转录因子转化丹参发根体系及果糖磷酸酶基因的克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:为深入研究丹参中迷迭香酸代谢途径的调控,通过发根农杆菌介导叶盘法将AtMYB4转化丹参发根体系,进一步研究代谢途径中关键酶基因的关系以及AtMYB4对各基因表达水平的影响;通过对丹参中特异果糖磷酸酶基因的克隆研究,为深入明确丹参中迷迭香酸的生物合成提供依据。
     方法:通过RT-PCR获取转录因子AtMYB4后,构建植物表达载体AtMYB4+pBI121和AtMYB4+pCAMBIA1304+,通过农杆菌菌株C58C1介导叶盘法转化丹参成熟叶片,获得无菌的转基因发根体系。采用实时定量PCR技术对丹参迷迭香酸代谢途径中关键酶编码基因的表达水平进行考察,考察AtMYB4对代谢途径中相关基因表达的影响与调控程度。选用cDNA末端快速扩增法对果糖磷酸酶基因进行克隆,并进行相关生物信息学分析分析。
     结果:AtMYB4转录因子的转入,在不同程度上激活了代谢途径中的关键酶基因的表达,促使内源基因SmPAL、Sm4CL1、Sm4CL2、SmTAT、SmRAS与对照相比,分别提高了1.91倍、2.04倍、2.11倍、1.67倍、1.82倍;并对其旁路途径进行了相应的抑制,SmC4H、SmHPPD、SmHPPR的表达仅为对照的48.5%、65.9%和73.5%。采用cDNA末端快速扩增法,首次从丹参中克隆出特异果糖磷酸酶基因(fructose-bisphosphate aldolase,英文缩写为SmFBA,登录号为FJ 540907);其全长cDNA为1390 bp,包含1065 bp的开放式阅读框并编码355个氨基酸,等电点为5.60、分子量为37.78 kDa。其编码的氨基酸序列与其他物种有较高的同源性。基因组DNA序列显示其含有3个外显子和2个内含子;实时定量PCR分析结果显示其为组成型表达,但在根中表达最高。
     结论:丹参发根体系为利用基因工程手段来提高目标产物的含量提供了平台,本课题采用转录因子AtMYB4调控迷迭香酸代谢途径中关键编码酶基因的表达,结果显示,确实在一定程度上激活了代谢途径并且对旁路途径抑制进行了相应的抑制;其次,果糖磷酸酶基因是糖酵解途径中的关键酶基因,它的成功克隆,为后续研究丹参中糖酵解途径的相关机制和基因间的相互关系提供了前提保证,为进一步研究丹参中的次生代谢途径及重要代谢产物提供理论依据。
Objective: The transcriptional factor AtMYB4 gene was transformed into the hair roots of Salvia miltiorrhiza Bunge to investigate the regulation of AtMYB4 on the metabolism of water-soluble components in S. miltiorrhiza. A novel fructose-bisphosphate aldolase gene was cloned from S. miltiorrhiza by using of rapid amplification of cDNA ends and bioinformatics analysis was performenced.
     Methods: RT-PCR was carried out to abtain AtMYB4, and the plant expression vector AtMYB4 + pBI121 and AtMYB4 + pCAMBIA1304+ were constructed then. Mature leaves of S. miltiorrhiza were used as explants and Agrobacterium-mediated transformated by strain C58C1, followed by co-culture, removing bacteria, liquid ultimately sterile culture of transgenic hairy roots. Applying real-time PCR technique to detect the expression level of the key genes in the rosmarinic acid metabolic pathway and inspect AtMYB4 related metabolic pathways and regulation of gene expression level. By using of rapid amplification of cDNA ends to clone the novel fructose phosphatase gene, and analyzed with the software.
