紫云英根瘤中共生固氮相关抑制表达基因的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本室前期工作中,通过抑制差减杂交,建立了紫云英结瘤固氮过程中的差异表达cDNA文库,本研究将其下调表达cDNA文库进行了全文库测序,共获得180个有效序列,cDNA克隆插入片段在200-1,300 bp之间。将所有序列进行了同源比较,比对条件为匹配区域长度>100 bp且相似度>75%。符合要求的共有94个,发现其中4个在数据库中找不到其同源片段,可能代表4个新的基因。将符合条件的基因按分子功能分类,分为10个类群:核糖体蛋白11个,信号转导相关11个,基因表达相关13个,代谢相关22个,膜及转运相关13个,应激防御相关9个,未知蛋白6个,假定蛋白4个,无同源片段4个和其他1个。
     根据测序分析结果,对其中的6个基因进行了半定量RT-PCR验证分析,结果表明:它们在根瘤中表达水平均比未接种根中要低。运用RACE(rapid-amplification ofcDNA ends)法获得了其中2个基因(AsA8和AsD5)的全长cDNA和编码区。序列分析表明:AsA8编码的多肽含379个氨基酸,分子量为42 kDa,等电点为5.78。与豌豆中的12-氧代植二烯酸-10,11-还原酶同源性较高,不含信号肽。AsD5编码191个氨基酸的多肽,含有一个22个氨基酸的信号肽,信号肽可以被切除,成熟的多肽分子量为19 kDa,等电点为8.78。与拟南芥质体蓝素相似。另外4个基因:AsB3编码的蛋白与拟南芥C_3HC_4型锌指家族蛋白相似,AsG6编码的蛋白与拟南芥过氧化物酶相似,AsT6编码的蛋白与杨毛果预测蛋白相似,AsC2编码的蛋白与热休克蛋白(heat shock proteins,HSPs)相似。
     进一步通过实时荧光定量PCR,研究了AsA8和AsD5的时空和组织表达特征。结果显示:从不同植物器官中基因的表达情况来看,AsA8和AsD5在根瘤中的表达水平都较未接种根中低,均在紫云英根瘤中呈下调表达特征。AsA8在植物茎中几乎不表达,根瘤和叶片中的表达差异不大,去瘤根中的表达量最高。AsD5则在所有检测组织中均有表达,根瘤、茎和叶中表达相当,去瘤根中表达量最高。从接种后不同时段的基因的表达情况来看,AsA8在成熟根中的转录水平远高于幼根,主要在21-25 d表达。相反,AsD5在成熟根中的转录水平远低于幼根。接种后6d,可以检测到一个较高的表达量,随后一直到接种后30d,其表达量都很低(P<0.05)。由此推测,AsA8主要在成熟根中参与茉莉酸的合成,调控根瘤菌的侵染和根瘤形成,而AsD5主要在接种早期幼根中发挥生理功能,具体作用尚不明确。
     以上实验结果为进一步通过超表达深入研究目标(下调表达)基因在紫云英结瘤固氮过程中的功能打下了良好工作基础。
In previous work,a cDNA library of Astragalus sinicus L.genes specifically or enhanced expressed in uninfected roots has been generated by using a PCR-based suppressive subtractive hybridization(SSH) technique in this laboratory.A total number of 180 expression-down-regulated clones was obtained and sequenced,the length of inseted segments were between 200 to1,300 bp.Based on homology analysis(indentity>75%,length>100 bp) by Blast,there were 94 clones with significant matches and were sorted into 10 broad functional categories as following:11 clones belong to ribosomal protein,11 clones belong to signal transduction,13 clones belong to gene expression,22 clones belong to metabolism,13 clones belong to membrane and transporter,9 clones belong to stress defense,6 clones belong to unknown functional proteins,4 clones belong to hypothetical protein,4 clones belong to no homologous fragment and 1 clones belong to others.
     semi-quantitative RT-PCR was performed with 6 clones selected according to the analysis.The results showed that the 6 clones examined were expressed lower in the nodules than in the uninfected roots.Further more,the full-length or open reading frame of cDNA sequences of 2 clones(AsA8 and AsD5) were obtained by RACE(rapid-amplification of cDNA ends) and analyzed by bioinformatical software.The homology analysis indicated that AsA8 encodes a small polypeptide with 379 amino acids with homology to 12-oxophytodienoic acid 10,11-reductase.Its mature protein has an evaluated molecular weight of 42 kDa and isoelectric point of 5.78.For AsD5,it is similar to plastocyanin.The putative amino acid sequence of AsD5 contains 191 amino acids, which contains a signal peptide with 22 amino acids and a putative cleavage site.Its mature protein has an evaluated molecular weight of 19 kDa and isoelectric point of 8.78. Turning to other 4 genes:AsB3,AsG6,AsT6 and AsC2 are found homologous to zinc finger,peroxidase,putative proteins from Populus trichocarpa,heat shock proteins(HSPs),respectively.
     Fluorescence quantitative real-time PCR analysis indicated that the expressions of AsA8 and AsD5 were down-regulated in nodules.The expression levels of AsA8 in infected leaves and nodules were similar,they were both lower than its in uninfected roots. The expression level in infected roots with nodule removed was highest,and there was nearly no expression of AsA8 in infected stems.The expression patterns of AsD5 in leaves,stems and nodules were similar,they were all lower than its in uninfected roots. The expression of AsA8 in mature infected roots is much higher than that in young infected roots.It mainly expressed during 21 to 25 d after inoculated with rhizobium.In contrast,the expression of AsD5 in mature infected roots was much lower than that in young infected roots,which mainly expressed at 6 d after inoculation(P<0.05).It is presumed that the function of AsA8 is possibly involved in the metabolism in the mature root to produce jasmonic acid.Meanwhile,AsD5 is thought to play an important role on the nodule formation in the earlier stage after rhizobium inoculated,the function was unknown..
     The results above have built up a solid basis for the function identification of those down-regulated-expression genes,associated with symbiotic nitrogen fixation in Astragalus sinicus L root nodules,by gene-over-expression technique.
引文
1. Abdel-Ghany S E, Muller-Moule P, Niyogi K K, Pilon M, Shikanai T. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell, 2005, 17: 1233-1251
    
