基于无线传感器网络和声波传播衰减的水下未知声源定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋对于人类的生存与发展具有极大的重要性。海洋作为资源的宝库是地球上尚未充分开发利用的最大领域,它在解决人类面临的人口、资源、环境等三大难题方面将发挥越来越大的作用。因此,自上世纪60,70年代以来,世界各国开始大规模向海洋进军,迄今海洋开发利用已经取得很大进展。现代海洋开发的一个显著特点,是开发规模和领域迅速扩大,海洋产业日益增多,特别是对于深海开发和海洋灾害监测技术的发展较快。
     不管是深海开发还是海洋灾害监测,对于水下目标的探测定位都是异常重要的。在海底勘探时需要有一定的定位系统配合,这些系统可以在局部海域对水下目标进行高精度的定位。水下定位系统有很多种,如短基线系统,超短基线系统,长基线系统,惯性导航系统以及组合的导航系统等等。但是现行的水下定位系统设备成本高、笨重不易装卸,数据处理复杂,实时性差定位范围有限,定位精度受障碍物影响大。并且,现行水下定位开发应用还需定位系统支持全海域的监测以及对水下未知目标的探测定位。
     本文首先从海洋开发的应用背景以及需要的高技术方面进行归纳研究,然后对于其中至关重要的水下定位技术方面着手,分析了水下定位技术的研究前景和现状,介绍了本文的两个重要原理无线传感器网络和声波传播衰减的研究现状和应用背景,然后阐述了本文的研究目的和研究意义,并对论文的主旨结构进行了简要叙述。
     其次,提出了基于传感器网络技术和声波衰减原理的水下未知声源定位技术,实现了无需载波、无需精密测量时间差的实时测距,从而大幅减低节点设备成本和功耗。简要叙述了整个系统的构成和具体的定位流程,阐述了不同水听器基阵结构的形状,对于已知声源定位技术进行了简要的分析,在此基础上,重点分析了未知声源定位相对与已知声源定位的数据处理方面的难点,并提出了基于FFT频谱分析的数据处理方法,然后提出了未知声源定位的数学模型和定位计算算法。
     再次,对于不同水听器基阵的拓扑结构,进行了数值仿真实验,分析了水面多径反射及噪声对于定位精度的影响。另外,提出了基于多个特征频率求平均值的修正方法,并对修正结果进行分析和阐述。
     最后,在上海交通大学深海实验水池进行了实验,验证了声波传播衰减原理应用于未知声源定位的可行性,并且分析其定位精度,运用多个特征频率的修正方法修正实验结果。
     本文中,我们提出了一个基于无线传感器网络和声波传播衰减的新方法,来对未知声源进行定位。我们采用理论分析,水池实验,数值仿真结合的方式来对在背景噪声和多径反射下未知声源的声压信息分析方法进行分析,并得到了传播衰减于距离的函数关系,为低成本水下定位技术发展奠定理论基础。
Ocean is a place of great importance for the existence and development of mankind. As a treasure trove of marine resources, ocean is the biggest field that hasn’t yet been fully exploited on the earth, which ensures that it plays as a more and more important role in addressing tough issues as human population, resource and environment. Therefore, since 1960s and 1970s, many countries have started to march into the sea, which turned into today’s huge progress in ocean development and utilization. A notable feature of modern exploitation in marine is the rapid expansion in scale and area, the fast growing of marine industry, and especially the deep-sea technology as well as the marine disaster monitoring skills.
     Whether in deep-sea development or marine disaster monitoring, acoustic detection and localization is extremely important. The seabed exploration requires positioning system which can be used to locate the n position of the underwater target. Underwater positioning system has a lot of kinds, such as short baseline system, ultra-short baseline system, long baseline system, inertial navigation system and combinations of navigation system, etc. However, Current underwater positioning system equipment has many short comings: high cost, complex data processing, limited Positioning range, bad real-time identification and big influence by the obstacles. In addition, the current underwater positioning development application still needs positioning system that can realize marine monitoring and support the underwater detection and localization of unknown object.
     First of all, marine development application background and need of high technology was summarized. Then, the technical characters, application future and research situation of underwater positioning system in detail is illustrated. The paper introduces the current research and the application background of WSN and SPL, and expounds the purpose and significance of the research. At last the paper's structure is also introduced briefly.
