水下壳体结构低频声辐射预报方法与试验测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大长径比壳体结构是决定艇体低频噪声辐射性能的主要结构,研究其低频声辐射特性,对潜艇机械系统振动和辐射噪声的定量预估以及采取相应的减振降噪措施具有实际意义。本文工作的主要目的有两个,一是根据艇体结构在低频段的声辐射特征及现有的预报方法特点,探索能够提高水下大长径比壳体结构低频振动响应和声辐射计算效率的预报方法;二是充分利用混响法在非消声水池中测量结果具有良好重复性的可信优势,扩展其低频应用,为实现潜艇辐射噪声的准确测量及对噪声源进行识别提供试验方法依据。
     本文通过计算预报及试验测量两个层面展开了水下壳体结构低频声辐射特性的研究工作。
     预报研究方面,首先采用模态展开法解析推导了简支在半无限长圆柱障板上的带声学覆盖层的水下加肋圆柱壳振动响应及辐射声场,该解析模型可以方便地退化为加肋圆柱壳和圆柱壳模型,便于验证后续数值计算及等效算法的正确性。其次,建立了水下大长径比复杂壳体结构声辐射简化的有限元+边界元数值计算方法,采用ANSYS软件和SYSNOISE软件联合计算实现。通过分析附连水对大长径比壳体结构低频振动的影响,得出对于水中大长径比壳体结构低频振动,流体对结构的耦合作用可以利用附加水质量以线密度增量的形式直接加载到结构中来近似。进而在利用ANSYS计算水中大长径比壳体结构的低频振动响应时,选择不小于5倍壳体结构半径的有限流体域代替传统的以吸声边界半径尺度形成的巨大球形流体域,大大提高了数值计算效率。接着,提出了一种利用水下梁模型等效计算大长径比(L/a>20)圆柱壳低频振动响应和辐射声功率的方法。该等效模型基于欧拉梁理论,采用附加水质量近似流固耦合作用,通过计算梁的等效杨氏模量系数,使其与圆柱壳的梁式弯曲振动模态对应。给出了不同长径比圆柱壳前五阶弯曲模态频率的等效杨氏模量系数曲线,利用梁模型并结合此曲线,可准确、高效预报水下圆柱壳前五阶梁式弯曲振动频率范围内的低频域辐射声功率。最后,将该等效算法拓展至复杂壳体结构的低频辐射声功率的预报中,通过对不同边界条件、变截面线形、结构参数变化等因素的计算分析,表明等效梁算法在等效计算大长径比壳体结构低频辐射声功率具有普适性和高效性。
     试验研究方面,提出了一种基于声场精细校准的声源辐射声功率混响法低频扩展测试技术,以实现复杂结构声源辐射声功率的混响法准确测量,该方法避免了传统混响测量技术中需要对非消声水池的混响时间进行测量,扩展了非消声水池中混响法在低于下限频率时的适用范围。理论推导了绝对软边界的矩形混响水池内点源声场及均匀脉动球源辐射阻的表达式,数值计算分析了该混响场与自由场均方声压及辐射阻比值的对应关系,分析了声源辐射阻对辐射声功率的影响,给出了混响法低频扩展测试技术原理的理论依据。分别在消声水池和非消声水池中开展了典型声源及圆柱壳结构声源辐射声功率的测量试验研究,验证了利用混响法低频扩展测试技术在非消声水池中测量未知声源低频辐射声功率的准确性与有效性。试验结果表明,运用该混响测试技术在下限频率为8000Hz的玻璃水池中对球形声源2000Hz以上范围进行辐射声功率测量,消除了玻璃水池中声场由简正波共振带来的剧烈起伏影响,准确得到声源在消声水池中的声功率,窄带谱偏差小于3dB,声功率级的1/3倍频程谱偏差小于1dB。在非消声水池中运用该混响测试技术在2000Hz以上范围测量圆柱壳结构的辐射声功率,采用不同已知声源对声场校准,得到的圆柱壳模型辐射声功率结果具有良好的一致性,和消声水池测量结果比较偏差小于1.5dB。
A shell structure with large length-to-radius ratio is the typical structure of a hull. Studyon its low-frequency radiation characteristics has practical significance in quantitativelyforecasting and through appropriate measures reducing the vibration and sound radiation ofthe submarine. There are two purposes in this work, the first one is based on the soundradiation characteristics and the existing forecasting methods, an efficient forecasting methodis explored to predict the vibration and the sound radiation of the shell structure with largelength-to-radius ratio in low frequency; the second one is to achieve the accuratemeasurement of the submarine radiated noise and the noise sources identification, thelow-frequency applications are to be expanded by use of the reverberant measurement resultsin a non-anechoic water tank.
