi complex, proteasomes, assemblyosomes, exosomes, and GW bodies. Clin Immunol 2004 Jan;110(1):30-44.
    [107] Selak S, Mahler M, Miyachi K, Fritzler M, Fritzler M. Identification of the B-cell epitopes of the early endosome antigen 1 (EEA1). Clinical Immunology 2003;109(2):154-64.
    [108] Cant?′n C, Holguera J, Ferreira L, Villar E, Mun ?oz-Barroso I. Newcastle disease virus may enter cells by caveolae-mediated endocytosis. Journal of General Virology (2007), 88, 559–569.
    [1] Aldous EW, Alexander DJ. Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 2001 Apr;30(2):117-28.
    [2] Mayo MA. A summary of taxonomic changes recently approved by ICTV. Arch Virol 2002 Aug;147(8):1655-63.
    [3] Yusoff K, Tan WS. Newcastle disease virus: macromolecules and opportunities. Avian Pathol 2001 Oct;30(5):439-55.
    [4] Steward M, Vipond IB, Millar NS, Emmerson PT. RNA editing in Newcastle disease virus. J Gen Virol 1993 Dec;74 ( Pt 12):2539-47.
    [5] Czegledi A, Ujvari D, Somogyi E, Wehmann E, Werner O, Lomniczi B. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 2006 Sep;120(1-2):36-48.
    [6] Kattenbelt JA, Stevens MP, Gould AR. Sequence variation in the Newcastle disease virus genome. Virus Res 2006 Mar;116(1-2):168-84.
    [7] Huang Y, Wan HQ, Liu HQ, Wu YT, Liu XF. Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese: a novel six nucleotide insertion in the non-codingregion of the nucleoprotein gene. Brief Report. Arch Virol 2004 Jul;149(7):1445-57.
    [8] Krishnamurthy S, Samal SK. Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence. J Gen Virol 1998 Oct;79 ( Pt 10):2419-24.
    [9] Phillips R, Samson A, Emmerson P. Nucleotide sequence of the 5′-terminus of Newcastle disease virus and assembly of the complete genomic sequence: agreement with the“rule of six”. Archives of virology 1998;143(10):1993-2002.
    [10] Marcos F, Ferreira L, Cros J, Park MS, Nakaya T, Garcia-Sastre A, et al. Mapping of the RNA promoter of Newcastle disease virus. Virology 2005 Jan 20;331(2):396-406.
    [11] Baron MD, Barrett T. Rescue of rinderpest virus from cloned cDNA. J Virol 1997 Feb;71(2):1265-71.
    [12] Peeters BP, Gruijthuijsen YK, de Leeuw OS, Gielkens AL. Genome replication of Newcastle disease virus: involvement of the rule-of-six. Arch Virol 2000;145(9):1829-45.
    [13] Kho C, Tan W, Tey B, Yusoff K. Regions on nucleocapsid protein of Newcastle disease virus that interact with its phosphoprotein. Archives of virology 2004;149(5):997-1005.
    [14] Ahmad-Raus R, Ali A, Tan W, Salleh H, Eshaghi M, Yusoff K. Localization of the antigenic sites of newcastle disease virus nucleocapsid using a panel of monoclonal antibodies. Research in Veterinary Science 2009;86(1):174-82.
    [15]王同燕.新城疫病毒NP基因不同区域与毒力的相关性[D]:扬州大学; 2009.
    [16] Radecke F, Billeter MA. Reverse Genetics Meets the Nonsegmented Negative-Strand RNA Viruses. Rev Med Virol 1997 Apr;7(1):49-63.
    [17] Kolakofsky D, Le Mercier P, Iseni F, Garcin D. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology 2004 Jan 20;318(2):463-73.
    [18] Bowman MC, Smallwood S, Moyer SA. Dissection of individual functions of the Sendai virus phosphoprotein in transcription. J Virol 1999 Aug;73(8):6474-83.
    [19] Rahaman A, Srinivasan N, Shamala N, Subbarao Shaila M. Phosphoprotein of the rinderpest virus forms a tetramer through a coiled coil region important for biological function: a structural insight. Journal of Biological Chemistry 2004;279(22):23606.
    [20] Horikami SM, Curran J, Kolakofsky D, Moyer SA. Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol 1992 Aug;66(8):4901-8.