     Results: Danshen phenolic acids are mainly rosmarinic acid and its derivatives as lithospermate B. Two paralle branches initialed the biosynthetic pathway. Integrating AtMYB4 into S. miltiorrhiza hairy root could active the expression of key enzymes in the pathway respectively, promoting endogenous genes PAL, 4CL1, 4CL2, TAT, RAS increased 1.91, 2.04, 2.11, 1.67 and 1.81 times respectively compared with control, and repressed the by path, reducing the expression of C4H, HPPD, HPPR by 48.5%, 5.9% and 73.5%.
     We cloned novel fructose-bisphosphate aldolase gene (designated as SmFBA, GenBank accession number FJ 540907) cloned from S. miltiorrhiza firstly. Its full-length cDNA was 1kb and 390 bp. Both the open reading frame was 1,065 bp and encoded 355 amino acid residues of a protein. The deduced protein had isoelectric point (pI) of 5.60 and a calculated molecular weight of about 37.78 kDa. SmFBA protein had high homology and identity with other plant FBAs. The SmFBA genomic DNA sequence was also obtained, revealing SmFBA had three exons and two introns. Real-time quantitative PCR analysis showed that SmFBA expressed constitutively in all tested organs with the highest expression level in roots.
     Conclusion: The cloning and functional analysis of fructose-bisphosphate aldolase gene will help us to transfer the interrelated genes into S. miltiorrhiza or other model plants and comprehend the metabolic flux in transgenic plant in future. This study helped us to understand EMP pathway, because SmFBA was the key gene in EMP pathway. It could give us a theory and foundation for next study in future.
引文
[1]张惠源,赵润怀.中国中药资源普查[J].医学研究通讯,1999,28(10):16.
    [2]梁文,裕曹雯,王俊,等.生物技术在我国药用植物研究中的应用[J].宁夏农学学院,2003,24(4):92-10.
    [3] Grotewold E, Chamberlin M, Snook M, et al. Engineering secondary metabolism in maize cells ectopic expression of transcription factors [J]. Plant Cell, 1998, 10:721-740.
    [4] Gandikota M, de Kochko A, Chen L, et al. Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance [J]. Mol Breed, 2001, 7(1):73-83.
    [5] Borevitz JO, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12:2383-2393.
    [6]柳丽,张洪泉.丹参活性成分的现代中药药理研究进展[J].中国野生植物资源,2003,22(6):1-4.
    [7] Zhou LM, Zuo Z, Moses S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use [J].J Clin Pharmacol, 2005, 45:1345-1359.
    [8]梁勇,羊裔明,袁淑兰.丹参酮药理作用研究进展[J].中草药,2000,31(4):304.
    [9] Hac Young Chung.丹参药理学[M].国外医学中医中药分册,1988,20:10.
    [10]刘平,刘乃明,徐列明,等.丹参酸乙对四氯化碳体外损伤原代培养大鼠肝细胞的直接保护作用[J].中国中药杂志,1997;22(5):303.
    [11]康永.中药药理学[M].北京:科学出版社,2001.
    [12]雷铁池,朱文元,夏明玉,等.89味中药乙醇提取物对酪氨酸酶活性的上调作用[J].临床皮肤科杂志,1999,28(3):147.
    [13]李世德,张荣良,陈静.丹参酮胶囊治疗痤疮129例疗效观察[J].临床皮肤科杂志, 1999,28(2):107.
    [14]张向荣,潘卫三,胡军.丹参对消化性溃疡的研究概况[J].中草药,2000,31(8):附11.
    [15]张丽红,姚常柏,张秉钧,等.丹参提取物对大鼠胃粘膜再灌注损伤的影响[J].中华医学杂志,1998,78(8):638.
    [16]刘伏友,段绍斌,彭佑铭,等.丹参和硝普钠对腹膜溶质转运的对比研究.中华内科杂志,1999;38 (4):261.
    [17]周文辉.复方丹参滴丸治疗冠心病心绞痛160例疗效观察[J].中华临床医药杂志,2001,13(8):1137.
    [18]安峰,李生棣,刘宪玲.丹参对肝纤维化指标的影响[J].西北药学杂志.2001.16(S):25.