    2. Agrawal G K, Jwa N S, Shibato J, Han O, Iwahashi H, Rakwal R. Diverse environmental cues transiently regulate OsOPR1 of the "octadecanoid pathway" revealing its importance in rice defense/stress and development. Biochem Biophys Res Commun, 2003, 310: 1073-1082
    
    3. Amor B B, Shaw S L, Oldroyd G E, Maillet F, Penmetsa R V, Cook D, Long S R, Denarie J, Gough C. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J, 2003, 34: 495-506
    
    4. Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A., Barker D G, de Carvalho-Niebel F. AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell, 2007, 19: 2866-2885
    
    5. Arrighi J F, Godfroy O, de Billy F, Saurat O, Jauneau A, Gough C. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci USA, 2008, 105: 9817-9822
    
    6. Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S. A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiol, 2008, 147: 2030-2040
    
    7. Banno H, Ikeda Y, Niu Q W, Chua N H. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell, 2001, 13: 2609-2618
    
    8. Bateman A, Coin L, Durbin R, Finn R D, Hollich V, Griffiths J S, Khanna A, Marshall M, Moxon S, Sonnhammer E L, Studholme D J, Yeats C, Eddy S R. The Pfam protein families database. Nucleic Acids Res, 2004, 32: 138-141
    
    9. Bendtsen J D, Nielsen H, von H G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, 340: 783-795
    
    10. Biesgen C, Weiler E W. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta, 1999, 208:155-165
    
    11. Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A, Miki B L, Custers J B, van Lookeren Campagne M M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14: 1737-1749
    
    12. Brewin N J. Plant cell wall remodelling in the Rhizobium-legume symbiosis. CRC Crit Rev Plant Sci, 2004, 23: 293-316
    
    13. Buchanan B B, Luan S. Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J Exp Bot, 2005, 56: 1439-1447
    
    14. Bueno P, Soto M J, Rodriguez-Rosales M P, Sanjuan J, Olivares J, Donaire J P. Time-course of lipoxygenase, antioxidant enzyme activities and H_2O_2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytol, 2001, 152: 91-96
    
    15. Burkey K. Effect of growth irradiance on plastocyanin levels in barley. Photosynth Res, 1993, 36: 103-110
    
    16. Cao Q F, Masato W, Meng Y P, Sun Y, Cui G M. Molecular Cloning and Expression Analysis of a Zinc Finger Protein Gene in Apple. J Plant Bio, 2004,46: 1091-1099
    
    17. Capoen W, Goormachtig S, De Rycke R, Schroeyers K, Holsters M. SrSymRK, a plant receptor essential for symbiosome formation. ProcNatlAcad Sci USA, 2005, 102: 10369-10374
    
    18. Catalano C M, Lane W S, Janine-Sherrier D. Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis, 2004, 25:519-531
    
    19. Chang J O, Lee H, Ho B K, Chung S A. Isolation and characterization of a root nodule-specific cysteine proteinase cDNA from soybean. J Plant Biol, 2004, 47: 216-220
    
    20. Chattopadhyay S, Ang L H, Puente P, Deng X W, Wei N. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell, 1998, 10: 673-683
    
    21. Chen D S, LiY G, Zhou J C. The symbiosis phenotype and expression patterns of five nodule-specific genes of Astragalus sinicus under ammonium and salt stress conditions. Plant Cell Rep, 2007, 26: 1421-1430
    