    [21] Curran J. Reexamination of the Sendai virus P protein domains required for RNA synthesis: a possible supplemental role for the P protein. Virology 1996 Jul 1;221(1):130-40.
    [22] Bhella D, Ralph A, Murphy L, Yeo R. Significant differences in nucleocapsid morphology within the Paramyxoviridae. Journal of general virology 2002;83(8):1831.
    [23] Errington W, Emmerson P. Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein. Journal of general virology 1997;78(9):2335.
    [24] Huang Z, Krishnamurthy S, Panda A, Samal S. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. The Journal of Virology 2003;77(16):8676.
    [25] Hamaguchi M, Yoshida T, Nishikawa K, Naruse H, Nagai Y. Transcriptive complex ofNewcastle disease virus. I. Both L and P proteins are required to constitute an active complex. Virology 1983;128(1):105.
    [26] Ishihama A, Barbier P. Molecular anatomy of viral RNA-directed RNA polymerases. Archives of virology 1994;134(3):235-58.
    [27] Wise M, Sellers H, Alvarez R, Seal B. RNA-dependent RNA polymerase gene analysis of worldwide Newcastle disease virus isolates representing different virulence types and their phylogenetic relationship with other members of the Paramyxoviridae. Virus Research 2004;104(1):71-80.
    [28] Rout SN, Samal SK. The large polymerase protein is associated with the virulence of Newcastle disease virus. J Virol 2008 Aug;82(16):7828-36.
    [29] Peeples M, Bratt M. Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein incorporation into particles and decreased infectivity. Journal of Virology 1984;51(1):81.
    [30] Pantua HD, McGinnes LW, Peeples ME, Morrison TG. Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol 2006 Nov;80(22):11062-73.
    [31]闻晓波.新城疫病毒样颗粒的构建及其出芽机制的研究[D]; 2006.
    [32]王蕾,陈福勇,郑世军,等.新城疫病毒(NDV)基质(M)蛋白在体外对炎症因子诱导的作用.中国兽医杂志2008;44(4).
    [33] Niikura M, Matsuura Y, Hattori M, Onuma M, Mikami T. Characterization of haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus expressed by a recombinant baculovirus. Virus Res 1991 Jun;20(1):31-43.
    [34] Young JK, Li D, Abramowitz MC, Morrison TG. Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J Virol 1999 Jul;73(7):5945-56.
    [35] Zhu J, Li P, Wu T, Gao F, Ding Y, Zhang CW, et al. Design and analysis of post-fusion 6-helix bundle of heptad repeat regions from Newcastle disease virus F protein. Protein Eng 2003 May;16(5):373-9.
    [36] Nakaya Y, Nakaya T, Park MS, Cros J, Imanishi J, Palese P, et al. Induction of cellular immune responses to simian immunodeficiency virus gag by two recombinant negative-strand RNA virus vectors. Journal of virology 2004 Sep;78(17):9366-75.
    [37] Panda A, Huang Z, Elankumaran S, Rockemann DD, Samal SK. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 2004 Jan;36(1):1-10.
    [38] Romer-Oberdorfer A, Veits J, Werner O, Mettenleiter TC. Enhancement of pathogenicity of Newcastle disease virus by alteration of specific amino acid residues in the surface glycoproteins F and HN. Avian Dis 2006 Jun;50(2):259-63.
    [39] Moormann RJ, van Gennip HG, Miedema GK, Hulst MM, van Rijn PA. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. Journal of virology 1996 Feb;70(2):763-70.
    [40] Seal BS, King DJ, Bennett JD. Characterization of Newcastle disease virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence database for pathotype prediction and molecular epidemiological analysis. J Clin Microbiol 1995 Oct;33(10):2624-30.
    [41] Glickman R, Syddall R, Iorio R, Sheehan J, Bratt M. Quantitative basic residue requirementsin the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus. Journal of Virology 1988;62(1):354.
    [42] de Leeuw OS, Hartog L, Koch G, Peeters BP. Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J Gen Virol 2003 Feb;84(Pt 2):475-84.
    [43] Morrison T, McQuain C, Sergel T, McGinnes L, Reitter J. The role of the amino terminus of F1 of the Newcastle disease virus fusion protein in cleavage and fusion. Virology 1993 Apr;193(2):997-1000.