     Secondly, the new method, based on sensor networks and sound propagation loss, is applied to underwater unknown source localization. By using of this method, real-time ranging without carrier and precisely-measuring time is realized which thus greatly reduce the equipment cost and power consumption of nodes. Briefly the whole system structure and positioning process are described. Then, the paper made a brief analysis of different hydrophone arrays and known source positioning. On that basis, the paper emphatically introduces the complexity of the data processing in unknown source localization, proposes FFT frequency spectrum analysis for data processing, And then the mathematical model and localization algorithm has been put forward.
     Afterwards, the research performs the experimental study and the numerical simulation to the different hydrophone arrays .Numerical results and analysis validate the proposed indices and models. The influence of the multipath reflection and the hydrophone array on the location precision is analyzed. The averaged correction method based on multiple characteristic frequency is proposed and the corrected results analysis are described.
     In the end of paper,we has finished the tests in deep-sea tank of Shanghai Jiao tong university .In these tests, sound propagation loss principle has been applied to unknown sound source positioning to verify its feasibility and practicability. Moreover, correction method we gave is adopted to modify the data. The results show that the new method is well.
     In this paper, we put up forward a new method based on SPL to estimate the position of unknown acoustic source, and we carry on the research, using theoretical analysis and computer simulation, to analyze the acoustic pressure of underwater sound signal which is interfered by water background noise and multipath reflection. According to the results, we got functional relation between acoustic pressure attenuation of the unknown source and the propagation distance. Then we have done preliminary calculation and analysis in the accuracy of the unknown acoustic source localization, which provides theoretical basis for large scale and low cost acoustic positioning technology and offers a new approach for tracking the movement of complicated underwater source, such as the unknown sailing noise, underwater construction noise, biological noise, natural disasters noise.
引文
[1]王琪,张德贤,孙吉亭.海洋资源可持续开发利用初探[J].中国人口资源与环境. 2000 (10): 24-26 .
    [2]国家海洋局.中国海洋21世纪议程[M].北京:海洋出版社. 1996: 1-6.
    [3]谭征.走向海洋开发新世纪[J].求是. 1996 (10): 45-47.
    [4]刘淮.国外深海技术发展研究(上)[J].船艇. 2006 (10): 6-18.
    [5]曹惠芬.我国深海探测技术装备发展现状船舶物资与市场[J]. 2005 (2): 19-22.
    [6]刘淮.国外深海技术发展研究(二) [J].船艇. 2006 (12): 18-23.
    [7]刘淮.国外深海技术发展研究(三) [J].船艇. 2006 (14): 16-23.
    [8]连立民.海洋资源开发与深潜技术[J].海洋技术. 1993, 12 (4): 78-80.
    [9]刘淮.国外深海技术发展研究(四) [J].船艇. 2007 (02): 30-36.
    [10]梁钢华.我国开始研制4500米级深海作业系统[DB].新华网. 2008年9月15日.
    [11]钱钰.“海龙号”深海机器人首次发现罕见“黑烟囱”[DB].新闻晚报. 2009年12月9日.
    [12]孙自法.我国蛟龙号载人潜水器海试突破3700米水深记录[DB].中国新闻网. 2010年08月26日.
    [13]田坦.水下定位与导航技术[M].北京:国防工业出版社. 2006: 3-6.
    [14] A.D.waite,王得石等译.实用声纳工程[M].北京:电子工业出版社. 2004: 44-46.
    [15]刘伯胜,雷家煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社. 2009: 23-24, 30-34.
    [16]冯守珍,吴永亭,唐秋华.超短基线声学定位原理及其应用[J].海岸工程. 2002, 21(4):13-18.
    [17]李守军,陶春辉,包更生.基于卡尔曼滤波的INS/USBL的水下导航系统模型研究[J].海洋技术. 2008, 27(3): 47-50.
    [18]孙树民,李悦.浅谈水下定位技术[J].广东造船. 2006 (04): 19-24.
    [19]吴永亭,周兴华,杨龙.水下声学定位系统及其应用[J].海洋测绘. 2003, 23(04): 18-21.
    [20]李守军,包更生,吴水根.水声定位技术的发展现状与展望[J].海洋技术. 2005, 24(1):130-134.
    [21]封金星,丁士圻,惠俊英.水下运动目标长基线定位解算研究[J].声学学报. 1996, 21(5):832-837.