    22. Cheng J, Randall A Z, Sweredoski M J, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res, 2005, 33: 72-76
    23. Chen W X, Li G S, Qi Y L, Wang E T, Wang H L, Yuan H L, Li L. Rhizobium huakuii sp. nov. Isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol, 1991, 41: 275-280
    
    24. Chesnokov Y V, Manteuffel R. Dose effect of UV-B irradiation on pollen tube growth and seed-specific promoter activities in irradiated pollen grains of Nicotiana plumbagin. Sex Plant Reprod, 2000, 12 (6): 361-364
    
    25. Chou M X, Wei X Y, Chen D S, Zhou J C. A novel nodule-enhanced gene encoding a putative universal stress protein from Astragalus sinicus. J Plant Physiol, 2007a, 164: 764-772
    
    26. Chou M X, Wei X Y, Chen D S, Zhou J C. Identification of two novel nodule-specific genes from Astragalus sinicus L. by suppressive subtractive hybridization. Chin Sci Bull, 2007b, 52(20): 2797-2804
    
    27. Chou M X, Wei X Y, Chen D S, Zhou J C. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. J Exp Bot, 2006, 57: 2673-2685
    
    28. Chris H, Philippa L, Severine, Tasker, Dave H. Melting curve analysis of feline calicivirus isolates detected by real-time reverse transcription PCR. J Virol Methods, 2002, 106: 241-244
    
    29. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless 1 gene in maize. Science, 2002, 298: 1238-1241
    
    30. Ciftci Y S, Mittlera R. The zinc finger network of plants Cell. Mol Life Sci, 2008, 65: 1150-1160
    
    31. Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi M K. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J, 2004, 39: 487-512
    
    32. Colebatch G, Kloska S, Trevaskis B, Freund S, Altmann T, Udvardi M K. Novel Aspects of Symbiotic Nitrogen Fixation Uncovered by Transcript Profiling with cDNA Arrays. Mol Plant Microbe Interact, 2002, 15(2): 411-420
    
    33. Combier J P, de Billy F, Gamas P, Niebel A, Rivas S. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev, 2008, 22: 1549-1559
    
    34. Combier J P, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A. MtHAP2-l is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev, 2006, 20: 3084-3088
    
    35. Danielsen E, Bauer R, Hemmingsen L, Andersen M L, Bjerrum M J, Butz T, Troger W, Canters G W, Hoitink C W, Karlsson G. Structure of metal site in azurin, Metl21 mutants of azurin, and stellacyanin investigated by 111mCd perturbed angular correlation (PAC). J Biol Chem, 1995, 270(2): 573-580
    
    36. Den Herder J, Lievens S, Rombauts S, Holsters M, Goormachtig S. A Symbiotic Plant Peroxidase Involved in Bacterial Invasion of the Tropical Legume Sesbania rostrata. Plant Physiol, 2007, 144(2): 717-727
    
    37. D'Haeze W, Holsters M. Nod factor structures, responses, andperception during initiation of nodule development. Glycobiology, 2002, 12: 79R-105R
    
    38. Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, Siebert P D. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc NatlAcadSci USA, 1996, 93(12): 6025-6030
    
    39. Dimitrov M I, Donchev A A, Egorov T A. Twin plastocyanin dimorphism in tobacco. Biochim Biophys Acta, 1993, 1203: 184-190
    
    40. Dimitrov M I, Donchev A A, Egorov T A. Microheterogeneity of parsley plastocyanin. FEBS Lett, 1990,265: 141-145
    
    41. Eckardt N A. Nodulation Signaling in Legumes Depends on an NSP1-NSP2 Complex. Plant Cell, 2009, 27: Epub ahead of print
    
    42. Endre G, Kereszt A, Kevei Z, Kiss P, Mihacea S, Kalo P, Kiss G B. Cloning of a receptor kinase gene regulating symbiotic nodule development. Nature, 2002, 417: 962-966
    
    43. Ferguson B J, Ross J J, Reid J B. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol, 2005, 138: 2396-2405
    
    44. Fikri E Y, Helge K, Besma B A, Natalija H, Alfred P, Anke B, Jerome G, Tatiana V, Clare G, Andreas N, Laurence G, Pascal G. Expression Profiling in Medicago truncatula Identifies More Than 750 Genes Differentially Expressed during Nodulation, Including Many Potential Regulators of the Symbiotic Program. Plant Physiology, 2004, 10(136): 3159-3176
    
    45. Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811
    
    46. Frugier F, Kosuta S, Murray J D, Crespi M, Szczyglowski K. Cytokinin: Secret agent of symbiosis. Trends Plant Sci, 2008, 13: 115-120
    
    47. Frugier F, Poirier S, Satiat-Jeunemaitre B, Kondorosi A, Crespi M. A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes Dev, 2000, 14: 475-482
    
    48. Fujie M, Nakanishi Y, Murooka Y, Yamada T. AsNODc22, a novel nodulin gene of Astragalus sinicus, encodes a protein that localizes along the cell wall of bacteria-infected cells in a nodule. Plant Cell Physiol, 1998, 39: 846-852
    