     The investigations on predicting and measuring the sound radiation of underwater shellstructure in low frequency are carried out in this work.
     In forecasting research, firstly, the modal expansion method is used in the analyticanalysis of vibration and radiation of an underwater ring-stiffened cylindrical shell withacoustic coating, which is simply supported on semi-infinite cylindrical baffles, is derived.The analytical model can be used to verify the correctness of the numerical calculation andthe equivalent algorithm, subsequently. Secondly, a simplified FEM+BEM numerical methodis established to predict the radiation characteristics of the underwater complex shell structurewith a large length-to-radius ratio, and which is carried out by use of ANSYS and SYSNOISE.The coupling effect of the fluid on the low-frequency vibration can be approximated to anadded density loading to the structure. For calculating the response of the low-frequencyvibration in water by using ANSYS, a limited fluid domain of not less than five times theradius of the shell structure is chosen instead of the huge spherical fluid domain determinedby the sound absorbing boundary radius, thus the efficiency of the numerical calculation isgreatly improved. Then, in order to improve the computational efficiency of the vibration andthe sound radiation of underwater cylindrical shells with the large length-to-radius ratio(L/a>20) in low frequency, a method using the equivalent beams is proposed. The equivalentbeam theoretical model is based on Euler-Bernoulli beam theory, in which the interactionbetween the structures and water is approximated as added mass. Different equivalentYoung’s modulus coefficients for the beam models are obtained, through which the modalfrequencies of the beams are made identical to the beam-type modal frequencies of the cylindrical shell. The equivalent Young’s modulus coefficients curves for the first five orderbeam-type natural frequencies of cylindrical shells with different length-to-radius ratio arecalculated, through which the radiated sound power and the beam-type modes of theunderwater simply cylindrical shells in the first five beam-type bending frequency range canbe precisely predicted by using a simple beam theoretical model. Finally, the equivalentalgorithm is expanded into the prediction of the radiated sound power of a complex variablecross-section shell structure in low frequency, which is shown as an universal and efficientmethod by analyzing the effect of different boundary, structural parameters and other factors.
     In experimental research, a fine calibration method is proposed by measuring thedifference between the mean square sound pressure in the non-anechoic water tank and that inthe free-field, and the radiated sound power of a complex structure is accurately measured.Using this fine calibration method, the reverberant measurement is expanded to be valid innon-anechoic water tank below the lower limit frequency range, and the measurement ofreverberation time in the non-anechoic water tank is avoided. In order to find the theoreticalbasis of the fine calibration method on reverberant measurement, the sound field and theradiation resistance of a point source in a rectangle reverberant pool with absolutely softboundary are derived, both the reverberant field to free field ratio of the mean square soundpressure and the ratio of the radiation resistance are further analyzed by numericalcomputation, and effect of the radiation resistance on the radiated sound power is analyzed. Inthe end of this work, both the radiated sound power of the typical sound source and thecomplex structure are measured in the anechoic water tank and the non-anechoic water tank,respectively, and the accuracy and the validity of the fine calibration method on reverberantmeasurement are verified. The test results show that, for a spherical sound source above2000Hz, the radiated sound power is accurately measured in the glass pool with lower limit infrequency being8000Hz, and the intense undulation effect caused by the normal waveresonance is eliminated. Compared to the radiated sound power tested in the anechoic watertank, the narrowband spectrum deviation tested in non-anechoic water tank is less than3dB,and the sound power level of1/3octave spectrum deviation is less than1dB. For a cylindricalshell model in the range2000Hz above, by using different known sound source for calibration,a good consistency of the radiated sound power is measured in the non-anechoic water tank,and the deviation compared to the results tested in anechoic water tank is less than1.5dB.
