Lgr5对胃癌的恶性生物学行为和化疗耐药性的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     胃癌是世界上最常见的恶性肿瘤之一,每年大约有100万新发病例。胃癌在癌症相关性死亡中排在第二位。近年来,尽管胃癌的诊疗技术不断提高,由于胃癌的侵袭和转移,导致其5年生存率仍然低于30%。大量的研究认为肿瘤的侵袭和转移高度依赖于肿瘤细胞的增殖和血管生成,抗血管生成治疗可以使胃癌患者生存获益。此外,在治疗进展期胃癌过程中,术前化疗被广泛应用,因为这种方法可以缩小肿瘤,降低肿瘤的分期,提高肿瘤的切除率,从而改善患者预后。然而,由于化疗耐药性的存在,仅有20%的胃癌患者能够完全或部分缓解。因此,为了提高胃癌的治疗效果,需要寻找与胃癌的侵袭、转移、血管生成和化疗耐药性相关的特异分子并深入研究其调节机制。
     目的
     研究Lgr5在胃癌中的表达情况,分析其与胃癌的侵袭、转移、血管生成、化疗耐药性及预后的关系,并进一步探讨具体作用机制。此外,我们还对接受术前化疗的胃癌患者进行研究,探讨Lgr5在评价化疗效果及判断预后方面的价值。
     方法
     1.收集318例经根治性手术治疗的胃癌患者,进行随访。利用免疫组织化学染色检测Lgr5、MMP2、EphA3、VEGF和CD34在318例胃癌和80例正常胃黏膜组织中的表达。CD34免疫染色用来计数微血管密度(MVD)。通过Western blot方法检测了75例胃癌新鲜组织标本及相对应的癌旁正常组织中Lgr5, MMP2, EphA3和VEGF蛋白表达情况。并对Lgr5与临床病理学特征之间的关系进行了综合分析。
     2.应用qRT-PCR和Western blot技术筛选Lgr5高表达的胃癌细胞株。通过RNA干扰技术敲低胃癌细胞中Lgr5的表达。通过qRT-PCR和Western blot技术分析沉默Lgr5对MMP2,EphA3和VEGFmRNA和蛋白表达的影响。通过MTT实验检测沉默Lgr5基因对胃癌细胞增殖能力的影响。采用Annexin V-FITC/PI双染流式细胞术检测沉默Lgr5对胃癌细胞凋亡的影响。采用Transwell和细胞划痕修复实验观察Lgr5siRNA对胃癌细胞侵袭和迁移能力的影响。利用MTT法和二维凝胶血管生成体外模型探讨Lgr5沉默后的胃癌细胞培养上清液对人脐静脉血管内皮细胞(human umbulical vein endothelia cell,HUVEC)增殖和管状结构形成的影响。
     3.采用MTT法和Annexin V-FITC/PI双染流式细胞技术检测Lgr5siRNA对接受奥沙利铂和5-FU作用的胃癌细胞的存活率和凋亡率。收集68例接受新辅助化疗的胃癌患者石蜡标本。通过免疫组织化学染色方法检测胃癌组织中Lgr5表达情况,并分析其表达与该类患者的临床病理学特征之间的关系。
     结果
     1.免疫组化染色结果显示:Lgr5在胃癌组织中的阳性表达率明显高于正常粘膜组织(P=0.001)。Lgr5阳性率随着侵润深度增加(T分期)而增高(P=0.001),并且与区域淋巴结转移(P=0.001)和远处转移(P=0.001)相关。多因素生存分析显示Lgr5是影响胃癌患者预后的独立因子(P=0.001)。通过Spearman等级相关检验显示Lgr5表达与MMP2、EphA3、VEGF和MVD呈正相关(P=0.001)。对Western blot检测结果行Pearson相关检验也进一步验证这一相关性((Lgr5vsMMP2: P=0.001, r=0.875; Lgr5vs EphA3: P=0.001, r=0.474; Lgr5vs VEGF: P=0.001,r=0.921).
     2. Lgr5在胃癌细胞系AGS中表达量最高。沉默AGS细胞中Lgr5基因可以导致MMP2、EphA3和VEGF表达明显下降(P=0.001)。同时我们还发现沉默Lgr5以后,AGS细胞的增殖、迁徙和迁移能力显著降低(P=0.001),凋亡率显著增高(P=0.001)。Lgr5沉默的胃癌AGS细胞培养液可以抑制HUVEC细胞增殖能力。此外,当利用Lgr5沉默的AGS细胞上清液培养HUVEC时,管状结构形成(2.51±0.19mm/mm2)相比空白对照组(7.34±0.30mm/mm2)和阴性对照组(7.18±0.33mm/mm2)明显减少,差异具有显著性(P=0.001,P=0.001)。
     3.在化疗药物奥沙利铂和5-FU作用下,Lgr5基因沉默的AGS细胞的存活率较空白对照组和阴性对照组明显下降(P=0.001),凋亡率较空白对照组和阴性对照组显著增加(P=0.001)。肿瘤消退情况差的胃癌中Lgr5阳性表达率显著高于肿瘤消退情况好的胃癌(P=0.001)。将化疗前后两组Lgr5表达情况进行配对分析,发现化疗前Lgr5表达较化疗后低(P=0.001)。多因素分析结果显示Lgr5与接受术前化疗的胃癌患者预后相关,可以作为判断预后的独立因子(P=0.039)。
     结论
     1. Lgr5与胃癌的发生发展有关,可以作为判断胃癌侵袭、转移、血管生成情况以及患者预后的参考指标。
     2.沉默Lgr5基因可以有效地抑制胃癌细胞的增殖、侵袭和转移等恶性生物学行为。Lgr5沉默后胃癌AGS细胞培养液可以抑制HUVEC细胞增殖和管状结构形成能力。Lgr5siRNA可以有效抑制β-catenin蛋白、MMP2、EphA3、VEGF mRNA和蛋白的表达。这表明胃癌中Lgr5的表达可以通过激活经典Wnt/β-catenin信号通路,从而促进MMP2、EphA3和VEGFmRNA的转录
     3. Lgr5可以作为预测化疗疗效的有效指标,同时也可以作为独立影响因子来判断接受术前化疗胃癌患者的预后。沉默Lgr5基因以后可以显著降低AGS细胞的化疗耐药性。
     4. Lgr5在胃癌的侵袭、转移和血管生成过程中扮演了重要角色,因此,它可以作为有用的治疗靶点。应用RNA干扰技术沉默Lgr5可以成为一种潜在的胃癌基因治疗的手段。
Background
     Gastric cancer is one of the most frequent malignant tumors in the world. It is thesecond most leading cause of cancer death worldwide. and approximately one millionpatients are diagnosed every year. Although advanced in diagnostic tools andtherapeutic techniques, the5-year survival rate is is still less than30%, because of localinvasion and metastasis, which are known to be the leading biological charcateristics ofgastric cancer. Numerous studies have demonstrated that invasion and metastasis arehighly dependent upon proliferation of tumor cells and angiogenesis, andantiangiogenic therapy could benefit cancer patients. Preoperative chemotherapy hasbeen used in the treatment of locally advanced gastric cancer, because it could shrinkthe tumor and increase the possibility of completely resection. It has been indicated thatthis treatment could significantly improve overall survival in patients with resectablegastric cancer. However, only approximately20%of the patients had complete orsubtotal tumor regression. One of the major obstacles for successful treatment waschemotherapy resistance. Therefore, in order to imporve the therapeutic efficacy ofgastric cancer, searching for specific molecules that associated with invasion, metastasis,angiogenesis and chemotherapy resistance and in-depth study of its regulationmechanism is needed.