    49. Gamas P, Niebel F C, Lescure N, Cullimore J. Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact, 1996, 9: 233-242
    
    50. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker J M, ed., The proteomics protocols handbook. Totowa, N J: Humana Press Inc. 2005, 571-608
    
    51. Gerard P J. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules. Bull Entomol Res, 2001, 91: 149-152
    
    52. Geurts R, Fedorova E, Bisseling T. Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol, 2005, 8: 346-352
    
    53. Giles E D, Oldroyd, Allan-Downie J. Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annu Rev Plant Biol, 2008, 59: 519-546
    
    54. Gray H B, Malmstrom B G, Williams R J P. Copper coordination in blue proteins. J Biol Inorg Chem, 2000, 5(5): 551-559
    
    55. Gronlund M, Gustafsen C, Roussis A, Jensen D, Nielsen L P, Marcker K A, Jensen E O. The Lotus japonicus ndx gene family is involved in nodule function and maintenance. Plant Mol Biol, 2003,52:303-316
    
    56. Groten K, Dutilleul C, van Heerden P D, Vanacker H, Bernard S, Finkemeier I, Dietz K J, Foyer C H. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Lett, 2006, 580: 1269-1276
    
    57. Gucciardo S, Rathbun E A, Shanks M, Jenkyns S, Mak L, Durrant M C, Brewin N J. Epitope tagging of legume root nodule extension modifies protein structure and crosslinking in cell walls of transformed tobacco leaves. Mol Plant-Microbe Interact, 2005, 18: 24-32
    
    58. Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 2004, 7: 465-471
    
    59. Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp, 1999, 41: 95-98
    
    60. Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J, 2000, 21: 351-360
    
    61. Heckmann A B, Lombardo F, Miwa H, Perry J A, Bunnewell S, Parniske M, Wang T L, Downie J A. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol, 2006, 142: 1739-1750
    
    62. Hirsch AM. Developmental biology of legume nodulation. New Phytol, 1992, 122: 211-237
    
    63. Huffman D L, O'Halloran T V. Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem, 2001, 70: 677-701
    
    64. Imaizumi-Anraku H, Kouchi H, Syono K, Akao S, Kawaguchi M. Analysis of ENOD40 expression in alb1, a symbiotic mutant of Lotus japonicus that forms empty nodules with incompletely developed nodule vascular bundles. Mol. Gen. Genet, 2000, 264: 402-410
    
    65. Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Allan-Downie J, Wang T, Sato S, Asamizu E, TabataS, Yoshikawa M, Murooka Y, Wu G J, Kawaguchi M, et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 2005,433: 527-531
    
    66. Jamet A, Sigaud S, Van de Sype G, Puppo A, He'rouart D. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant-Microbe Interact, 2003, 16: 217-225
    
    67. Jones K M, Sharopova N, Lohar D P, Zhang J Q, Vanden Bosch K A, Walker G C. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA, 2008, 105(2): 704-709
    