    [22]田坦,惠俊英.长基线水声应答器导航系统[J].哈尔滨工程大学学报. 1981 (1):41-52.
    [23]杨放琼,谭青,彭高明.基于长基线系统深海采矿ROV精确定位[J]. 2006, 24(3): 95-99.
    [24]阳继军,庞卫平,马少娟.基于长基线水下声学定位系统的研究[C].华东六省一市测绘学会第十一次学术交流会. 2009: 258-262.
    [25]李莉.长基线阵测阵校阵技术研究[硕士论文].哈尔滨:哈尔滨工程大学. 2007.
    [26]王亚讯.短基线声纳系统跟踪水下目标的误差分析[J].现代电子技术. 2008 (15): 40-42.
    [27]段志勇,袁信.惯性辅助超短基线GPS航姿解算[J].中国惯性技术学报. 1999, 7(4):45-48.
    [28]王大成,郭丽华,丁士圻.高精度水下定位的一种实现方案[J].海洋技术. 2004, 23(3): 34-38.
    [29]喻敏,惠俊英,冯海泓等.超短基线系统定位精度改进方法[J].海洋工程. 2006, 24(1):86-91.
    [30]顾亚平,张俊,查雨等.一种结合超短基线和GPS定位原理的水下目标快速搜寻方法[C].全国水声学学术会议论文集. 2005: 253-255.
    [31]肖亮,韩焱.基于多阵元基阵的超短基线声定位方法[J].弹箭与制导学报. 2006, 26(4): 263-265.
    [32]郑翠娥,李琪,孙大军等.一种超短基线定位系统阵型的改进方法[J].中国海洋大学学报. 2009, 39(3): 505-508.
    [33] DRC PhiliP. An evaluation of USBL and SBL acoustic systems and the optimization of methods of calibration (Part l)[J].The Hydrographic Journal. 2003(108):18-25.
    [34] DRC PhiliP. An evaluation of USBL and SBL acoustic systems and the optimization of methods of calibration (Part2)[J]. The Hydrographic Journal. 2003 (109):10-20.
    [35] DRC PhiliP. An evaluation of USBL and SBL acoustic systems and the optimization of methods of calibration (Part3)[J].The Hydrographic Journal. 2003 (110):11-19.
    [36] Jan Opderbecke. At-Sea Calibration of a USBL Underwater Vehicle Positioning System [C].OCEANS97MTS/IEEE Conference Proceedings. 1997:721-726
    [37]唐秋华,吴永亭,丁继胜等.超短基线声学定位系统的校准技术研究[J].声学技术. 2006, 25(4): 284-287.
    [38]田坦.声纳技术[M].哈尔滨:哈尔滨工程大学出版社. 2010 (2版): 1-20
    [39]米尔恩,P.H著.肖士石,陈德源译.水下工程测量[M].北京:海洋出版社. 1992.
    [40]Smith, Kronen. Experimental results of base line acoustic positioning system for AUV navigation[C]. MTS/IEEE Conference Proeeedings.1997, 1(10):714-720
    [41] Watson, Berkowitz, wapner. Ultra-short base line Acoustic tracking system[C]. OCEANS 1983. 1983,15(8): 214-218.
    [42]兰华林.深海水声应答器定位导航技术研究[博士学位论文].哈尔滨:哈尔滨工程大学. 2007.
    [43] www.kongsberg.com.
    [44] Marthiniussen, R.Fangstadmo, J.E.Jakobsean,etl. Integrated Acoustic positioning and inertial navigation[C].OCEANS’04.MTS/IEEE TECHNOOCEAN’04.2004 (3): 1620-1628.
    [45] www.ixsea.com
    [46] Audrie,M.GAPS. A new concept for USBL-Global Acoustic Positioning System for Ultra Short Base Line positioning[C].MTS/IEEETECHNO-OCEAN’04.2004,2(11):786-788.
    [47] ThomasH.G. New advanced underwater navigation techniques based on surface relay buoys [A].Oceans94. Oceans Engineering for Today, Technology and Tomorrow PreservationProeeedings1994 (3):13-16
    [48] A.Aleoeer,P.Oliveira, A.Paseoal. Underwater acoustic Positioning Systems based on buoys with GPS [A]. Proceedings of the Eighth European Conference on Underwater Acoustics. citerseer.2006.