     Objective
     To investigated the expression of Lgr5in gastric cancer and effective mechanismsin invasion, metastasis, angiogenesis, chemotherapy resistance and prognosis. Inaddition, we also explored the value of Lgr5as a specific biomarker in predicting tumorpathological response and overall survival in advanced gastric cancer patients treatedwith preoperative chemotherapy.
     Methods
     1. Follow-up was taken among318patients with gastric cancer. Immunohistochemistryfor Lgr5, MMP2, EphA3, VEGF and CD34was performed in318cases of gastriccarcinoma specimens and80distal normal gastric tissues were randomly selected from the318cases of gastric cancer as normal controls. The microvessel density (MVD) wascaculated after CD34staining. Western blot was used to determine the expression ofLgr5, MMP2, EphA3, and VEGF pretein in75cases of fresh gastric carcinoma andmatched normal mucosa tissue. The correlation between Lgr5and clinicopathologicalfeatures was analyzed. The relationships between Lgr5and invasion-related molecule(MMP2) or angiogenesis-related molecules (EphA3, VEGF, CD34) were also examed.
     2. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) andWestern blot was used to screen gastric cancer cell line with high expression of Lgr5.RNA interference (RNAi) technique was employed to knockdown Lgr5expression.Effects of silencing Lgr5on the expression of MMP2, EphA3, and VEGF mRNA andprotern were detected by qRT-PCR and Western blot. Effects of silencing Lgr5on theproliferation, apoptosis, invasive, migration was examed by MTT, Annexin V-FITC/PIflow cytometry, transwell and wound healing scratch assay. Furthermore, the effect ofconditioned medium form supernatant of AGS that was treated with Lgr5RNAi onproliferation and capillary tube formation of human umbulical vein endothelia cell(HUVEC) was investigated by MTT and angiogenesis two-dimensional gel model invitro.
     3. The effect of silencing Lgr5on cell viability and apoptosis of gastric cancer cells,which was treated by two drugs oxaliplatin and5-FU, was investigated by MTT andAnnexin V-FITC/PI flow cytometry method. Immunohistochemistry for Lgr5wasperformed in68cases of gastric cancer samples from the patients treated withpreoperative chemotherapy. The relationship between Lgr5and clinicopathologicalfeatures was analyzed.
     Results
     1. According to immunohistochemistry analysis, Lgr5positive rate was significantlyhigher in gastric carcinoma than that in normal mucosa (all P=0.001). Lgr5expressionwas more frequent in advanced T-stage cancer and was found to correlated withmetastasis in the regional lymph nodes (P=0.001) and distant (P=0.013). Multivariateanalysis using Cox regression showed that Lgr5had an independent effect on survival(P=0.001). Spearman’s correlation test showed that Lgr5was positively correlated withMMP2, EphA3,VEGF, and MVD (All P=0.001). This correlation was also confired bywestern blot analysis according to Pearson’s corretation test (Lgr5vs MMP2: P=0.001,r=0.875; Lgr5vs EphA3: P=0.001, r=0.474; Lgr5vs VEGF: P=0.001, r=0.921).
     2. The expression level of Lgr5was highest in gastric cancer cell line AGS. MMP2,EphA3, VEGF mRNA and protein expression was down-regulated in the Lgr5silenced group than that in control groups(P=0.001). Silencing Lgr5could inhibitproliferation and promote apoptosis in AGS. It also inhibited migration and invasion.When HUVECs stimulated with conditioned medium from Lgr5siRNA-transfectedAGS cells, the proliferation was significantly inhibited (P=0.001). Moreover, tubeformation of HUVEC was significantly decreased (2.51±0.19mm/mm2) compared tothe treatment with regular cell culture medium (RPMI-1640)(7.34±0.30mm/mm2) ormedium from control siRNA-transfected cells (7.18±0.33mm/mm2)(All P=0.001).