引文
[1]俞孟萨,吴有生.舰船声弹性及声辐射理论研究概述[J].船舶力学,2008,12(4):669-676.
    [2]俞孟萨,吴有生.舰船声弹性理论研究概述[C].第六届船舶力学学术委员会议专集,镇江,2006:92-100.
    [3]陈志坚,夏齐强,艾海峰.潜艇典型结构的声振特性研究概述及声学设计构想[J].振动与噪声控制,2012,2:1-6.
    [4]曹志远.板壳振动理论.北京:中国铁道出版社,1989.
    [5] M. C. Junger Vibrations of elastic shells in a fluid medium and the assoeiated radiationof sound [J]. Appl. Mech.,1952,74:439-445.
    [6] M. C. Junger The physical interpretation of the expression for an outgoing wave incylindrical coordinates [J]. Aeoust. Soc. Am,1953,25-32.
    [7] R.Stepanishen Peter. Radiated power and radiation loading of cylindrical surfaces withnonuniform velocity distributions [J]. Acoust. Soc. Am.,1978,63(2):328-338.
    [8] R.Stepanishen Peter. Modal coupling in the vibration of fluid-loaded cylindrical shells[J].Acoust. Soc. Am.,1982,71(4):813-823.
    [9] Laulagnet B, Guyader J L. Modal analysis of a shell’s acoustic radiation in light andheavy fluids [J]. Journal of Sound and Vibration,1989,131(3):397-415.
    [10] Laulagnet B, Guyader J L. Sound radiation by finite cylindrical ring stiffened shells [J].Journal of Sound and Vibration,1990,138(2):173-191.
    [11] Sandman B.E. Radiation and vibrational properties of submerged stiffened cylindricalshell [J]. Acoust. Soc. Am.,1990,95(6):1817-1830.
    [12] Harari A., Sandman B.E. Analytical and experimental determination of the vibrationand pressure radiation from a submerged,stiffened cylindrical shell with two endplates[J]. Acoust. Soc. Am.,1994,95(6):3360-3368.
    [13]肖邵予,骆东平,朱显明.两端用圆板封口的环肋柱壳振动声辐射性能分析[J].噪声与振动控制,2005,6:15-18.
    [14]刘涛,范军,汤渭霖.水中弹性圆柱壳体的共振声幅射[J].声学学报,2002,27(1):62-66.
    [15] Cole III J E. Vibrations of a framed cylindrical shell submerged in and filled withacoustic fluids: spectral solution [J]. Computer&Structures,1997,65(3):385-393.
    [16]谢官模.环肋圆柱壳在流场中的动力响应和声辐射[D].武汉:华中科技大学,1994.
    [17]谢官模,李军向.环肋、舱壁和纵骨加强的无限长圆柱壳在水下的声辐射特性[J].船舶力学,2004,8(2):101-108.
    [18]罗斌.肋骨型式对环肋圆柱壳综合性能的影响[D].武汉:华中科技大学,1995.
    [19]文丽,骆东平,陈越澎等.流场中有限长纵横加筋圆柱壳声辐射[J].华中理工大学学报,1999,27(8):54-56.
    [20]汤渭霖,何兵蓉.水中有限长加肋圆柱壳体振动和声辐射近似解析解[J].声学学报,2001,26(1):l-5.
    [21]廖长江,蒋伟康,王云等.水中有限长纵向加肋圆柱壳体振动与声辐射影响因素研究[J].振动与冲击,2009,28(5):74-79.
    [22] Yan J, Li T Y, Liu J X, et al. Space harmonic analysis of sound radiation from asubmerged periodic ring-stiffened cylindrical shell [J]. Applied Acoustics,2006,67:743-755.
    [23]严谨,李天匀,刘土光等.水下周期环肋圆柱壳声辐射的空间简谐分析[J].华中科技大学学报(自然科学版),2007,35(1):96-98.