    [44] Zanetti F, Mattiello R, Garbino C, Kaloghlian A, Terrera M, Boviez J, et al. Biological and molecular characterization of a pigeon paramyxovirus type-1 isolate found in Argentina. Avian diseases 2001:567-71.
    [45] Tan LT, Xu HY, Wang YL, Qin ZM, Sun L, Liu WJ, et al. Molecular characterization of three new virulent Newcastle disease virus variants isolated in China. J Clin Microbiol 2008 Feb;46(2):750-3.
    [46] Peeters B, de Leeuw O, Koch G, Gielkens A. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. Journal of Virology 1999;73(6):5001.
    [47] Romer-Oberdorfer A, Mundt E, Mebatsion T, Buchholz UJ, Mettenleiter TC. Generation of recombinant lentogenic Newcastle disease virus from cDNA. J Gen Virol 1999 Nov;80 ( Pt 11):2987-95.
    [48] Gould A, Hansson E, Selleck K, Kattenbelt J, Mackenzie M, Della-Porta A. Newcastle disease virus fusion and haemagglutinin-neuraminidase gene motifs as markers for viral lineage. Avian pathology: journal of the WVPA 2003;32(4):361.
    [49] Seal B, Wise M, Pedersen J, Senne D, Alvarez R, Scott M, et al. Genomic sequences of low-virulence avian paramyxovirus-1 (Newcastle disease virus) isolates obtained from live-bird markets in North America not related to commonly utilized commercial vaccine strains. Veterinary Microbiology 2005;106(1-2):7-16.
    [50] Sakaguchi T, Toyoda T, Gotoh B, Inocencio NM, Kuma K, Miyata T, et al. Newcastle disease virus evolution. I. Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene. Virology 1989 Apr;169(2):260-72.
    [51] Romer-Oberdorfer A, Werner O, Veits J, Mebatsion T, Mettenleiter TC. Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. J Gen Virol 2003 Nov;84(Pt 11):3121-9.
    [52] McGinnes LW, Wilde A, Morrison TG. Nucleotide sequence of the gene encoding the Newcastle disease virus hemagglutinin-neuraminidase protein and comparisons of paramyxovirus hemagglutinin-neuraminidase protein sequences. Virus Res 1987 May;7(3):187-202.
    [53] Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, Samal SK. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 2004 Apr;78(8):4176-84.
    [54] Iorio R, Syddall R, Sheehan J, Bratt M, Glickman R, Riel A. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition. Journal of Virology 1991;65(9):4999.
    [55] Mebatsion T, Verstegen S, De Vaan L, Romer-Oberdorfer A, Schrier C. A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. Journal of Virology 2001;75(1):420.
    [56] Park M, Garcia-Sastre A, Cros J, Basler C, Palese P. Newcastle disease virus V protein is a determinant of host range restriction. The Journal of Virology 2003;77(17):9522.
    [57] Russell PH, Alexander DJ. Antigenic variation of Newcastle disease virus strains detected by monoclonal antibodies. Arch Virol 1983;75(4):243-53.
    [58]周维松,刘秀梵.用单克隆抗体研究鸡新城疫病毒抗原变异与流行病学的相关性.中国病毒学1992;4.
    [59] Tsai H, Chang K, Tseng C, Frost K, Manvell R, Alexander D. Antigenic and genotypical characterization of Newcastle disease viruses isolated in Taiwan between 1969 and 1996. Veterinary Microbiology 2004;104(1-2):19-30.
    [60] Ballagi-Pordany A, Wehmann E, Herczeg J, Belak S, Lomniczi B. Identification and grouping of Newcastle disease virus strains by restriction site analysis of a region from the F gene. Arch Virol 1996;141(2):243-61.
    [61] Lomniczi B, Wehmann E, Herczeg J, Ballagi-Pordany A, Kaleta E, Werner O, et al. Newcastle disease outbreaks in recent years in western Europe were caused by an old (VI) and a novel genotype (VII). Archives of virology 1998;143(1):49-64.
    [62] Herczeg J, Wehmann E, Bragg R, Travassos Dias P, Hadjiev G, Werner O, et al. Two novel genetic groups (VIIb and VIII) responsible for recent Newcastle disease outbreaks in Southern Africa, one (VIIb) of which reached Southern Europe. Archives of virology 1999;144(11):2087-99.