     3. The survival rate to Lgr5silenced AGS cells, which was treated by two drugsoxaliplatin or5-FU, was significantly lower compared to the control groups (P=0.001).The results of flow cytometric assay showed that the apoptosis rate of Lgr5silencedAGS cells, which was treated by oxaliplatin or5-FU, was significantly higher comparedto the control groups (P=0.001). The positive rate of Lgr5expression in patients withpoor tumor regression was significantly higher than those in patients with regressedtumor (P=0.001). The correlation between the expression of Lgr5in gastric cancerbefore chemotherapy and after chemotherapy was significantly difference, the Lgr5expression in before chemotherapy tissues is lower than that in after chemotherapytissues. Multivariate analysis was performed using the Cox regression. Lgr5was foundto signifcantly affect the outcome of gastric cancer after preoperative chemotherapyand appeared to be an independent prognostic factor (P=0.039).
     Conclusions
     1. Lgr5was associated with the tumorigenesis and progression of gastric cancer, andcould be used as a potential specific indicator for judging the invasive, metastasis, andangiogenesis state gastric cancer and predicting the prognosis of patients.
     2. Silencing Lgr5could effectively inhibit the malignant biological behavior of gastriccancer, such as proliferation, invision and migration. Conditioned medium from AGSwith Lgr5silenced could significantly supress HUVEC proliferation and decrease thecapillary tube formation of HUVEC. Lgr5siRNA could inhibit β-catenin protein andMMP2, EphA3, VEGF mRNA and protein. This indicated that Lgr5might enhancetumor cell invasion, metastasis and angiogenesis by activating the classic Wnt/β-cateninsignaling and increasing the transcription of MMP2, EphA3and VEGF mRNA.
     3. Lgr5could be used as an predictor for pathological response of gastric cancer patients who undergo preoperative chemotherapy, and also coud be an independentprognostic factor for survival. Silencing of Lgr5could decreased the chemotherapyresistance in AGS cells.
     4. Lgr5may play important roles in invasive, metastasis and angiogenesis of gastriccacner, and thus may be a useful target for therapeutic intervention. Inhibition of Lgr5with siRNA technique coule be a potential gene therapeutic method for gastric cancer.
引文
1. Shah MA, Kelsen DP. Gastric cancer: a primer on the epidemiology and biology ofthe disease and an overview of the medical management of advanced disease. J NatlCompr Canc Netw.2010;8(4):437-447
    2. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics.2002. CA Cancer J Clin.2005;55:74-108.
    3. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin.2011;61(2):69-90.
    4. Chen W, Zheng R, Zhang S, et al. The incidences and mortalities of major cancers inChina,2009. Chin J Cancer.2013;32(3):106-112.
    5. Thun MJ, DeLancey JO, Center MM, et al. The global burden of cancer: prioritiesfor prevention. Carcinogenesis2010;31:100-110.
    6. Samson P, Escovidal L, Yrastorza S, et al. Re-study of gastric cancer: analysis ofoutcome. World J Surg.2002;26:428–433.
    7. Meng F, Dong B, Li H, et al. RNAi-mediated inhibition of Raf-1leads to decreasedangiogenesis and tumor growth in gastric cancer. Cancer Biol Ther.2009;8(2):174-179.
    8. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature.2000;407:249-257.
    9. Bamias A, Dimopoulos MA. Angiogenesis in human cancer: implications in cancertherapy. Eur J Intern Med.2003;14:459-469.
    10. Ruoslahti E. Specialization of tumour vasculature. Nat Rev Cancer.2002;2:83-90.
    11. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. CancerMetastasis Rev.2006;25(1):9-34.
    12. Shim KN, Jung SA, Joo YH, et al. Clinical signifcance of tissue levels of matrixmetalloproteinases and tissue inhibitors of metalloproteinases in gastric cancer. JGastroenterol.2007;42(2):120-128.
    13. Wu ZY, Li JH, Zhan WH, et al. Lymph node micrometastasis and its correlationwith MMP-2expression in gastric carcinoma. World J Gastroenterol.2006;12(18):2941-2944.
    14. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. NatMed.1995;1:27-31.
    15. Zhao XY, Chen L, Li YH, et al. PlexinA1expression in gastric carcinoma and itsrelationship with tumor angiogenesis and proliferation. World J Gastroenterol.2007;13(48):6558-6561.
    16. Wikkinson DG. Multiple roles of EPH receptors and ephrins in neural development.Nat Rev Neurosci.2001;2:155-164.
    17. Dodelet VC, Pasquale EB. Eph receptors and ephrin ligands: embryogenesis totumorigenesis. Oncogene.2000;19:5614-5619.
    18. Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer.Cancer Res.2006;66:2-5.
    19. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cellssecrete a vascular permeabilityfactor that promotes accumulation of ascites fluid. Science.1983;219:983-985.
    20. Jain RK, Duda DG, Clark JW, et al. Lessons from phase III clinical trials onanti-VEGF therapy for cancer. Nat Clin Pract Onco1.2006;3(1):24-40.
    21. Guo X, Ma N, Wang J, et al. Increased p38-MAPK is responsible for chemotherapyresistance in human gastric cancer cells. BMC Cancer.2008;8:375.
    22. Hsu, SY, Nakabayashi K, Nishi S, et al. Activation of orphan receptors by thehormone relaxin. Science.2002;295:671-674.
    23. Kumagai J, Hsu SY, Matsumi H, et al. INSL3/Leydig insulin-like peptide activatesthe LGR8receptor important in testis descent. J Biol Chem.2002;277:31283-31286.
    24. Sudo SJ, Kumagai S, Nishi S, et al. H3relaxin is a specifc ligand for LGR7andactivates the receptor by interacting with both the ectodomain and the exoloop2. JBiol Chem.2003;278:7855-7862.
    25. Van der Flier LG, Sabates-Bellver J, Oving I, et al. The Intestinal Wnt/TCFSignature. Gastroenterology.2007;132(2):628-632.