    68. Kanamori N, Madsen L H, Radutoiu S, Frantescu M, Quistgaard E M H, Miwa H, Downie J A, James E K, Felle H H, Haaning L L, Jensen T H, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA, 2006, 103(2):359-364
    69.Kieselbach T,Bystedt M,ttynds P,Robinson C,Schroder W P.A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen.FEBS Lett,2000,480,271-276
    70.Kirch T,Simon R,Grunewald M,Werr W.The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development.Plant Cell,2003,15:694-705
    71.Kong Z S,Li M N,Yang W Q,Xu W Y,Xue Y B.A novel nuclear-localized CCCH-type zinc finger protein,OsDOS,is involved in delaying leaf senescence in rice(Oryza sativa L).Plant Physiology,2006,141(4):1376-1388
    72.Krusell L,Madsen L H,Sato S,Aubert G,Genua A,Szczyglowski K,Duc G,Kaneko T,Tabata S,de Bruijn F,Pajuelo E,Sandal N,Stougaard J.Shoot control of root development and nodulation is mediated by a receptor like kinase.Nature,2002,420:422-426
    73.Kumagai H,Hakoyama T,Umehara Y,Sato S,Kaneko T,Tabata S,Kouchi H.A novel ankyrin-repeat membrane protein,IGN1,is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus.Plant Physiol,2007,143:1293-1305
    74.Kuppusamy K T,Endre G,Prabhu R,Penmetsa R V,Veereshlingam H,Cook D R,Dickstein R,Vandenbosch K A.LIN,a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections.Plant Physiol,2004,136:3682-3691
    75.Lee H,Hur C G,Oh C J,Kim H B,Pakr S Y,An C S.Analysis of the root nodule-enhanced transcriptome in soybean.Mol Cells,2004,18:53-62
    76.Lei Z,Elmer A M,Watson B S,Dixon R A,Mendes P J,Sumner L W.A 2-DE proteomics reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula.Mol Cell Proteomics,2005,4:1812-1825
    77.Leon J,Royo J,Vancanneyt G,Sanz C,Silkowski H,Griffiths G,Sanchez-Serrano J J.Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production.J Biol Chem,2002,277:416-423
    78.Li C,Schilmiller A L,Liu G,Lee G I,Jayanty S,Sageman C,Vrebalov J,Giovannoni J J,Yagi K,Kobayashi Y,Howe G A.Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato.Plant Cell,2005,17:971-986
    79.Limpens E,Mirabella R,Fedorova E,Franken C,Franssen H,Bisseling T,Geurts R.Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2.Proc Natl Acad Sci USA,2005,102:10375-10380
    80.Liu Z L,Ger M J.Cbanges of Enzyme Activity,During Polen Germination in Maize,and possible Evidence of Lignin Synthesis.J Plant physiol,1997,24:329-335
    81.Li Y X,Zhou L,Li Y G,Chen D S,Tan X J,Lei L,Zhou J C.A nodule-specific plant cysteine proteinase,AsNODF32,is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus.New Phytol,2008,180(1 ):185-192
    82.Lodwig EM,Hosie A H,Bourdes A,Findlay K,Allaway D,Karunakaran R,Downie J A,Poole P S.Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.Nature,2003,422:722-726
    83.Lodwig E M,Leonard M,Marroqui S,Wheeler T R,Findlay K,Downie J A,Poole P S.Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids.Mol Plant Microbe Interact,2005,18:67-74
    84.Lohar D P,Sharopova N,Endre G,Penuela S,Samac D,Town C,Silverstein K A,VandenBosch K A.Transcript analysis of early nodulation events in Medicago truncatula.Plant Physiol,2006,140:221-234
    85.Lombardo F,Heckmann A B,Miwa H,Perry J A,Yano K,Hayashi M,Parniske M,Wang T L,Allan-Downie J.Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth.Mol Plant Microbe Interact,2006,19:1444-1450
    86.Madsen E B,Madsen L H,Radutoiu S,Olbryt M,Rakwalska M,Szczyglowski K,Sato S,Kaneko T,Tabata S,Sandal N,Stougaard J.A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals.Nature,2003,425(6958):569-570
    87.Malek W,Inaba M,Ono H,Kaneko Y,Murooka Y.Competition for Astragalus sinicus root nodule infection between its native microsymbiont Rhizobium huakii bv.Renge B3 and Rhizobium sp.ACMP18 strain,specific for Astragalus cicer.Appl Micro and Biotech,1998,50:261-265
    88.Marcaida M J,Schlarb-Ridley B G,Worrall J A,Wastl J,Evans T J,Bendall D S,Luisi B F,Howe C J.Structure of cytochrome c6A,a novel dithio-cytochrome of Arabidopsis thaliana,and its reactivity with plastocyanin:implications for function.J Mol Biol,2006,360:968-977
    89. Marsch-Martinez N, Greco R, Becker J D, Dixit S, Bergervoet J H, Karaba A, de Folter S, Pereira A. BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol Biol, 2006, 62: 825-843
    
    90. Marsh J F, Rakocevic A, Mitra R M, Brocard L, Sun J, Eschstruth A, Long S R, Schultze M, Ratet P, Oldroyd G E. Medicago truncatula NIN is essential for rhizobialindependent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol, 2007, 144: 324-335
    
    91. Mathesius U, Charon C, Rolfe B G, Kondorosi A, Crespi M. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol Plant Microbe Interact, 2000, 13:617-628
    
    92. Matsui H, Nakamura G, Ishiga Y, Toshima H, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products. Mol Gen Genomics, 2004, 271: 1-10
    
    93. Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C. Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue speciWc regulation in seedling development. Plant J, 2000, 21: 199-213
    
    94. Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset A E, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci USA, 2006, 103(13): 5230-5235
    
    95. Middleton P H, Jakab J, Varma-Penmetsa R, Starker C G, Doll J, Kalo P, Prabhu R, Marsh J F, Mitra R M, Kereszt A, Dudas B, Vanden-Bosch K, Long S R, Cook D R, Kiss G B, Oldroyd G E D. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell, 2007, 19: 1221-1234
    