    [63] Kwon HJ, Cho SH, Ahn YJ, Seo SH, Choi KS, Kim SJ. Molecular epidemiology of Newcastle disease in Republic of Korea. Vet Microbiol 2003 Aug 29;95(1-2):39-48.
    [64] JG L, Song K. Molecular epidemiology of Newcastle disease viruses isolated in South Korea using sequencing of the fusion protein cleavage site region and phylogenetic relationships. Avian Pathology 2004;33(5).
    [65] Liu X, Wan H, Ni X, Wu Y, Liu W. Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001. Archives of virology 2003;148(7):1387-403.
    [66] Alexander D. Newcastle disease and other avian Paramyxoviridae infections. Diseases of poultry 1997;10:541-69.
    [67] Abolnik C, Horner R, Bisschop S, Parker M, Romito M, Viljoen G. A phylogenetic study of South African Newcastle disease virus strains isolated between 1990 and 2002 suggests epidemiological origins in the Far East. Archives of virology 2004;149(3):603-19.
    [68] Liu H, Wang Z, Wu Y, Zheng D, Sun C, Bi D, et al. Molecular epidemiological analysis of Newcastle disease virus isolated in China in 2005. J Virol Methods 2007 Mar;140(1-2):206-11.
    [69] Mase M, Imai K, Sanada Y, Sanada N, Yuasa N, Imada T, et al. Phylogenetic analysis of Newcastle disease virus genotypes isolated in Japan. J Clin Microbiol 2002 Oct;40(10):3826-30.
    [70] Mase M, Imai K, Sanada Y, Sanada N, Yuasa N, Imada T, et al. Phylogenetic analysis of Newcastle disease virus genotypes isolated in Japan. Journal of Clinical Microbiology 2002;40(10):3826.
    [71] Yang CY, Shieh HK, Lin YL, Chang PC. Newcastle disease virus isolated from recentoutbreaks in Taiwan phylogenetically related to viruses (genotype VII) from recent outbreaks in western Europe. Avian Dis 1999 Jan-Mar;43(1):125-30.
    [72] Westbury HA. Newcastle disease virus in Australia. Aust Vet J 1981 Jun;57(6):292-8.
    [73] Kaleta E, Baldauf C. Newcastle disease in free-living and pet birds. Newcastle disease 1988:197-246.
    [74]吴艳涛,倪雪霞.我国部分地区不同动物来源新城疫病毒的分子流行病学研究.病毒学报2002;18(003):264-9.
    [75]张俊涛.致病性鹅新城疫病毒的分离鉴定及分子流行病学特征[D]:扬州大学; 2007.
    [76] Toyoda T, Sakaguchi T, Hirota H, Gotoh B, Kuma K, Miyata T, et al. Newcastle disease virus evolution. II. Lack of gene recombination in generating virulent and avirulent strains. Virology 1989 Apr;169(2):273-82.
    [77]刘培欣,曹殿军,闫丽辉,等. NDV活疫苗免疫及免疫攻毒后组织中病毒分布动态研究.中国预防兽医学报2000(0S1).
    [78] Westbury H. Newcastle disease virus: an evolving pathogen? Avian Pathology 2001;30(1):5-11.
    [79] Shengqing Y, Kishida N, Ito H, Kida H, Otsuki K, Kawaoka Y, et al. Generation of velogenic Newcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens. Virology 2002 Sep 30;301(2):206-11.
    [80]艾静.水禽源新城疫病毒经鸡传代后HN蛋白变异的研究[D]:扬州大学; 2007.
    [81] Huovilainen A, Ek-Kommone C, Manvell R, Kinnunen L. Phylogenetic analysis of avian paramyxovirus 1 strains isolated in Finland. Arch Virol 2001;146(9):1775-85.
    [82] Jorgensen PH, Handberg KJ, Ahrens P, Hansen HC, Manvell RJ, Alexander DJ. An outbreak of Newcastle disease in free-living pheasants (Phasianus colchicus). Zentralbl Veterinarmed B 1999 Aug;46(6):381-7.