    26. Segditsas S, Sieber O, Deheragoda M, et al. Putative direct and indirect Wnt targetsidentified through consistent gene expression changes in APC-mutant intestinaladenomas from humans and mice. Hum Mol Genet.2008;17(24):3864-3875.
    27. Yamamoto Y, Sakamoto M, Fujii G, et al. Overexpression of orphanG-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas withbeta-catenin mutations. Hepatology.2003;37(3):528-533.
    28. Carmon KS, Gong X, Lin Q, et al. R-spondins function as ligands of the orphanreceptors LGR4and LGR5to regulate Wnt/beta-catenin signaling. Proc Natl AcadSci U S A.2011;108(28):11452-11457.
    29. Birchmeier W. Stem cells: Orphan receptors find a home. Nature.2011;476(7360):287-288.
    30. Barker N, van Es JH, Kuipers J, et al.Identification of stem cells in small intestineand colon by marker gene Lgr5. Nature.2007;449:1003-1007
    31. Barker N, van Es JH, Jaks V, et al.Very long-term self-renewal of small intestine,colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb SympQuant Biol.2008;73:351-356
    32. Jaks V, Barker N, Kasper M, et al. Lgr5marks cycling, yet long-lived, hair folliclestem cells. Nat Genet.2008;40(11):1291-1299
    33. Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in thestomach and build long-lived gastric units in vitro. Cell Stem Cell.2010;6(1):25-36.
    34. Takahashi H, Ishii H, Nishida N, et al. Significance of Lgr5(+ve) cancer stem cellsin the colon and rectum. Ann Surg Oncol.2011;18(4):1166-1174.
    35. Kemper K, Prasetyanti PR, De Lau W, et al. Monoclonal antibodies against Lgr5identify human colorectal cancer stem cells. Stem Cells.2012;30(11):2378-2386.
    36. McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression oforphan G protein-coupled receptor GPR49in human colon and ovarian primarytumors. Cancer Biol Ther.2006;5(4):419-426.
    37. Becker L, Huang Q, Mashimo H. Lgr5, an intestinal stem cell marker, is abnormallyexpressed in Barrett's esophagus and esophageal adenocarcinoma. Dis Esophagus.2010;23(2):168-174.
    38. Yamamoto Y, Sakamoto M, Fujii G, et al. Overexpression of orphanG-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas withbeta-catenin mutations. Hepatology.2003;37(3):528-533.
    39. Fukuma M, Tanese K, Effendi K, et al. Leucine-rich repeat-containing Gprotein-coupled receptor5regulates epithelial cell phenotype and survival ofhepatocellular carcinoma cells. Exp Cell Res.2013;319(3):113-121.
    40. McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression oforphan G protein-coupled receptor GPR49in human colon and ovarian primarytumors. Cancer Biol Ther.2006;5(4):419-426.
    41. Tanese K, Fukuma M, Yamada T, et al. G-protein-coupled receptor GPR49isup-regulated in basal cell carcinoma and promotes cell proliferation and tumorformation. Am J Pathol.2008;173(3):835-843.
    42. Nakata S, Campos B, Bageritz J, et al. LGR5is a Marker of Poor Prognosis inGlioblastoma and is Required for Survival of Brain Cancer Stem-Like Cells. BrainPathol.2013;23(1):60-72
    43. Easwaran V, Lee SH, Inge L, et al. beta-Catenin regulates vascular endothelialgrowth factor expression in colon cancer. Cancer Res.2003;63(12):3145-3153.
    44. Saigusa S, Inoue Y, Tanaka K, et al. Clinical significance of LGR5and CD44expression in locally advanced rectal cancer after preoperative chemoradiotherapy.Int J Oncol.2012;41(5):1643-1652.
    45. Saigusa S, Inoue Y, Tanaka K, et al. Significant correlation between LKB1andLGR5gene expression and the association with poor recurrence-free survival inrectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol.2012Sep18.[Epub ahead of print]
    46. Corey DR. Chemical modification: the key to clinical application of RNAinterference?. J Clin Invest.2007;117(12):3615-3622.
    47. Agrawal N, Dasaradhi PV, Mohmmed A, et al. RNA interference: biology,mechanism, and applications. Microbiol Mol Biol Rev.2003;67(4):657-685.
    48. van Mil A, Doevendans PA, Sluijter JP. The potential of modulating small RNAactivity in vivo. Mini Rev Med Chem.2009;9(2):235-248.
    1. Matsubara J, Yamada Y, Nakajima TE, et al. Clinical significance of insulin-likegrowth factor type1receptor and epidermal growth factor receptor in patients withadvanced gastric cancer. Oncology.2008;74:76–83.
    2. Wood LD, Calhoun ES, Silliman N, et al. Somatic mutations of GUCY2F, EPHA3,and NTRK3in human cancers. Hum Mutat.2006;27:1060–1061.
    3. Xi HQ, Wu XS, Wei B, et al. Aberrant expression of EphA3in gastric carcinoma:correlation with tumor angiogenesis and survival. J Gastroenterol.2012;47(7):785-794.
    4. Hansen S, Grabau DA, S rensen FB, et al. Vascular grading of angiogenesis:prognostic signifcance in breast cancer. Br J Cancer.2000;82:339–347.
    5. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new signifcant andindependent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst.1992;84:1875–1887.
    6. Chen W, Zheng R, Zhang S, et al. The incidences and mortalities of major cancersin China,2009. Chin J Cancer.2013;32(3):106-112.
    7. Thun MJ, DeLancey JO, Center MM, et al. The global burden of cancer: prioritiesfor prevention. Carcinogenesis.2010;31:100-110.
    8. Carmon KS, Gong X, Lin Q, Thomas A. et al. R-spondins function as ligands of theorphan receptors LGR4and LGR5to regulate Wnt/beta-catenin signaling. ProcNatl Acad Sci U S A.2011;108(28):11452-11457.