    [19]彭衍琛.复方丹参注射液配合西药治疗急性胰腺炎97例体会[J].实用医技杂志,2004,11 (12):2657-2658.
    [20]张小灵,陈密.丹参注射液辅助治疗恶性肿瘤52例[J].中国药业,2006,15(3):64.
    [21]张盘根.复方丹参注射液治疗瘢痕疙瘩34例[J].新中医,2003,35(8):82.
    [22]徐倩,沈亮亮,陈德利.丹参注射液治疗红斑性肢痛病的微循环观察[J].中国新药与临床杂志,2006,25(4):263-265.
    [23]肖春桥,张华香,高洪,等.促进植物细胞培养生产次生代谢物的几种途径[J].武汉化工学院学报,2005, 27(1),28-31.
    [24]赵淑娟,刘涤,胡之壁.植物次生代谢基因工程[J].中国生物工程杂志,2003,(7):52-56.
    [25] Dellapenna D. Plant metabolic engineering [J]. Plant Physiol, 2001, 125: 160-163.
    [26]潘夕春,孙敏,张磊,等.RNA干扰及其在药用植物代谢工程中的应用[J].中草药,2005,36(9):1281-1284.
    [27]何水林,郑金贵,王晓峰,等.植物次生代谢:功能、调控及其基因工程[J].应用与环境生物学报,2002, 8 (5): 558-563.
    [28] Canel C, Lopes-Cardoso M I, Whitmer S, et al. Effects of over-expression of strictosidine synthase and tryptophan decarboxytase on alkaloid production by cell cultures of Catharanthus rosues[J]. Planta,1998, 205: 414-419.
    [29] Allen RS, Millgate AG, Chitty JA, et al. RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy [J]. Nat Biotechnol, 2004, 22 (12): 1559-1566.
    [30]何水林.植保素代谢与植物防御反应[M].广州,广东科技出版社,2002.
    [31]黎莲娘,张均田.丹参及其同属植物的水溶性活性成分[J].医学研究通讯,2001,30 (7): 2-4.
    [32] Ellis BE, Towers GH. The biosynthesis of rosmarinic acid [J]. Biochem J,1970,118: 291-294.
    [33] Petersen M, Hausler E, Karwatzki B, et al. Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth [J]. Planta, 1993, 189(1):10-14.
    [34] Petersen M. Cytochrome P-450-Dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus [J]. Phytochemistry, 1997, 45(6): 1165-1172.
    [35] Razzaque A, Ellis B. Rosmarinic acid production in Coleus cell cultures[J]. Planta ,1997, 137(3): 287-291.
    [36] Petersen M, Hausler E, Meinhard J, et al. The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei [J]. Plant Cell Tiss Org Cul, 1994, 38:171-179.
    [37]赵淑娟.丹参4-香豆酸:辅酶A连接酶家族基因克隆及功能研究[D]:[博士学位论文].上海:上海中医药大学,2003.
    [38]肖莹.丹参酚酸类成分生源合成的调控研究[D]:[硕士学位论文].上海.第二军医大学,2009.
    [39]易博.丹参迷迭香酸代谢略氨酸支路重要基因克隆及调控分析[D]:[硕士学位论文].上海.第二军医大学,2007.
    [40] Ruuska SA, Girke T, Benning C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. Plant Cell, 2002, 14:1191-1206.
    [41] Latchman DS. Eucaryotic Transcription Factors, edn4. San Diego:Academic Press, 2003.
    [42] Goff SA, Klein TM, Roth BA, et al. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues[J]. EMBO J, 1990, 9(8):2517-2522.
    [43] Mahmoud SS, Croteau RB. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase[J]. Proc Natl Acad Sci USA, 2001, 98(15):8915-8920.
    [44] Falco SC, Guida T, Locke M, et al. Transgenic canola and soybean seeds with increased lysine[J]. Nat Biotechnol, 1995, 13:577-582.
    [45] Shewmaker CK, Sheehy JA, Daley M, et al. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects[J]. Plant J, 1999,20(4):401-412.