    [83] King DJ, Seal BS. Biological and molecular characterization of Newcastle disease virus isolates from surveillance of live bird markets in the northeastern United States. Avian Dis 1997 Jul-Sep;41(3):683-9.
    [84] Marin MC, Villegas P, Bennett JD, Seal BS. Virus characterization and sequence of the fusion protein gene cleavage site of recent Newcastle disease virus field isolates from the southeastern United States and Puerto Rico. Avian Dis 1996 Apr-Jun;40(2):382-90.
    [85] Rosenberger JK, Klopp S, Krauss WC. Characterization of Newcastle disease viruses isolated from migratory waterfowl in the Atlantic flyway. Avian Dis 1975 Jan-Mar;19(1):142-9.
    [86] Takakuwa H, Ito T, Takada A, Okazaki K, Kida H. Potentially virulent Newcastle disease viruses are maintained in migratory waterfowl populations. Jpn J Vet Res 1998 Feb;45(4):207-15.
    [87] Miller P, Estevez C, Yu Q, Suarez D, King D. Comparison of Viral Shedding Following Vaccination With Inactivated and Live Newcastle Disease Vaccines Formulated With Wild-Type and Recombinant Viruses. Avian diseases 2009;53(1):39-49.
    [88] Kim L, King D, Curry P, Suarez D, Swayne D, Stallknecht D, et al. Phylogenetic diversity among low virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to poultry-origin isolates. Journal of Virology 2007.
    [89] Alexander D, Manvell R, Lowings J, Frost K, Collins M, Russell P, et al. Antigenic diversity and similarities detected in avian paramyxovirus type 1 (Newcastle disease virus) isolates usingmonoclonal antibodies. Avian pathology: journal of the WVPA 1997;26(2):399.
    [90] Kim L, King D, Suarez D, Wong C, Afonso C. Characterization of class I Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-PCR. Journal of Clinical Microbiology 2007;45(4):1310.
    [91] Kommers G, King D, Seal B, Brown C. Virulence of six heterogeneous-origin Newcastle disease virus isolates before and after sequential passages in domestic chickens. Avian Pathology 2003;32(1):81-93.
    [92] Collins M, Bashiruddin J, Alexander D. Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity. Archives of virology 1993;128(3):363-70.
    [93] Gould A, Kattenbelt J, Selleck P, Hansson E, Della-Porta A, Westbury H. Virulent Newcastle disease in Australia: molecular epidemiological analysis of viruses isolated prior to and during the outbreaks of 1998–2000. Virus Research 2001;77(1):51-60.
    [94] Zanetti F, Berinstein A, Carrillo E. Effect of host selective pressure on Newcastle disease virus virulence. Microb Pathog 2008 Feb;44(2):135-40.
    [95] Miller PJ, Kim LM, Ip HS, Afonso CL. Evolutionary dynamics of Newcastle disease virus. Virology 2009 Aug 15;391(1):64-72.
    [96] Aldous EW, Manvell RJ, Cox WJ, Ceeraz V, Harwood DG, Shell W, et al. Outbreak of Newcastle disease in pheasants (Phasianus colchicus) in south-east England in July 2005. Vet Rec 2007 Apr 7;160(14):482-4.
    [97] Allison AB, Gottdenker NL, Stallknecht DE. Wintering of neurotropic velogenic Newcastle disease virus and West Nile virus in double-crested cormorants (Phalacrocorax auritus) from the Florida Keys. Avian Dis 2005 Jun;49(2):292-7.
    [98] Blaxland J. Newcastle disease in shags and cormorants and its significance as a factor in the spread of this disease among domestic poultry. Vet Rec 1951;63:731-3.
    [99] Heckert RA, Collins MS, Manvell RJ, Strong I, Pearson JE, Alexander DJ. Comparison of Newcastle disease viruses isolated from cormorants in Canada and the USA in 1975, 1990 and 1992. Can J Vet Res 1996 Jan;60(1):50-4.
    [100] Kaleta EF, Alexander DJ, Russell PH. The first isolation of the avian PMV-1 virus responsible for the current panzootic in pigeons ? Avian Pathol 1985 Oct;14(4):553-7.
    [101] Kim LM, King DJ, Guzman H, Tesh RB, Travassos da Rosa AP, Bueno R, Jr., et al. Biological and phylogenetic characterization of pigeon paramyxovirus serotype 1 circulating in wild North American pigeons and doves. J Clin Microbiol 2008 Oct;46(10):3303-10.