    96. Mithofer A. Suppression of plant defence in rhizobia-legume symbiosis. Trends Plant Sci, 2002, 7: 446-450
    
    97. Miura K, Tomioka Y, Hoshi Y, Suzuki H, Yonezawa M, Hishinuma T, Mizugaki M. The effects of unsaturated fatty acids, oxidizing agents and Michael reaction acceptors on the induction of N-ethylmaleimide reductase in Escherichia coli: possible application for drug design of chemoprotectors.Methods Find Exp Clin Pharmacol,1997,19:147-151
    98.Morandi D,Prado E,Sagan M,Duc G.Characterisation of new symbiotic Medicago truncatula (Gaertn.) mutants,and phenotypic or genotypic complementary information on previously described mutants.Myeorrhiza,2005,15:283-289
    99.Murray J D,Karas B J,Sato S,Tabata S,Amyot L,Szczyglowski K.A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis.Science,2007,315:101-104
    100.Naia M.Molecular cloning and expression analysls of peroxidase gfme from wheat.Plant Mol Biol,1995,29(24):647-662
    101.Naito Y,Fujie M,Usami S,Murooka Y,Yamada T.The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp.rengei.Plant Physiol,2000,124:1087-1096
    102.Nakagawa T,Takane K,Sugimoto T,Izui K,Kouchi H,Hata S.Regulatory regions and nuclear factors involved in nodule enhanced expression of a soybean phosphoenolpyruvate carboxylase gene:implications for molecular evolution.Mol Genet Gen,2003,269:163-172
    103.Nakano T,Suzuki K,Fujimura T,Shinshi H.Genomewide analysis of the ERF gene family in Arabidopsis and rice.Plant Physiol,2006,140:411-432
    104.Nishimura R.,Ohmori M.,Fujita H,Kawaguchi M,A Lotus bZIP protein with a RING-finger motif negatively regulates the developmental program of nodulation.Proc Natl Acad Sci USA,2002a,99:15206-15210105.Nishimura R,Ohmori M,Kawaguchi M.The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus:astray mutant is an early nodulating mutant with wider nodulation zone.Plant Cell Physiol,2002b,43:853-859
    106.Nojiri H,Sugimori M,Yamane H,Nishimura Y,Yamada A,Shibuya N,Kodama O,Murofushi N,Omori T.Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells.Plant Physiol,1996,110:387-392
    107.Nukui N,Ezura H,Minamisawa K.Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primodia.Plant Cell Physiol,2004,45:427-435
    108.Olczak M,Olczak T.Diphosphonucleotide phosphatase/phosphodiesterase from yellow lupin (Lupinus luteus L.) belongs to a novel group of specific metallophosphatases. FEBS Lett, 2002, 519(1-3): 159-163
    
    109. Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep, 2005, 24: 255-265
    
    110. Penmetsa R V, Cook D R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science, 1997, 275: 527-530
    
    111. Pesaresi P, Scharfenberg M, Weigel M, Granlund I, Schroder W P, Finazzi G, Rappaport F, Masiero S, Furini A, Jahns P, Leister D. Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State. Mol Plant, 2009, 2(2): 236-248
    
    112. Prell J, Poole P. Metabolic changes of rhizobia in legume nodules. Trends Microbiol, 2006, 14: 161-168
    
    113. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas M M, Felipe M R, Harrison J, Vanacker H, Foyer C H. Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol, 2005, 165: 683-701
    
    114. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan: protein domains identifier. Nucleic Acids Res, 2005, 33: 116-120
    
    115. Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425: 585-592
    
    116. Radutoiu S, Madsen L H, Madsen E B, Jurkiewicz A, Fukai E, Quistgaard E M H, Albrektsen A S, James E K, Thirup S, Stougaard J. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J, 2007, 26: 3923-3935
    
    117. Ramirez B E, Malmstrom B G, Winkler J R, Gray H B. The currents of life: the terminal electron-transfer complex of respiration. Proc Natl Acad Sci USA, 1995, 92(26): 11949-11951
    
    118. Ramu S K, Peng H M, Cook D R. Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant-Microbe Interact, 2002, 15: 522-528
    
    119. Rensing S A, Lang D, Zimmer A D, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P F, Lindquist E A, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A,Suzuki Y,Hashimoto S I,Yamaguchi K,et al.The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.Science,2008,319:64-69
    120.Riechmann J L,Meyerowitz E M.The AP2/EREBP family of plant transcription factors.Biol Chem,1998,379:633-646
    121.Roudier F,Fedorova E,Lebris M,Lecomte P,Gyorgyey J,Vaubert D,Horvath G,Abad P,Kondorosi A,Kondorosi E.The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplicationassociated developmental programs.Plant Physiol,2003,131:1091-1103
    122.Sandal N,Petersen T R,Murray J,Umehara Y,Karas B,Yano K,Kumagai H,Yoshikawa M,Saito K,Hayashi M,Murakami Y,Wang X Y,Hakoyama T,Imaizumi-Anraku H,Sato S,Kato T,Chen W L,Hossain M S,Shibata S,Wang T L,et al.Genetics of symbiosis in Lotus japonicus:recombinant inbred lines,comparative genetic maps,and map position of 35 symbiotic loci.Mol Plant Microbe Interact,2006,19:80-91
    123.Sanders P M,Lee P Y,Biesgen C,Boone J D,Beals T P,Weiler E W,Goldberg R B.The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway.Plant Cell,2000,12:1041-1061
    124.Santos R,Herouart D,Sigaud S,Touati D,Puppo A.Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction.Mol Plant-Microbe Interact,2001,14:86-89
    125.Sarnighausen E,Karlson D,Ashworth E.Seasonal regulation of a 24-KDa protein from red-osier dogwood.Tree Physiology,2002,22:423-430
    126.Sasaki Y,Asamizu E,Shibata D,Nakamura Y,Kaneko T,Awai K,Amagai M,Kuwata C,Tsugane T,Masuda T,Shimada H,Takamiya K,Ohta H,Tabata S.Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray:self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways.DNA Res,2001,8:53-61
    127.Schaller F,Biesgen C,Mussig C,Altmann T,Weiler E W.12-Oxophytodienoate reductase 3(OPR3) is the isoenzyme involved in jasmonate biosynthesis.Planta,2000,210:979-984
    128.Schaller F,Hennig P,Weiler E W.12-Oxophytodienoate- 10,11-reductase:occurrence of two isozymes of different specificity against stereoisomers of 12-oxophytodienoic acid.Plant Physiol,1998,118:1345-1351
    129. Schaller F, Weiler E W. Molecular cloning and characterization of 12- oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana. Structural and functional relationship to yeast old yellow enzyme. J Biol Chem, 1997, 272:28066-28072
    