    9. Birchmeier W. Stem cells: Orphan receptors find a home. Nature.2011;476(7360):287-288.
    10. Barker N, van Es JH, Kuipers J. et al. Identification of stem cells in small intestineand colon by marker gene Lgr5. Nature.2007;449:1003-1007.
    11. Barker N, van Es JH, Jaks V. et al. Very long-term self-renewal of small intestine,colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb SympQuant Biol.2008;73:351-356
    12. Jaks V, Barker N, Kasper M, et al. Lgr5marks cycling, yet long-lived, hair folliclestem cells. Nat Genet.2008;40(11):1291-1299.
    13. Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in thestomach and build long-lived gastric units in vitro. Cell Stem Cell.2010;6(1):25-36.
    14. Takahashi H, Ishii H, Nishida N, et al. Significance of Lgr5(+ve) cancer stem cellsin the colon and rectum. Ann Surg Oncol.2011;18(4):1166-1174.
    15. Kemper K, Prasetyanti PR, De Lau W, et al. Monoclonal antibodies against Lgr5identify human colorectal cancer stem cells. Stem Cells.2012;30(11):2378-2386.
    16. Takeda K, Kinoshita I, Shimizu Y, et al. Expression of LGR5, an intestinal stem cellmarker, during each stage of colorectal tumorigenesis. Anticancer Res.2011;31(1):263-270.
    17. Simon E, Petke D, B ger C, et al. The spatial distribution of LGR5+cells correlateswith gastric cancer progression. PLoS One.2012;7(4):e35486.
    18. Bu Z, Zheng Z, Zhang L, et al. LGR5is a promising biomarker for patients withstage I and II gastric cancer. Chin J Cancer Res.2013;25(1):79-89.
    19. Becker L, Huang Q, Mashimo H. Lgr5, an intestinal stem cell marker, isabnormally expressed in Barrett's esophagus and esophageal adenocarcinoma. DisEsophagus.2010;23(2):168-174.
    20. Yamamoto Y, Sakamoto M, Fujii G, et al. Overexpression of orphanG-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas withbeta-catenin mutations. Hepatology.2003;37(3):528-533.
    21. Fukuma M, Tanese K, Effendi K, et al. Leucine-rich repeat-containing Gprotein-coupled receptor5regulates epithelial cell phenotype and survival ofhepatocellular carcinoma cells. Exp Cell Res.2013;319(3):113-121.
    22. McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression oforphan G protein-coupled receptor GPR49in human colon and ovarian primarytumors. Cancer Biol Ther.2006;5(4):419-426.
    23. Tanese K, Fukuma M, Yamada T, et al. G-protein-coupled receptor GPR49isup-regulated in basal cell carcinoma and promotes cell proliferation and tumorformation. Am J Pathol.2008;173(3):835-843.
    24. Nakata S, Campos B, Bageritz J, et al. LGR5is a Marker of Poor Prognosis inGlioblastoma and is Required for Survival of Brain Cancer Stem-Like Cells. BrainPathol.2013;23(1):60-72.
    25. Karam SM. Lineage commitment and maturation of epithelial cells in the gut. FrontBiosci.1999;4:D286-D298.
    26. Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin ofintestinal cancer. Nature.2009.457:608-611.
    27. Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of coloncancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl AcadSci U S A.2008;105(36):13427-13432.
    28. Uchida H, Yamazaki K, Fukuma M, et al. Overexpression of leucine-richrepeat-containing G protein-coupled receptor5in colorectal cancer. Cancer Sci.2010;101:1731-1737.
    29. Park WS, Oh RR, Park JY, et al.(1999). Frequent somatic mutations of thebeta-catenin gene in intestinal-type gastric cancer. Cancer Res59:4257–4260.
    30. Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C et al.(2002). beta-Catenin mutation is a frequent cause of Wnt pathway activation ingastric cancer. Cancer Res62:3503–3506.
    31. Tomita H, Yamada Y, Oyama T, Hata K, Hirose Y, Hara A et al.(2007).Development of gastric tumors in Apc(Min/+) mice by the activation of thebeta-catenin/Tcf signaling pathway. Cancer Res67:4079–4087.
    32. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. NatMed1995;1:27-31
    33. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat RevCancer2003;3:401-410
    34. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis.Cancer Metastasis Rev25(1):9–34
    35. Shim KN, Jung SA, Joo YH, Yoo K. Clinical signifcance of tissue levels of matrixmetalloproteinases and tissue inhibitors of metalloproteinases in gastric cancer. JGastroenterol.2007;42(2):120–128.
    36. Wu ZY, Li JH, Zhan WH, et al. Lymph node micrometastasis and its correlationwith MMP-2expression in gastric carcinoma. World J Gastroenterol.2006;12(18):2941–2944.
    37. Alakus H, Grass G, Hennecken J et al. Clinicopathological significance of MMP-2and its specific inhibitor TIMP-2in gastric cancer. Histol Histopathol.2008;23:917–923.
    38. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. NatMed1995;1:27-31
    39. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat RevCancer2003;3:401-410.
    40. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specifcreceptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vasculardevelopment. Genes Dev.1999;13:1055–66.
    41. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cellssecrete a vascular permeabilityfactor that promotes accumulation of ascites fluid. Science (Washington DC)1983;219:983-5.
    42. Rafii, S., Lyden, D., Benezra, R., Hattori, K., and Heissig, B. Vascular andhaematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev.Cancer,2:826–835,2002.
    43. Senger DR, Connolly DT, Van de Water L, Feder J, Dvorak HF. Purifcation andNH2-terminal amino acid sequence of guinea pig tumor-secreted vascularpermeability factors. Cancer Res.1990;50:1774–8.
    44. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfno JJ.Tumor vascular permeability factor stimulates endothe-lial cell growth andangiogenesis. J Clin Invest.1989;84:1470–8.