    [24]彭旭,关珊珊,骆东平等.内部声激励下加筋圆柱壳的声辐射特性分析[J].固体力学学报,2007,28(4):355-361.
    [25]吴文伟,吴崇健,沈顺根.双层加肋圆柱壳振动和声辐射研究[J].船舶力学,2002,6(1):44-51.
    [26]陈美霞,骆东平.敷设阻尼材料的双层圆柱壳声辐射性能分析[J].声学学报,2003,28(6):486-493.
    [27]陈美霞,骆东平.有限长双层壳体声辐射理论及数值分析[J].中国造船,2003,44(4):59-67.
    [28]陈美霞,骆东平.有限长加筋双层圆柱壳低阶模态声辐射性能分析[J].哈尔滨工程大学学报,2004,25(4):446-450.
    [29]白振国,俞孟萨.多层声学覆盖层复合的有限长弹性圆柱壳声辐射特性研究[J].船舶力学,2007,11(5):788-796.
    [30] R. A. FULFORD and B. M. GIBBS. Structure-borne sound power and sourcecharacterisation in multi-point-connected systems. Part1: case studies for assumedforce distribution [J]. Journal of Sound and Vibration,1997,204:659–677.
    [31] R. A. FULFORD and B. M. GIBBS. Structure-borne sound power and sourcecharacterisation in multi-point-connected systems. Part2: general relationships formobility functions and free velocities [J]. Journal of Sound and Vibration,1999,220:203–224.
    [32] R. A. FULFORD and B. M. GIBBS. Structure-borne sound power and sourcecharacterisation in multi-point-connected systems. Part3: Force ratio estimates [J].Journal of Sound and Vibration,1999,225:239–282.
    [33] G. Krishnappa. Acoustic intensity in the nearfield of two interfering monopoles [J].Acoust. Soc. Am.,1983,74(4):1291-1294.
    [34] H. Peng and R. F. Keltie. Sound radiation from beams under the action of multiplerandom point forces [J]. Acoust. Soc. Am.,1989,85(1):49-56.
    [35] H. Peng and R. F. Keltie. Sound radiation from finite plates the action of multiplerandom point forces [J]. Acoust. Soc. Am.,1989,85(1):57-67.
    [36] H. Peng and P. Banks-Lee. Source correlation effects on the sound power radiationfrom spherical shells [J]. Acoust. Soc. Am.,1989,86(4):1586-1594.
    [37] Hu Shimeng, Tang Weilin, Wang Bin and Fan Jun. Sound radiation from bulkheadedfinite cylindrical shell under the action of multiple random point force [J]. Journal ofShip Mechanics,2102,16(9):1085-1098.
    [38]张敬东,何柞铺.有限元+边界元—修正的模态分解法预报水下旋转薄壳的振动和声辐射[J].声学学报,1990,15(1):12-19.
    [39]沈顺根,李琪华,王大云等.加肋旋转壳结构噪声声辐射水弹性研究[J].中国造船,1992,2:53-62.
    [40]谭林森,骆东平,吴崇健等.潜水器动力舱振动与声辐射[J].华中理工大学学报,1999,27(11):7-9.
    [41]商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析[J].声学学报,2001,26(3):193-201.
    [42]徐张明,汪玉,华宏星等.双层壳体的船舶动力舱振动与声辐射的有限元结合边界元数值计算[J].中国造船,2002,43(4):39-44.
    [43]石焕文,盛美萍,孙进才等.加纵肋平底圆柱壳振动和声辐射的FEM/BEM研究[J].振动与冲击,2006,25(2):88-92.
    [44]艾海峰,陈志坚,孙谦.降低双层加肋圆柱壳低频噪声的声学设计技术[J].噪声与振动控制,2007,3:106-109.
    [45] Ai Haifeng, Chen Zhijian, Xia Qiqiang. The influence of load type and end cap shapeon the sound radiation of closed and ribbed cylindrical shell structure [C].20103rdInternational Conference on Advanced Computer Theory and Engineering. Chengdu:Institute of Electrical and Electronics Engineers, Inc.2010,1:666-669.