    130. Schauser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature, 1999,402: 191-195
    
    131. Schilmiller A L, Howe G A. Systemic signaling in the wound response. Curr Opin Plant Biol, 2005, 8: 369-377
    
    132. Schmitz R J, Hong L, Michaels S, Amasino R M. FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsist haliana. Development, 2005, 132 (24): 5471-5478
    
    133. Schnabel E, Journet E P, de Carvalho-Niebel F, Duc G, Frugoli J. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol, 2005, 58: 809-822
    
    134. Searle I R, Men A E, Laniya T S, Buzas D M, Iturbe-Ormaetxe I, Carroll B J, Gresshoff P M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003,299: 109-112
    
    135. Shaw S L, Long S R. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol, 2003, 131: 976-984
    
    136. Sheokand S, Dahiya P, Vincent J L, Brewin N J. Modified expression of cysteine protease affects seed germination, vegetative growth and nodule development in transgenic lines of Medicago truncatula. Plant Sci, 2005, 169: 966-975
    
    137. Shikanai T, Muller-Moule P, Munekage Y, Niyogi K K, Pilon M. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell, 2003, 15: 1333-1346
    
    138. Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton S W, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J, Gai X, Brendel V, Raph-Schmidt C, Shoop E G, Vielweber C J, Schmatz M, Pape D, Bowers Y, Theising B, Martin J, et al. A compilation of soybean ESTs: generation and analysis. Genome, 2002, 45: 329-338
    
    139. Shosheva A, Donchev A, Dimitrov M, Kostov G, Toromanov G, Getov V, Alexov E. Comparative study of the stability of poplar plastocyanin isoforms. Biochim Biophys Acta, 2005, 1748:116-127
    
    140. Shosheva A, Donchev A, Dimitrov M, Zlatanov I, Toromanov G, Getov V, Alexov E. Experimental and numerical study of the poplar plastocyanin isoforms using Tyr as a probe for electrostatic similarity and dissimilarity. Biochim Biophys Acta, 2004, 1698: 67-75
    
    141. Sijen T, Fleenor J, Simmer F, Thijssen K L, Parrish S, Timmons L, Plasterk R H, Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001, 107: 465-476
    
    142. Simpson T D, Gardner H W. Allene oxide synthase and allene oxide cyclase, enzymes of the jasmonic acid pathway, localized in Glycine max tissues. Plant Physiol, 1995, 108: 199-202
    
    143. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 2005, 308: 1789-1791
    
    144. Sobajima H, Takeda M, Sugimori M, Kobashi N, Kiribuchi K, Cho E M, Akimoto C, Yamaguchi T, Minami E, Shibuya N, Schaller F, Weiler E W, Yoshihara T, Nishida H, Nojiri H, Omori T, Nishiyama M, Yamane H. Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells. Planta, 2003, 216:692-698
    
    145. Spaink H P, Wijfjes A H M, Lugtenbegr B J J. Rhizobium NodI and NodJ porteins Play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol, 1995, 177: 6276-6281
    
    146. Stacey G, McAlvin C B, Kim S Y, Olivares J, Soto M J. Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol, 2006, 141: 1473-1481
    
    147. Starker C G, Parra-Colmenares A L, Smith L, Mitra R M, Long S R. Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol, 2006, 140:671-680
    
    148. Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA, 2000, 97: 10625-10630
    
    149. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 2002, 27: 959-962
    
    150. Strassner J, Schaller F, Frick U B, Howe G A, Weiler E W, Amrhein N, Macheroux P, Schaller A. Characterization and cDNA microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J, 2002, 32: 585-601
    