    [46] Forkmann G, Martens S. Metabolic engineering and application of flavonoids[J]. Curr Opin Biotechnol, 2001,12(2):155-160.
    [47] Chintapakorn Y, Hamill JD. Antisense-mediated downregulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine[J]. Plant Mol Biol, 2003,53(1):87-10534.
    [48] Sato F, Hashimoto T, Hachiya A, et al. Metabolic engineering of plant alkaloid biosynthesis [J]. Proc Natl Acad Sci U. S. A, 2001,98(1):367-372.
    [49] Goossens A, H?kkinen ST, Laakso I, et al. Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures[J]. Plant Physiol, 2003,131:1161-1164.
    [50] Kunze R, Frommer WB, Flügge UI. Metabolic engineering of plants: the role of membrane transport[J]. Metab Eng, 2002,4(1):57-66.
    [51] Shitan N. Involvement of CjMDR1, a plant multidrugresistance- type ATP-binding cassette protein, in alkaloid transport in Coptis japonica[J]. Proc Natl Acad Sci. U. S. A, 2003,100:751-756.
    [52] Decker G, Wanner G, Zenk MH, et al. Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing [J]. Electrophoresis, 2004,21: 3500-3516.
    [53] Yamazaki M, Saito K. Differential display analysis of gene expression in plants[J]. Cell Mol Life Sci, 2002,59(8): 1246-1255.
    [54] Suzuki H, Achnine L, Xu R, et al. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula[J]. Plant J, 2002,32(6):1033-1048.
    [55] Guterman I, Shalit M, Menda N, et al. Rose scent: genomics approach to discovering novel floral fragrance-related genes[J]. Plant Cell, 2002,14: 2325-2338.
    [56] Goossens A, H?kkinen ST, Laakso I, et al. A functional genomics approach toward the understanding of secondary metabolism in plant cells[J]. Proc Natl Acad Sci U. S. A, 2003,100(14): 8595-8600.
    [57] Breyne P, Zabeau M. Genome-wide expression analysis of plant cell cycle modulated genes [J]. Curr Opin Plant Biol, 2001,4(2):136-142.
    [58] [70] Sumner LW, Mendes P, Dixon RA, et al. Plant metabolomics: large-scale phytochemistry in the functional genomics era[J]. Phytochemistry, 2003,62(6): 817-836.
    [59] Goossens A, H?kkinen ST, Laakso I, et al. Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures[J]. Plant Physiol, 2003,131:1161-1164.
    [60] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap [J]. Evolution, 1985, 39(4):783-791.
    [61] Shapiro MB, Senapath YP. RNA splice junctions of different classes of eukaryotes -sequence statistics and functional implications in gene-expression [J]. Nucleic Acids Research,1987,5 (17):7155-7174.
    [62]刘颖,刘娟,陈军峰,等.药用植物次生代谢工程[J].药学实践杂志,2009,27(4):241-244.
    [63] Ste′phanie G, Jocelyne TG, Pratap KP, et al. Hairy root research: recent scenario and exciting prospects [J]. Curr Opin Plant Biol,2006,9(3):341-346.
    [64] Held CA, Stevens J, Livak KJ, et a1. Real-time quantitative PCR[J].Genome Res,1996,6(10):986-994.
    [65] Barrie W, Jason M. Mining and engineering natural-product biosynthetic pathways[J]. Natrue chem Boil,2007,3:379-386.
    [66] Susan CR. Production and engineering of terpenoids in plant cell culture[J]. Natrue chem Boil, 2007,3(7):387-395.
    [67] Effendi L, Weerawat R, Sarah O, et al. Opportunities in metabolic engineering to facilitate scalable alkaloid production[J]. Natrue chem Boil,2009,5: 292-300.
    [68] Kumar S, Tamura K, Jakobsen IB, et al. MEGA2: molecular evolutionary genetics analysis software [J]. Bioinformatics, 2001, 17:1244-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700