    [102] Mase M, Inoue T, Imada T. Genotyping of Newcastle disease viruses isolated from 2001 to 2007 in Japan. J Vet Med Sci 2009 Aug;71(8):1101-4.
    [103] Pearson GL, McCann MK. The role of indigenous wild, semidomestic, and exotic birds in the epizootiology of velogenic viscerotropic Newcastle disease in southern California, 1972-1973. J Am Vet Med Assoc 1975 Oct 1;167(7):610-4.
    [104] Ujvari D, Wehmann E, Kaleta EF, Werner O, Savic V, Nagy E, et al. Phylogenetic analysis reveals extensive evolution of avian paramyxovirus type 1 strains of pigeons (Columba livia) and suggests multiple species transmission. Virus Res 2003 Oct;96(1-2):63-73.
    [105] Vallat B, Edwards S. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals(Mammals, Birds and Bees). Paris: Office International Des Epizooties, 2004.
    [106] Weingartl HM, Riva J, Kumthekar P. Molecular characterization of avian paramyxovirus 1 isolates collected from cormorants in Canada from 1995 to 2000. J Clin Microbiol 2003 Mar;41(3):1280-4.
    [107] Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 2001 Sep 25;98(20):11609-14.
    [108] Higgins D, Shortridge K. Newcastle disease in tropical and developing countries. 1988.
    [109] Miller P, King D, Afonso C, Suarez D. Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine 2007;25(41):7238-46.
    [110] Kapczynski D, King D. Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak. Vaccine 2005;23(26):3424-33.
    [111] Cho SH, Kwon HJ, Kim TE, Kim JH, Yoo HS, Kim SJ. Variation of a newcastle disease virus hemagglutinin-neuraminidase linear epitope. J Clin Microbiol 2008 Apr;46(4):1541-4.
    [112] Perozo F, Merino R, Afonso CL, Villegas P, Calderon N. Biological and phylogenetic characterization of virulent Newcastle disease virus circulating in Mexico. Avian Dis 2008 Sep;52(3):472-9.
    [113] Cho SH, Kwon HJ, Kim TE, Kim JH, Yoo HS, Park MH, et al. Characterization of a recombinant Newcastle disease virus vaccine strain. Clin Vaccine Immunol 2008 Oct;15(10):1572-9.
    [114] Qin ZM, Tan LT, Xu HY, Ma BC, Wang YL, Yuan XY, et al. Pathotypical characterization and molecular epidemiology of Newcastle disease virus isolates from different hosts in China from 1996 to 2005. J Clin Microbiol 2008 Feb;46(2):601-11.
    [115] Yu L, Wang Z, Jiang Y, Chang L, Kwang J. Characterization of newly emerging Newcastle disease virus isolates from the People's Republic of China and Taiwan. J Clin Microbiol 2001 Oct;39(10):3512-9.
    [116] Jeon WJ, Lee EK, Lee YJ, Jeong OM, Kim YJ, Kwon JH, et al. Protective efficacy of commercial inactivated Newcastle disease virus vaccines in chickens against a recent Korean epizootic strain. J Vet Sci 2008 Sep;9(3):295-300.
    [117]巩艳艳,崔治中.细胞培养上新城疫病毒HN基因在抗体免疫选择压作用下的抗原表位变异.中国科学C辑2009;39(12):1175-80.
    [118] Seal B, Crawford J, Sellers H, Locke D, King D. Nucleotide sequence analysis of the Newcastle disease virus nucleocapsid protein gene and phylogenetic relationships among the Paramyxoviridae. Virus Research 2002;83(1-2):119-29.
    [119] Miller PJ, Decanini EL, Afonso CL. Newcastle disease: Evolution of genotypes and the related diagnostic challenges. Infect Genet Evol 2009 Sep 30.
    [1] Wilkins M, Sanchez J, Gooley A, Appel R, Humphery-Smith I, Hochstrasser D, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology & genetic engineering reviews 1995;13:19-50.
    [2] Lee SJ, Kim KH, Park JS, Jung JW, Kim YH, Kim SK, et al. Comparative analysis of cell surface proteins in chronic and acute leukemia cell lines. Biochem Biophys Res Commun 2007 Jun 8;357(3):620-6.