    [46]盛美萍.复杂耦合系统的统计能量分析及其应用[D].西安:西北工业大学,1997.
    [47]刘小勇,盛美萍,行晓亮等.双层圆柱壳噪声预报及统计能量参数灵敏度分析[J].振动与冲击,2007,26(7):50-53.
    [48]童宗鹏,王国治.水下航行器声振特性的统计能量法研究[J].噪声与振动控制,2004,1:29-32.
    [49]丁少春,朱石坚,楼京俊.运用统计能量法研究壳体的振动与声辐射特性[J].船舶工程,2007,29(6):30-33.
    [50] Ramachandran P, Narayanan S. Evaluation of modal density, radiation efficiency andacoustic response of longitudinally stiffened cylindrical shell [J]. Journal of Sound andVibration,2007,304:154-174.
    [51]高岩,李冰,戴江.圆柱壳结构模型水下辐射声功率测量方法研究[J].船舶力学,2010,14(10):1189-1194.
    [52]何祚镛.声强法测量噪声源研究—总结报告.中国船舶科技报告CK-02294,哈尔滨工程大学,1995.
    [53]何元安.大型水下结构近场声全息的理论方法与试验研究[D].哈尔滨:哈尔滨工程大学,2000.
    [54]李琪.水筒噪声测量方法研究[D].哈尔滨:哈尔滨船舶工程学院,1990.
    [55] Ekimov A E, Lebedev A V. Experimental study of local mass influence on soundradiation from a thin limited cylindrical shell [J]. Applied Acoustics,1996,48(1):47-57.
    [56]俞孟萨,吴永兴,吕世金.加肋圆柱壳声学相似性试验[J].中国造船,2002,43(2):50-57.
    [57]曾革委,吴崇健.加肋圆柱壳舱段水下声辐射试验研究[J].中国舰船研究,2006,1(1):13-16.
    [58]陈美霞,关珊珊,骆东平等.具有内部甲板的环肋柱壳振动和声学试验分析[J].舰船科学技术,2005,27(6):19-25.
    [59]严谨,李天匀,刘土光.流场中周期环肋圆柱壳辐射声压的理论和实验研究[J].中国舰船研究,2007,2(1):49-51.
    [60]姚熊亮,张阿漫,钱德进.去耦瓦敷设方式对双层壳声振动的影响[J].海军工程大学学报,2008,20(2):33-37.
    [61]李冰茹,王宣银,葛辉良.圆柱壳体近场辐射噪声预报与实验研究[J].浙江大学学报(工学版),2010,44(3):563-568.
    [62]李冰茹,王宣银,葛辉良.有限长圆柱壳体声辐射特性影响因素研究[J].浙江大学学报(工学版),2007,41(5):785-789.
    [63]陈军明,陈应波,黄玉盈.水中双向正交加肋圆柱壳体声辐射的有限元法[J].武汉理工大学学报,2004,26(4):74-76.
    [64]徐春龙,石焕文.环肋对两端带半球帽圆柱壳声振特性的影响[J].陕西师范大学学报(自然科学版),2007,35(1):49-53.
    [65] Harari A, Sandman B E. Analytical and experimental determination of the vibrationand pressure radiation from a submerged,stiffened cylindrical shell with two endplates[J]. Acoust. Soc. Am.,1994,95(6):3360-3368.
    [66]曾革委,黄玉盈,谢官模.外壳板采用纵骨加强的双层加肋圆柱壳水下声辐射分析[J].中国造船,2003,44(2):45-52.
    [67]吴培荣,范军.有限长双层加肋圆柱壳体的声辐射特性[J].船舶工程,2009,31(4):13-15.
    [68]陈美霞,骆东平,曹钢等.环肋柱壳振动和声辐射试验分析[J].华中科技大学学报(自然科学版),2003,31(4):102-104.
    [69]陈美霞,骆东平,周峰等.阻尼材料敷设方式对双层壳体声辐射性能的影响[J].声学学报,2005,30(4):296-302.