    45. Hashizume H.Openings between defective endothelial cells explain tumor vesselleakiness. Am J Pathol.2000;156:1363-1380.
    1. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis.CancerMetastasis Rev.2006;25(1):9-34.
    2. Valastyan S, Weinberg RA.Tumor metastasis: molecular insights and evolvingparadigms. Cell.2011;147(2):275-292
    3. Deryugina EI, Quigley JP.Matrix metalloproteinases and tumor metastasis. CancerMetastasis Rev.2006;25(1):9-34
    4. Shim KN, Jung SA, Joo YH, et al. Clinical signifcance of tissue levels of matrixmetalloproteinases and tissue inhibitors of metalloproteinases in gastric cancer. JGastroenterol.2007;42(2):120-–128.
    5. Wu ZY, Li JH, Zhan WH, et al. Lymph node micrometastasis and its correlationwith MMP-2expression in gastric carcinoma. World J Gastroenterol.2006;12(18):2941-2944.
    6. Alakus H, Grass G, Hennecken J. et al. Clinicopathological significance of MMP-2and its specific inhibitor TIMP-2in gastric cancer. Histol Histopathol.2008;23:917-923.
    7. M nig SP, Baldus SE, Hennecken JK, et al. Expression of MMP-2is associated withprogression and lymph node metastasis of gastric carcinoma. Histopathology.2001;39(6):597-602.
    8. Uchida H, Yamazaki K, Fukuma M, et al. Overexpression of leucine-richrepeat-containing G protein-coupled receptor5in colorectal cancer. CancerSci.2010;101:1731-1737.
    9. Fukuma M, Tanese K, Effendi K, et al. Leucine-rich repeat-containing Gprotein-coupled receptor5regulates epithelial cell phenotype and survival ofhepatocellular carcinoma cells. Exp Cell Res.2013;319(3):113-121.
    10. McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression oforphan G protein-coupled receptor GPR49in human colon and ovarian primarytumors. Cancer Biol Ther.2006;5(4):419-426.
    11. Tanese K, Fukuma M, Yamada T, et al. G-protein-coupled receptor GPR49isup-regulated in basal cell carcinoma and promotes cell proliferation and tumorformation. Am J Pathol.2008;173(3):835-43.
    12. Corey DR. Chemical modification: the key to clinical application of RNAinterference?. J Clin Invest.2007;117(12):3615-3622.
    13. Agrawal N, Dasaradhi PV, Mohmmed A, et al. Mukherjee SK.RNA interference:biology, mechanism, and applications. Microbiol Mol Biol Rev.2003Dec;67(4):657-685.
    14. van Mil A, Doevendans PA, Sluijter JP. The potential of modulating small RNAactivity in vivo. Mini Rev Med Chem.2009;9(2):235-248.
    15. Mehlen P, Puisieux A. Metastasis a question of life or death. NatRev Cancer.2006;6(6):449-458.
    16. Festuccia C, Giunciuglio D, Guerra F, et al. Osteoblasts modulate secretion ofurokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9(MMP-9) in human prostate cancer cells promoting migration and matrigel invasion.Oncol Res.1999;11(1):17-31.
    17. Mullen P. The use of Matrigel to facilitate the establishment of human cancer celllines as xenografts. Methods Mol Med.2004;88:287-292.
    18. Carmon KS, Gong X, Lin Q, Thomas A, et al. R-spondins function as ligands of theorphan receptors LGR4and LGR5to regulate Wnt/beta-catenin signaling. Proc NatlAcad Sci U S A.2011;108(28):11452-11457.
    19. Birchmeier W. Stem cells: Orphan receptors find a home. Nature.2011;17;476(7360):287-288.
    20. Planutiene M, Planutis K, Holcombe RF. Lymphoid enhancer-binding factor1, arepresentative of vertebrate-specific Lef1/Tcf1sub-family, is a Wnt-beta-cateninpathway target gene in human endothelial cells which regulates matrixmetalloproteinase-2expression and promotes endothelial cell invasion. Vasc Cell.2011;3:28.
    1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. NatMed.1995;1:27-31
    2. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer.2003;3:401-410
    3. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specifcreceptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vasculardevelopment. Genes Dev.1999;13:1055-1066.
    4. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cellssecrete a vascular permeabilityfactor that promotes accumulation of ascites fluid. Science.1983;219:983-985.
    5. Rafii S, Lyden D, Benezra R, et al. Vascular and haematopoietic stem cells: noveltargets for anti-angiogenesis therapy?. Nat Rev Cancer.2002;2:826-835.
    6. Senger DR, Connolly DT, Van de Water L, et al. Purifcation and NH2-terminalamino acid sequence of guinea pig tumor-secreted vascular permeability factors.Cancer Res.1990;50:1774-1778.
    7. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factorstimulates endothe lial cell growth and angiogenesis. J Clin Invest.1989;84:1470-1478
    8. Holder N, Klein R. Eph receptors and ephrins: effectors of morphogenesis.Development.1999;126:2033-2044.
    9. Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer.Cytokine Growth Factor Rev.2004;15:419-433.
    10. Heroult M, Schaffner F, Augustin HG. Eph receptor and ephrin ligand-mediatedinteractions during angiogenesis and tumor progression. Exp Cell Res.2006;312:642-650.
    11. Brantley DM, Cheng N, Thompson EJ, et al. Soluble Eph A receptors inhibittumor angiogenesis and progression in vivo. Oncogene.2002;21(46):7011-7026.
    12. Cheng N, Brantley D, Fang WB, et al. Inhibition of VEGF-dependent multistagecarcinogenesis by soluble EphA receptors. Neoplasia.2003;5(5):445-456.
    13. Easwaran V, Lee SH, Inge L, et al. beta-Catenin regulates vascular endothelialgrowth factor expression in colon cancer. Cancer Res.2003;63(12):3145-3153.