    [3] McGregor E, Dunn MJ. Proteomics of the heart: unraveling disease. Circ Res 2006 Feb 17;98(3):309-21.
    [4] Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999 Mar;19(3):1720-30.
    [5] Wang S, Hu Q, Sommerfeld M, Chen F. An optimized protocol for isolation of soluble proteins from microalgae for two-dimensional gel electrophoresis analysis. Journal of Applied Phycology 2003;15(6):485-96.
    [6] Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, et al. Laser capture microdissection: molecular analysis of tissue. Science 1997 Nov 21;278(5342):1481,3.
    [7] O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975 May 25;250(10):4007-21.
    [8] Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002 Jan;2(1):3-10.
    [9] Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004 Dec;4(12):3665-85.
    [10] Gygi S, Corthals G, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences 2000;97(17):9390.
    [11] Barry RC, Alsaker BL, Robison-Cox JF, Dratz EA. Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis. Electrophoresis 2003 Oct;24(19-20):3390-404.
    [12] Gianazza E, Righetti PG. Immobilized pH gradients. Electrophoresis 2009 Jun;30 Suppl 1:S112-21.
    [13] Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Molecular & Cellular Proteomics 2002;1(2):117.
    [14] Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001 Mar;1(3):377-96.
    [15] Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997 Oct;18(11):2071-7.
    [16] Guerrera IC, Kleiner O. Application of mass spectrometry in proteomics. Biosci Rep 2005 Feb-Apr;25(1-2):71-93.
    [17] Hensel RR, King RC, Owens KG. Electrospray sample preparation for improved quantitation in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1997;11(16):1785-93.
    [18] Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989 Oct 6;246(4926):64-71.
    [19] Downard KM, Morrissey B, Schwahn AB. Mass spectrometry analysis of the influenza virus. Mass Spectrom Rev 2009 Jan-Feb;28(1):35-49.
    [20] Avasarala JR, Wall MR, Wolfe GM. A distinctive molecular signature of multiple sclerosis derived from MALDI-TOF/MS and serum proteomic pattern analysis: detection of three biomarkers. J Mol Neurosci 2005;25(1):119-25.
    [21] Wiesman Z, Chapagain BP. Determination of fatty acid profiles and TAGs in vegetable oils by MALDI-TOF/MS fingerprinting. Methods Mol Biol 2009;579:315-36.
    [22] Taguchi R, Hamakawa N, Maekawa N, Ikezawa H. Application of electrospray ionization MS/MS and matrix-assisted laser desorption/ionization-time of flight mass spectrometry to structural analysis of the glycosyl-phosphatidylinositol-anchored protein. J Biochem 1999 Aug;126(2):421-9.
    [23] Lim MS, Elenitoba-Johnson KS. Proteomics in pathology research. Lab Invest 2004 Oct;84(10):1227-44.
    [24] Rocken C, Ebert MP, Roessner A. Proteomics in pathology, research and practice. Pathol Res Pract 2004;200(2):69-82.
    [25] Hunt DF, Yates JR, 3rd, Shabanowitz J, Winston S, Hauer CR. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A 1986 Sep;83(17):6233-7.
    [26] Ziady AG, Kinter M. Protein sequencing with tandem mass spectrometry. Methods Mol Biol 2009;544:325-41.
    [27] Gan-Schreier H, Okun JG, Kohlmueller D, Langhans CD, Peters V, Ten Brink HJ, et al. Measurement of bile acid CoA esters by high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS). J Mass Spectrom 2005 Jul;40(7):882-9.
    [28] Seibert V, Wiesner A, Buschmann T, Meuer J. Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip(R) technology in proteomics research. Pathology-Research and Practice 2004;200(2):83-94.
    [29] Han D, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nature Biotechnology 2001;19(10):946.
    [30] Shiio Y, Aebersold R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 2006;1(1):139-45.
    [31] Zhu H, Snyder M. Protein chip technology. Current opinion in chemical biology 2003;7(1):55-63.
    [32] Miller J, Stagljar I. Using the yeast two-hybrid system to identify interacting proteins. METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA- 2004;261:247-62.