    [70]白振国,俞孟萨.多层声学覆盖层复合的有限长弹性圆柱壳声辐射特性研究[J].船舶力学,2007,11(5):788-797.
    [71] Hasheminejad S M, Rajabi M. Scattering and active acoustic control from a submergedPiezoelectric-coupled orthotropic hollow cylinder [J]. Journal of Sound and Vibration,2008,318:50-73.
    [72] Ruzzene M. and Baz A. Finite element modeling of vibration and sound radiation fromfluid-loaded damped shells [J]. Thin-Walled Structures,2000,36:21-46.
    [73] Oh J, Ruzzene M, and Baz A. Passive control of the vibration and sound radiation fromsubmerged shells [J]. Journal of Vibration and Control,2002,8:425-445.
    [74] Krishna B V, Ganesan N. Studies on fluid-filled and submerged cylindrical shells withconstrained viscoelastic layer [J]. Journal of Sound and Vibration,2007,303:575-595.
    [75] Plump J M, Hubbard J E. Modeling of active constrained layer damping [C].Proceedings of2nd International Congress on Acoustics, Toronto,1986:2489-2503.
    [76] Agnes G S, Napolitano K. Active constrained layer viscoelastic damping [C].Proceedings of34th Structures, Structural Dynamics and Material Conference,1993:3499-3506.
    [77] Ro J, Baz A. Control of sound radiation from a plate into an acoustic cavity usingactive constrained layer damping [J]. Smart Mater. Struct.,1999,8:l-9.
    [78] Ray M C, Balaji R. Active structural-acoustic control of laminated cylindrical panelsusing smart damping treatment [J]. International Journal of Mechanical Sciences,2007,49:1001-1017.
    [79]袁丽芸,向宇,黄玉盈,倪樵.主动约束阻尼圆柱壳动力学分析的新传递矩阵法[J].振动与冲击,2010,29(5):58-61.
    [80]袁丽芸,向宇,黄玉盈,陆静.主动约束层阻尼圆柱壳的环向占优模态控制[J].动力学与控制学报,2010,8(2):170-175.
    [81]何祚镛.结构振动与声辐射[M].哈尔滨:哈尔滨工程大学出版社,2001:110-124.
    [82] Tang Rui, Li Qi and Shang Dejiang. A method for predicting the vibrations ofunderwater cylindrical shells by using the equivalent beam model [J]. J.A.S.A.,2012,131(4):3507.
    [83] Kevin Forsberg. Axisymmetric and beam-type vibrations of thin cylindrical shells [J].AIAA Journal,1969,7(2):221-227.
    [84] Jian Q. Sun. Vibration and sound radiation of non-uniform beams [J]. Journal of Soundand Vibration,1995,185(5):827-843.
    [85] C. E. Wallace. Radiation Resistance of a baffled beam [J]. J.A.S.A.,1972,51(3):936-945.
    [86]陆鑫森,金咸定,刘涌康.船体振动学[M].北京:国防工业出版社,1980:154-213.
    [87] R. TANG, Q. LI, De J. SHANG. Research on the forced vibration and sound radiationof an underwater non-uniform beam with arbitrary boundary [C]//Proceedings of the5th international symposium on acoustic engineering and technology. Harbin: NLUAT,2010:100-104.
    [88] M. C. Junger, D. Feit. Sound, structures, and their interaction [M](2nd edition).Massachusetts: Cambridge Press,1985:206-209.
    [89] Shing Huei Ho, Cha’o Kuang Chen. Analysis of general elastically end restrainednon-uniform beams using differential transform [J]. Applied Mathematical Modeling,1998,22:219-234.
    [90] H. Zheng, C. Cai. Minimization of sound radiation from baffled beams throughoptimization of partial constrained layer damping treatment [J]. Applied Acoustics,2004,65:501-520.
    [91] Rui Tang, Qi Li and Dejiang Shang. An Equivalent Beam Method for Calculating theSound Radiation of Underwater Cylindrical Shells [C]//Proceedings of2012IEEEInternational Conference on Mechatronics and Automation. Chengdu,2012:2366-2370.