    151. Sun J, Cardoza V, Mitchell D M, Bright L, Oldroyd G, Harris J M. Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J, 2006, 46: 961-970
    
    152. Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han S Y, Yoshida S, Asami T, Abe M. Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol, 2004, 45: 914-922
    
    153. Takatsuji. Zinc-finger transcription factors in plants. Cell Mol Life Sci, 1998, 54: 582-596
    
    154. Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol, 2005, 139: 1268-1283
    
    155. Tani T, Sobajima H, Okada K, Chujo T, Arimura S I, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H. IdentiWcation of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta, 2008, 27: 517-526
    
    156. Tansengco M L, Hayashi M, Kawaguchi M, Imaizumi-Anraku H, Murooka Y. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus jap onicus. Plant Physiol, 2003, 131: 1054-1063
    
    157. Teillet A, Garcia J, de Billy F, Gherardi M, Huguet T, Barker D G, de Carvalho-Niebel F, Journet E P. api, a novel Medicago truncatula symbiotic mutant impaired in nodule primordium invasion. Mol Plant Microbe Interact, 2008, 21: 535-546
    
    158. Temple S J, Kunjibettu S, Roche D, Sengupta-Gopalan C. Total glutamine synthetase activity during soybean nodule development is controlled at the level of transcription and holoprotein turnover. Plant Physiol, 1996, 112(4): 1723-1733
    
    159. Timmers A C J, Auriac M C, Truchet G. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development. 1999, 126: 3617-3628
    
    160. Tirichine L, Sandal N, Madsen L H, Radutoiu S, Albrektsen A S, Sato S, Asamizu E, Tabata S, Stougaard J.A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis.Science,2007,315:104-107
    161.Vanden-Bosch K A,Stacey G.Summaries of legume genomics projects from around the globe.Community resources for crops and models.Plant Physiol,2003,131:840-865
    162.van de Velde W,Guerra J C,de Keyser A,de Rycke R,Rombauts S,Maunoury N,Mergaert P,Kondorosi E,Holsters M,Goormachtig S.Aging in legume symbiosis.A molecular view on nodule senescence in Medicago truncatula.Plant Physiol,2006,141:711-720
    163.van Kammen A.Suggested nomenclature for plant genes involved in nodulation and symbiosis.Plant Mol Biol Reporter,1984,2:43-45
    164.van Spronsen P C,Bakhuizen R,van Brussel A,Kijne J W.Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process.Eur J Cell Biol,1994,64:88-94
    165.van Spronsen P C,van Brussel A A,Kijne J W.Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa ssp.nigra.Eur J Cell Biol,1995,68:463-469
    166.Veereshlingam H,Haynes J G,Penmetsa R V,Cook D R,Sherrier D J,Dickstein R.nip,a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.Plant Physiol,2004,136:3692-3702.
    167.Vernie T,Moreau S,de Billy F,Plet,J,CombierJ P,Rogers C,Oldroyd G,Frugier F,Niebel A,Gamas P.EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in Medicago truncatula.Plant Cell,2008,20:2696-2713
    168.Wais R J,Galera C,Oldroyd G,Catoira R,Penmetsa R V,Cook D,Gough C,Denarie J,Long S R.Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula.Proc Natl Acad Sci USA,2000,97:13407-13412
    169.Wang W G,Vinocur B,Shoseyov O,Altman A.Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.Trends Plant Sci,2004,9(5):244-252
    170.Weir B S.2008,The current taxonomy of rhizobia.New Zealand rhizobia website.http://www.rhizobia.co.nz/taxonomy/rhizobia.html
    171.Xu S M,Wang X C,Chen J.Zinc finger protein 1(ThZF1) from salt cress(Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress.Plant Cell Rep, 2007, 26:497-506
    
    172. Yang J S, Yuan H L, Wang H X, Chen W X. Purification and characterization of lignin peroxidases from Penicillium decumbens P6. World J Microb Biot, 2005, 21(4): 435-440
    
    173. Yano K, Tansengco M L, Hio T, Higashi K, Murooka Y, Imaizumi-Anraku H, Kawaguchi M, Hayashi M. New nodulation mutants responsible for infection thread development in Lotus japonicus. Mol Plant-Microbe Interact, 2006, 19: 801-810
    
    174. Yu J, Wang J, Lin W, Li S G, Li H, Zhou J, Ni P X, Dong W, Hu S N, Zeng C Q, Zhang J G, Zhang Y, Li R Q, Xu Z Y, Li S T, Li X R, Zheng H K, Cong L J, Lin L, Yin J N, et al. The Genomes of Oryza sativa: a history of duplications. PLoS Biol, 2005, 3(2): e38
    
    175. Zhang Y, Frohman M A. Using Rapid Amplification of cDNA Ends (RACE) to Obtain Full-Length cDNAs. Methods Mol Biol, 1997, 69: 61-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700