    [49] H.GThomas. GIB buoys All interface between space and depths of the oceans[J]. In Proceedings of IEEE Autonomous UnderwaterV ehieles.Cambridge, MA, USA.1998.(8):181-184 .
    [50] Anstin, T.C.Stokey, R.P.:Sharp, K.M.PARADIGM. A buoy-based system for AUV navigation and tracking[J]. OCEANS 2000 MTS/IEEE Conference and Exhibition. 2000, 2(9):935-938
    [51]田坦,丁育中,姚蓝.便携式高精度水下高速运动体三维轨迹测量系统[J].声学学报. 1991,12(3): 9-19
    [52]梁国龙,江峰,蔡平.一种新颖的短基线高精度定位系统[J].应用声学. 1999,18(5):15-18.
    [53]蔡平,梁国龙,惠俊英等.采用自适应相位计的超短基线水声跟踪系统[J].应用声学. 1993, 12(2):19-23.
    [54]喻敏.长程超短基线定位系统研制[博士学位论文].哈尔滨:哈尔滨工程大学. 2006
    [55]张晓亮.长程超短基线定位系统信号处理算法仿真及软件设计[硕士学位论文].哈尔滨:哈尔滨工程大学.2004
    [56]肖建良.长程超短基线定位系统软硬件设计与实现[硕士学位论文].哈尔滨:哈尔滨工程大学.2006.
    [57]吴玉泉.长程超短基线定位系统水声应答器研制[硕士学位论文].哈尔滨:哈尔滨工程大学.2006.
    [58]马晓民.水下GPS系统的设计与仿真[J].海洋测绘. 2001 (4):41-44.
    [59]秘金钟,章传银,高星伟等.水下GPS系统的时间同步标定研究与试验[J].测绘科学. 2007,32(3):36-37
    [60]王宝阔,丁宏才.惯性导航系统INS与GPS系统的组合应用[J].天津航海. 2003(04): 42-44.
    [61] B. Ristic, S. Arulampalam, N. Gordon. Beyond the Kalman Filter: Particle filters for tracking applications [M]. Boston: Artech House, 2004.
    [62] C. Musso, N. Oudjane, and F. L. Gland. Improving regularized particle filters. in Sequential Monte Carlo methods in practice, A. Doucet,N. de Freitas, and N. Gordon, Eds. Springer-Verlag, New York, 2001:.247–271.
    [63] N. Oudjane and C. Musso. Progressive correction for regularized particle filters[C]. Proceeding. Third Int. Conf. Inform. Fusion .2000: 26–33.
    [64]高为广,杨元喜.神经网络辅助的GPS/INS组合导航自适应滤波算法[J].测绘学报. 2007, 36(1): 26- 30.
    [65]赵辉.基于水下航行器导航定位及信息融合技术研究[博士学位论文].江苏:南京理工大学2006.
    [66]李涛.非线性滤波方法在导航系统中的应用研究[博士学位论文].长沙:国防科技大学. 2003.
    [67] Bo Zhang, Wen Xu, Qing Chen, etl. Extended Kalman filter-based data fusion for Inertial-DopplerAUV navigation[C]. Sixth International Symposium on Underwater Technology UT2009, Wuxi, China, April 2009
    [68] JK Ray, Salyehev, ME Cannon. The modified wave estimator as An alternative to a Kalman filter for real-time GPS/GLONASS一INS integration[J]. Journal of Geodesy. 1999, 73(10):568-576.
    [69] KP Sehwarz, AH Mohamed. Adaptive Kalman Filtering for INS/GPS[J]. Journal of Geodesy.1999, 73(4):193-203.
    [70] Y. Watanabe, H. Ochi, T. Shimura, T. Hattori. An SSBL Acoustic Positioning of AUV with DSSS Data Transmission[J] .IEICE Tech. Rep. 2008, 108 (196): 21-26.
    [71] A. Caiti, A. Garulli, F. LiVide, and D. Prattichizzo, Localization of Autonomous Underwater Vehicles by Floating Acoustic Bouys: A Set-Membership Approach[J]. IEEE J. Ocean. Eng. 2005, Vol.30, No.1:140-152.
    [72] N.H. Kussat, C. D. Chadwell, R.Zimmeman. Absolute Positioning of an Autonomous Underwater Vehicle Using GPS and Acoustic Measurements[J]. IEEE J. Ocean. Eng. 2005,Vol.30, No.1, pp.153-163.