    [92]尚大晶,李琪,商德江,林翰.水下翼型结构流噪声实验研究[J].声学学报.2012,34(4):416-423.
    [93]尚大晶,李琪,商德江,侯本龙.水下声源辐射声功率测量实验研究[J].哈尔滨工程大学学报,2010,31(7):938-944.
    [94]章林柯,何琳,朱石坚.潜艇主要噪声源识别及贡献比计算方法综述[C].第十届船舶水下噪声学术讨论会论文集,烟台,2005:48-53.
    [95]钟祥璋.建筑吸声材料与隔声材料.北京:化工出版社,2005:23-27.
    [96] GBJ47-83.混响室法吸声系数测量规范.北京:中国建筑工业出版社,1998:1-10.
    [97] LIU Yong-wei and LI Qi. Research on the coefficient of sound absorption in turbidwater [J]. The Journal of Marine Science and Application,2008,7(2):135-138.
    [98]国外声学成果.混响室中扩散体的总面积和测得的吸声系数[J].声学学报,1985,10:61-64.
    [99]贺加添.混响室法测量材料吸声系数的有效性[J].烟台大学学报(自然科学与工程版),1995:65-72.
    [100]周启君,刘克,冯涛.管道中测量材料的声学性能[J].声学技术增刊,2006,25:71-72.
    [101]易文胜.大面积吸声构件吸声系数的低频测量[J].声学与电子工程,2006,81:12-14.
    [102]姬培锋,杨军,李晓东.基于指向性声源的吸声系数测量[J].声学技术增刊,2006,25:71-72.
    [103]张武威,汤伟红.混响室法测定吸声系数计算误差分析[J].声频工程,2007,31:14-19.
    [104]叶江涛,刘岩,张晓排.混响室中不同试件面积对吸声系数的影响研究[J].噪声与振动控制,2009:134-136.
    [105]朱从云,黄其柏.基于特性阻抗的测量吸声系数的一种新方法[J].机械设计与制造,2008:154-158.
    [106]芮元勋,蒋国荣.声场计算机模拟中吸声系数的修正[J].声频工程,2008,32:9-11.
    [107] David B.Nutter, Timothy W.Leishman. Measurement of sound power and absorption inreverberation chambers using energy density [J]. Acoust. Soc. Am.,2007,121(5):2700-2707.
    [108] P.M. Morse, K. Uno Ingard. Theoretical Acoustics, New York: McGraw-Hill Inc.1967:554-599.
    [109] C. G. Mailing, Calculation of Acoustic Power Radiated by a Monepole in aReverberant Chamer [J]. Acoust. Soc. Am.,1967,42(4):859-865.
    [110] R. V. Waterhouse, Noise Measurement in Reverberant Rooms [J]. Acoust. Soc. Am.,1973,54(4):931-934.
    [111] Dah-You Maa. Sound power emission in reverberation chambers [J]. Acoust. Soc. Am.,1988,83(4):1414-1419.
    [112] W. F. Smith and J. R. Bailey. Investigation of the Statistics of Sound Power Injectionfrom Low-frequency Finite-size Sources in a Reverberant Room [J]. Acoust. Soc. Am.,1973,54(4):950-955.
    [113] M. R. Schroeder. Measurement of sound diffusion in reverberation chambers [J].Acoust. Soc. Am.,1959,31:1407-1414.
    [114] J. L. Davy, I. P. Dunn and P. Dubout. The Variance of Decay Rates in ReverberationRooms [J]. Acustica,1979,43:12-25.
    [115] C. Eyring. Reverberation time in dead rooms [J]. Acoust. Soc. Am.,1930,1:207–214.
    [116] M. R. Hodgson. On measures to increase room sound-field diffuseness and theapplicability of the diffuse-field theory [J]. Acoust. Soc. Am.,1994,95:3651-3653.
    [117] K. H. Kutruff. Sound decay in reverberation chambers with diffusing elements [J].Acoust. Soc. Am.,1981,69:1716–1723.