    [33] Pajunen M, Poussu E, Turakainen H, Savilahti H. Application of Mu in vitro transposition for high-precision mapping of protein-protein interfaces on a yeast two-hybrid platform. Methods 2009 Nov;49(3):255-62.
    [34] Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 2001 Jul;24(3):218-29.
    [35]程永升,刘进元.串联亲和纯化(TAP)技术在蛋白质组学中的应用.生物化学与生物物理进展2004;31(004):379-83.
    [36] Gunzl A, Schimanski B. Tandem affinity purification of proteins. Curr Protoc Protein Sci 2009 Feb;Chapter 19:Unit 19
    [37] Spengler SJ. Techview: computers and biology. Bioinformatics in the information age. Science 2000 Feb 18;287(5456):1221, 3.
    [38] Casari G, Andrade MA, Bork P, Boyle J, Daruvar A, Ouzounis C, et al. Challenging times for bioinformatics. Nature 1995 Aug 24;376(6542):647-8.
    [39] Stupka E. Large-scale open bioinformatics data resources. Curr Opin Mol Ther 2002 Jun;4(3):265-74.
    [40] Mujer CV, Wagner MA, Eschenbrenner M, Horn T, Kraycer JA, Redkar R, et al. Global analysis of Brucella melitensis proteomes. Ann N Y Acad Sci 2002 Oct;969:97-101.
    [41] Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, et al.Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 1999 Sep;33(6):1103-17.
    [42]张爱玲,王兴龙,李吉平,等. 2型猪链球菌强毒株与无毒株胞外蛋白的双向电泳图谱比较分析.中国预防兽医学报2008;30(004):250-4.
    [43]庞盼姣. 2型猪链球菌强毒株与无毒株比较蛋白质组学研究[D]:吉林大学; 2007.
    [44]刘燕,韦强,鲍国连,等.鸭疫里默氏杆菌强,弱菌株外膜蛋白的比较蛋白质组学研究.生物化学与生物物理进展2008;35(006):691-4.
    [45] Jacobsen ID, Meens J, Baltes N, Gerlach GF. Differential expression of non-cytoplasmic Actinobacillus pleuropneumoniae proteins induced by addition of bronchoalveolar lavage fluid. Vet Microbiol 2005 Aug 30;109(3-4):245-56.
    [46]赵晓宇,姚利晓,孙安国,等.日本血吸虫童虫部分差异表达蛋白的质谱分析.中国兽医科学2007;37(001):1-6.
    [47]姜连连,黄兵,韩红玉,等.柔嫩艾美耳球虫地克株利抗药株与敏感株孢子化卵囊的蛋白质差异分析.生物工程学报2005;21(003):435-9.
    [48]王秀君. Eimeria tenella马杜霉素耐药株与同源敏感株不同阶段蛋白质的差异分析[D]:西南大学; 2009.
    [49] Alfonso P, Rivera J, Hernaez B, Alonso C, Escribano JM. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 2004 Jul;4(7):2037-46.
    [50]许斌.鸭原代肝细胞对鸭乙型肝炎病毒易感性相关蛋白的研究[D]:复旦大学; 2006.
    [51] Liu HC, Soderblom EJ, Goshe MB. A mass spectrometry-based proteomic approach to study Marek's Disease Virus gene expression. J Virol Methods 2006 Jul;135(1):66-75.
    [52] Zheng X, Hong L, Shi L, Guo J, Sun Z, Zhou J. Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics 2008 Mar;7(3):612-25.
    [53] Liu N, Song W, Wang P, Lee K, Chan W, Chen H, et al. Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics 2008 May;8(9):1851-8.
    [54] Sun J, Jiang Y, Shi Z, Yan Y, Guo H, He F, et al. Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J Proteome Res 2008 Dec;7(12):5263-9.
    [55] Thanthrige-Don N, Abdul-Careem MF, Shack LA, Burgess SC, Sharif S. Analyses of the spleen proteome of chickens infected with Marek's disease virus. Virology 2009 Aug 1;390(2):356-67.
    [56] Zhang H, Guo X, Ge X, Chen Y, Sun Q, Yang H. Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J Proteome Res 2009 Jun;8(6):3091-7.
    [57] Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, Vaziri B. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 2009 May;9(9):2399-407.
    [58] Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, et al. Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 2009 Nov;8(11):5111-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700