    [73]陆维维. GPS动态载波相位测量技术研究及应用[硕士学位论文].南京:河海大学.2006
    [74] S. Sugimoto. Development of seafloor geodetic observation system using GPS/Acoustic techniques and detection of plate motion[PhD Thesis]. Nagoya Univ. 2006.
    [75] B. Fu, F. Zhang, M. Ito, Y. Watanabe, T. Aoki. Development of a New Underwater Positioning System[J]. AROB Journal, 2008, Vol.13: 45-49.
    [76] B. Fu, F. Zhang, M. Ito, Y. Watanabe, T. Aoki. Development of a new positioning system for underwater robot based on sensor network,2009,J-AROB, Vol14, pp.43-47.
    [77]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报. 2003, 14(7):1282-1291.
    [78] Anna Hac, A wireless sensor network designs. singapore:john wiley and sons,2003; Callaway EH wireless sensor networks: architecture and protocols. Bocaraton: auerbach publication. 2004
    [79]崔逊学,左丛菊.无线传感器网络简明教程[M].北京:清华大学出版社. 2009.
    [80] bonnet p,Gehrke J,Seshadri P. Querying the physical world. IEEE personal communication 2000,(75):10-15
    [81] Noury N, Herve T, Rialle V,etal. Monitoring behavior in home using a smart fall sensor。Proceedings of IEEE-EMBS Special Topic Confernece on Microtechnologies in Medicine and Biology,Lyon,France,2000
    [82]杨玺.面向实时监测的无线传感器网络[M].北京:人民邮电出版社. 2010.
    [83] Sven M ,Rakotonirainy A. A survey of research on context-Aware homes。Proceedings of workshop on wearable, Invisible, Context-Aware,Ambient,Pervasive and Ubiquitous Computing ,Adelaide,Australia, 2003.
    [84] Sensor webs. htto://sensorwebs.jpl.nasa.gov/
    [85]李建中,高宏.计算机研究与发展[J] .2008, 45 (1) : 1-15.
    [86] L Girod , D Estrin1 Robust range estimation using acoustic and multimodal sensing [C]1 IEEEPRSJ Int’l Conf on Intelligent Robots and Systems , Hawaii , USA , 2001
    [87] P Bahl, et al1 RADAR : An in-building RF-based user location and tracking system [C]1 IEEE Int’l Conf on Computer Communications ( INFOCOM 2000) , Tel-Aviv , Israel , 2000
    [88] A Savvides , C C Han , M B Srivastava1 Dynamic fine grained localization in Ad2Hoc sensor networks [C]1 The 5th Int’l Confon Mobile Computing and Networking ( MOBICOM’01) , Rome , Italy , 2001
    [89] D Nicolescu, B Nath. Ad hoc Positioning System using AOA [C]1 IEEE Int’l Conf on Computer Communications ( INFO2COM 2003) , San Francisco , USA , 2003
    [90] T He , C Huang , B M Blum , et al1 Range2free localization schemes for large scale sensor networks[C]1 ACM Int’- Sympon Mobile Ad Hoc Networking and Computing (MOBIHOC2003) , Maryland , USA , 2003
    [91] Bulusun, J Heidemann, D Estrin1 GPS-less low-cost outdoor localization for very small devices [J ]1 IEEE Personal Communications . 2000, 7 (5): 28 - 34
    [92] D Niculescu, B Nath1 Ad2hoc positioning system [C]. The7th Annual Int’l Conf on Mobile Computing and Networks 57(MOBICOM’01) , Rome , Italy , 2001.
    [93] R Nagpal. Organizing a global coordinate system from local information on an amorphous computer [R]1 MIT A I Laboratory , Tech Rep : A I Memo 1666 , 1999.
    [94] R Nagpal , H Shrobe , J Bachrach. Organizing a global coordinate system from local information on an ad hoc sensor network[C]. The 2nd Int’l Workshop on Information Processing inSensor Networks ( IPSN 03) , California , USA , 2003
    [95] B. Fu, F. Zhang, M. Ito, Y. Watanabe, T. Aoki. A new underwater positioning technique based on sound propagation los, Proceeding of SICE Symposium on Industrial Application Systems, Vol.2007, Page.25-30 (In Japanese).
    [96] B. Fu, F. Zhang, M. Ito, Y. Watanabe, T. Aoki, Performance confirmation of a new underwater positioning system based on sound propagation loss in ocean field experiments[C]. UT2009.