    [118] R. V. Waterhouse. Interference patterns in reverberant sound fields [J]. Acoust. Soc.Am.,1955,27:247-258.
    [119] A. Schaffner. Accurate estimation of the mean sound pressure level in enclosures [J].Acoust. Soc. Am.,1999,106(2):823-827.
    [120] M. Vorl nder. Revised relation between the sound power and the average soundpressure level in rooms and the consequences for acoustic measurements [J]. Acustica,1995,81:332-343.
    [121] J. Tichy and P. Baade. Effect of rotating diffusers and sampling techniques onsound-pressure averaging in reverberation rooms [J]. Acoust. Soc. Am.,1974,56:137-143.
    [122] R. V. Waterhouse. Statistical properties of reverberant sound fields [J]. Acoust. Soc.Am.,1968,43:1436-1444.
    [123] D. Lubman. Fluctuations of sound with position in a reverberant room [J]. Acoust. Soc.Am.,1968,44:1491-1502.
    [124] Finn Jacobsen. Sound power emitted by a pure-tone source in a reverberation room [J].Acoust. Soc. Am.,2009,126(2):676-684.
    [125] David B. Nutter, Timothy W. Leishman, Scott D. Sommerfeldt, and Jonathan D. Blotter.Measurement of sound power and absorption in reverberation chambers using energydensity [J]. Acoust. Soc. Am.,2007,121(5):2700-2710.
    [126] W. K. Blake and L. J. Maga. Chamber for reverberant acoustic power measurements inair and in water [J]. Acoust. Soc. Am.,1975,57(2):380-384.
    [127] Niven R. Brown, Timothy G. Leighton, Simon D. Richards, Anthony D.Heathershaw.Measurement of viscous sound absorption at50-150kHz in a model turbidenvironment [J]. Acoust. Soc. Am.,1998,104(4):2114-2120.
    [128]马大猷.声功率测定中的低频率差异问题.声学学报,1989,14(3):167-177.
    [129]刘克,田静,马大猷.混响室内声功率发射的实验研究.声学学报,1995,20(2):115-120.
    [130]尚大晶.水下复杂声源辐射声功率的混响法测量技术研究[D].哈尔滨:哈尔滨工程大学,2012.
    [131]刘涛.水中复杂壳体的声-振特性研究[D].上海:上海交通大学,2002.
    [132]曾革委.潜艇结构声辐射的建模、求解及其声特性研究[D].武汉:华中科技大学,2002.
    [133]陶猛,范军,汤渭霖.覆盖多柔性层的有限长圆柱壳声辐射特性[J].声学学报,2008,33(3):220-224.
    [134] Peter R. Stepanishen. Radiated power and radiation loading of cylindrical surfaces withnonuniform velocity distributions [J]. Acoust. Soc. Am.,1978,63(2):328-338.
    [135] L.F. Kallivokas, J. Bielak, and R.C. MacCamy. Symmetric Local AbsorbingBoundaries in Time and Space [J]. Journal of Engineering Mechanics,1991,1179:2027-2048.
    [136] A. Barry, J. Bielak, and R.C. MacCamy. On absorbing boundary conditions for wavepropagations [J]. Journal of Computational Physics,1988,792:449-468.
    [137] Shenck H A. Improved Integral Formulation For Acoustic Radiation Problems [J]. J.A. S. A..,1968,44:41-58.
    [138] Burton A J and Miller G F. The application of integral equation methods to thenumerical solution of some exterior boundary value problems [C]. Proo. R. Soc.,London,1971, Ser.A323:201-210.
    [139]孙洋.附加水质量对船体总振动固有频率影响的研究.大连理工大学硕士论文,2007.
    [140] M. C. Junger. Sound radiation by resonances of free-free beams [J]. J.A.S.A.,1972,52(1):332-334.
    [141] H. Zheng, C. Cai. Minimization of sound radiation from baffled beams throughoptimization of partial constrained layer damping treatment [J]. Applied Acoustics,2004,65:501-520.
    [142]何祚镛,赵玉芳.声学理论基础.北京:国防工业出版社,1981:174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700