    14. Carmon KS, Gong X, Lin Q, et al. R-spondins function as ligands of the orphanreceptors LGR4and LGR5to regulate Wnt/beta-catenin signaling. Proc Natl AcadSci U S A.2011;108(28):11452-11457.
    15. Birchmeier W. Stem cells: Orphan receptors find a home. Nature.2011;17;476(7360):287-288.
    16. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switchduring tumorigenesis.Cell.1996;86(3):353-364.
    17. Ribatti D,.Nico B, Crivellato E, et al. The history of the angiogenic switch concept.Leukemia.2007;21(1):44-52.
    18. Klagsbrun M, D'Amore PA. Vascular endothelial growth factor and its receptors.Cytokine Growth Factor Rev.1996;7(3):259-270.
    19. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway intumor growth and angiogenesis. J Clin Onco1.2005;23(5):1011-1027.
    20. Janes PW, Adikari S, Lackmann M. Eph/ephrin signalling and function inoncogenesis: lessons from embryonic development. Current Cancer Drug Targets.2008;8(6):473-489.
    21. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling andbeyond. Nat Rev Cancer.2010;10:165-180.
    22. Ogawa K, Pasqualini R, Lindberg RA, et al. The ephrin-A1ligand and its receptor,EphA2, are expressed during tumor neovascularization. Oncogene.2000;19:6043–6052.
    23. Xi HQ, Wu XS, Wei B, Chen L.Eph receptors and ephrins as targets for cancertherapy.J Cell Mol Med.2012Dec;16(12):2894-2909.
    24. Cheng N, Brantley D, Fang WB, Liu H, Fanslow W, Cerretti DP, Bussell KN, ReithA, Jackson D, Chen J.Inhibition of VEGF-dependent multistage carcinogenesis bysoluble EphA receptors. Neoplasia.2003;5(5):445-456.
    25. Xi HQ, Wu XS, Wei B, Chen L.Aberrant expression of EphA3in gastric carcinoma:correlation with tumor angiogenesis and survival.J Gastroenterol.2012;47(7):785-794.
    26. Schnaper HW, Kleinman HK, Grant DS. Role of laminin in endothelial cellrecognition and differentiation. Kidney Int.1993;43(1):20-25.
    27. Vailhé B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis.Lab Invest.2001;81(4):439-452.
    28. Kubota Y, Kleinman HK, Martin GR, et al. Role of laminin and basement membranein the morphological differentiation of human endothelial cells into capillary-likestructures. J Cell Biol.1988;107(4):1589-1598.
    29. Manoussaki D, Lubkin SR, Vernon RB, et al. A mechanical model for the fomationof vascular networks in vitro. Acta Biotheor. l996;44(3-4):27l-282.
    1. Cunningham D, Allum WH, Stenning SP, et al. MAGIC Trial Participants:Perioperative chemotherapy versus surgery alone for resectable gastroesophagealcancer. N Engl J Med.2006;355:11–20.
    2. Becker K, Langer R, Reim D, et al. Significance of histopathological tumorregression after neoadjuvant chemotherapy in gastric adenocarcinomas: a summaryof480cases. Ann Surg.2011;253(5):934-939.
    3. Teft WA, Mansell SE, Kim RB. Endoxifen, the active metabolite of tamoxifen, is asubstrate of the efflux transporter P-glycoprotein (multidrug resistance1). DrugMetab Dispos.2011;39(3):558-562.
    4. Hsu HS, Lin JH, Huang WC, Hsu TW, et al. Chemoresistance of lung cancerstemlike cells depends on activation of Hsp27. Cancer.2011;117(7):1516-1528.
    5. Milas L, Hittelman WN. Cancer stem cells and tumor response to therapy: currentproblems and future prospects. Semin Radiat Oncol.2009;19(2):96-105.
    6. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestineand colon by marker gene Lgr5. Nature.2007;449:1003-1007
    7. Barker N, van Es JH, Jaks V, et al. Very long-term self-renewal of small intestine,colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb SympQuant Biol.2008;73:351-356
    8. Jaks V, Barker N, Kasper M, et al. Lgr5marks cycling, yet long-lived, hair folliclestem cells. Nat Genet.2008Nov;40(11):1291-1299.
    9. Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in thestomach and build long-lived gastric units in vitro. Cell Stem Cell.2010;6(1):25-36.
    10. Takahashi H, Ishii H, Nishida N, et al. Significance of Lgr5(+ve) cancer stem cellsin the colon and rectum. Ann Surg Oncol.2011;18(4):1166-1174.
    11. Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of colon cancerstem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A.2008;105(36):13427-13432.
    12. Takeda K, Kinoshita I, Shimizu Y, et al. Expression of LGR5, an intestinal stem cellmarker, during each stage of colorectal tumorigenesis. Anticancer Res.2011;31(1):263-270.
    13. Nakata S, Campos B, Bageritz J, et al. LGR5is a Marker of Poor Prognosis inGlioblastoma and is Required for Survival of Brain Cancer Stem-Like Cells. BrainPathol.2013;23(1):60-72
    14. Saigusa S, Inoue Y, Tanaka K, et al. Clinical significance of LGR5and CD44expression in locally advanced rectal cancer after preoperative chemoradiotherapy.Int J Oncol.2012;41(5):1643-1652.
    15. Saigusa S, Inoue Y, Tanaka K, et al. Significant correlation between LKB1andLGR5gene expression and the association with poor recurrence-free survival inrectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol.2013;139(1):131-138.
    16. Becker K, Mueller JD, Schulmacher C, et al. Histomorphology and grading ofregression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer2003;98:1521–1530.
    17. Guo X, Ma N, Wang J, Song J, et al. Increased p38-MAPK is responsible forchemotherapy resistance in human gastric cancer cells. BMC Cancer.2008;8:375.