    [97] B. Fu, F. Zhang, M. Ito, Y. Watanabe, T. Aoki, L. Lian, Sea trials of new underwater positioning system Based on Sensor networks I. Experiments of underwater ranging method of Sound Propagation Loss[C], Proceeding of Oceans 2010.
    [98] B. Fu, L. Lian, F. Zhang, M. Ito, H. Zhang, The water-tank test of novel underwater positioning system based on sensor networks[J]. Proceeding of AROB 15th,2010.
    [99] B. Fu, F. Zhang, M. Ito, L. Lian, Sea trials of new underwater positioning system based on sensor networks II. Experiments of Mean Value Positioning Method[C]. Proceeding of Oceans 2010.
    [100] Embleton TFW. Tutorial on sound propagation outdoors [J]. The Journal of the Acoustical Society of America. 1996 (100):31–48.
    [101]Attenborough K. Sound propagation close to the ground[J]. Annu Rev Fluid Mech. 2002(34):51–82.
    [102] Salomons EM. Computational atmospheric acoustics[M]. Dordrecht: Kluwer; 2001.
    [103] West M, Sack RA, Walkden F. The fast field program (FFP). A second tutorial: application to long range sound propagation in the atmosphere[J]. Appl Acoust 1991;33:199–228.
    [104] West M, Gilbert K, Sack RA. A tutorial on the parabolic equation ({PE}) model used for long rangesound propagation in the atmosphere[J]. Apply Acoustics. 1992 (37):31–49.
    [105] Gilbert KE, Di X. A fast Green function method for one-way sound propagation in the atmosphere[J].J Acoust Soc Am 1993(94): 2343–2352.
    [106] Attenborough K, Taherzadeh S, Bass HE, Di X, Raspet R, Becker GR, et al. Benchmark cases foroutdoor sound propagation models[J]. J Acoustic Soc Am 1995(97):173–191.
    [107] Michael Mungiole, D. Keith Wilson. Prediction of outdoor sound transmission loss with an artificial neural network[J]. Applied Acoustics 67 2006, 324–345.
    [108] Heimann D, Salomons EM. Testing meteorological classifications for the prediction of long-term average sound levels[J]. Applied Acoustics. 2004 (65): 925–950.
    [109] Halliwell, R. E.; Warnock, A. C.C. . Sound transmission loss: comparison conventional techniques with sound intensity techniques [J]. Journal of the Acoustical Society of America. 1985 (77): 2094–2103.
    [110]江南,黄建国,李姗.长基线水下目标定位新技术研究[J].仪器仪表学报. 2004, 25(4):77-100.
    [111]贾瑞武,石庚辰.四元声传感器面阵快速测向算法及误差分析[J].传感器技术学报. 2009, 22(12): 1757~1762.
    [112] Wang D X, Yin F L. A Sub band Adaptive Learning Algorithm for Microphone Array Based Speech Enhancement [M]. Lecture Notes in Computer Science. Berlin : Springer , 2005 :592-597.
    [113] Wang D X, Yin F L. Experiment Evaluation of Microphone Array Placement for Speech Enhancement [C]. 6th International Symposium on Test and Measurement. Dalian:Dalian University of Technology Press ,2005 :1583-1586.
    [114] Mccowan A L ,Bourlard H. Microphone Array Post-Filtering for Diffuse Noise Field[C]. IEEE International Conference on Acoustics ,Speech , and Signal Processing. Florida ,USA : IEEESignal Processing Society Press ,2002 :905-908.
    [115]王冬霞,殷福亮,陈哲.麦克风阵列时延估计的Cramér-Rao界限[J].电子学报. 2008, 36 (12): 2473-2477.
    [116]李京华,施坤林,胡国鹏等.空气中被动声测向系统的误差分析[J].探测与控制学报. 1999, 21 (1) :29-34. [117 ]胡金华,吴文全.被动测距误差分析及修正[J ] .电子测量技术. 2006, 29(3):38-40.
    [118]贾云得,冷树林,刘万春,裴洪安.四元被动声敏感阵列定位模型分析和仿真[J].兵工学报. 2001, 22 (2) :206-209.
    [119]李贵斌.声呐基阵设计原理[M].北京:海洋出版社. 1985: 1-10, 51-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700