    18. Kelsen DP. Adjuvant and neoadjuvant therapy for gastric cancer. Semin Oncol.1996;23(3):379-389.
    19. Ng K, Meyerhardt JA, Fuchs CS.Adjuvant and neoadjuvant approaches in gastriccancer.Cancer J.2007;13(3):168-174.
    20. GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research InternationalCollaboration) Group, Paoletti X, Oba K, et al. Benefit of adjuvant chemotherapyfor resectable gastric cancer: a meta-analysis. JAMA.2010;303(17):1729-1737.
    21. Teodori E, Dei S, Martelli C, et al. The functions and structure of ABC transporters:implications for the design of new inhibitors of Pgp and MRP1to control multidrugresistance (MDR). Curr Drug Targets.2006;7(7):893-909.
    22. Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancerchemotherapy. Pathol Res Pract.1996Jul;192(7):768-780.
    23. Odoux C, Fohrer H, Hoppo T, et al. A stochastic model for cancer stem cell origin inmetastatic colon cancer. Cancer Res.2008;68:6932–6941.
    24. Al-Hajj M. Cancer stem cells and oncology therapeutics. Curr Opin Oncol.2007;19:61-64.
    25. Dirks PB. Cancer: stem cells and brain tumours. Nature.2006;444:687-688.
    26. Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines.Cell Cycle.2004;3:414-415.
    27. Haq R, Zanke B. Inhibition of apoptotic signaling pathways in cancer cells as amechanism of chemotherapy resistance. Cancer Metastasis Rev.1998;17(2):233-239.
    28. Gu L, Findley HW, Zhu N, et al. Endogenous TNFalpha mediates cell survival andchemotherapy resistance by activating the PI3K/Akt pathway in acute lymphoblasticleukemia cells. Leukemia.2006;20(5):900-904.
    29. Mahon KL, Henshall SM, Sutherland RL, et al. Pathways of chemotherapyresistance in castration-resistant prostate cancer. Endocr Relat Cancer.2011;18(4):R103-123.
    30. Cui J, Jiang W, Wang S, et al. Role of Wnt/β-catenin signaling in drug resistance ofpancreatic cancer. Curr Pharm Des.2012;18(17):2464-2671.
    31. Zhang H, Zhang X, Wu X, et al. Interference of Frizzled1(FZD1) reversesmultidrug resistance in breast cancer cells through the Wnt/β-catenin pathway.Cancer Lett.2012;323(1):106-113.
    32. Van der Flier LG, Sabates-Bellver J, Oving I, et al. The intestinal Wnt/TCF signature.Gastroenterology.2007;132:628-632.
    33. Segditsas S, Sieber O, Deheragoda M, et al. Putative direct and indirect Wnt targetsidentified through consistent gene expression changes in APC-mutant intestinaladenomas from humans and mice. Hum Mol Genet.2008;17:3864-3875.
    34. Yamamoto Y, Sakamoto M, Fujii G, et al. Overexpression of orphanG-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas withbeta-catenin mutations. Hepatology.2003;37:528-533.
    35. Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin ofintestinal cancer. Nature.2009;457:608-611.
    36. Fukuma M, Tanese K, Effendi K, et al. Leucine-rich repeat-containing Gprotein-coupled receptor5regulates epithelial cell phenotype and survival ofhepatocellular carcinoma cells. Exp Cell Res.2013;319(3):113-121.
    37. McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression oforphan G protein-coupled receptor GPR49in human colon and ovarian primarytumors. Cancer Biol Ther.2006;5(4):419-426.
    38. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature.2005;434:843-850.
    39. Kanwar SS, Yu Y, Nautiyal J, et al. The Wnt/beta-catenin pathway regulates growthand maintenance of colonospheres. Mol Cancer.2010;9:212.
    40. Carmon KS, Gong X, Lin Q, Thomas A, et al. R-spondins function as ligands of theorphan receptors LGR4and LGR5to regulate Wnt/beta-catenin signaling. Proc NatlAcad Sci U S A.2011;108(28):11452-11457.
    41. Birchmeier W. Stem cells: Orphan receptors find a home. Nature.2011;17;476(7360):287-288.
    42. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biologyand therapeutic targeting. J Clin Oncol.2011;29(5):591-599.
    43. Jain P, Alahari SK. Breast cancer stem cells: a new challenge for breast cancertreatment. Front Biosci.2011;16:1824-1832.
    44. Wang Z, Li Y, Ahmad A, et al. Pancreatic cancer: understanding and overcomingchemoresistance. Nat Rev Gastroenterol Hepatol.2011;8(1):27-33.
    1. Van der Flier LG, Sabates-Bellver J, Oving I, et al. The Intestinal Wnt/TCFSignature. Gastroenterology.2007;132(2):628-632.
    2. Segditsas S, Sieber O, Deheragoda M, et al. Putative direct and indirect Wnt targetsidentified through consistent gene expression changes in APC-mutant intestinaladenomas from humans and mice. Hum Mol Genet.2008;17(24):3864-3875.
    3. Yamamoto Y, Sakamoto M, Fujii G, et al. Overexpression of orphanG-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas withbeta-catenin mutations. Hepatology.2003;37(3):528-533.
    4. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestineand colon by marker gene Lgr5. Nature.2007;449:1003-1007
    5. Barker N, van Es JH, Jaks V, et al. Very long-term self-renewal of small intestine,colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb SympQuant Biol.2008;73:351-356.
    6. Jaks V, Barker N, Kasper M, et al. Lgr5marks cycling, yet long-lived, hair folliclestem cells. Nat Genet.2008;40(11):1291-1299.
    7. Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in thestomach and build long-lived gastric units in vitro. Cell Stem Cell.2010;6(1):25-36.
    8. Takahashi H, Ishii H, Nishida N, et al. Significance of Lgr5(+ve) cancer stem cellsin the colon and rectum. Ann Surg Oncol.2011;18(4):1166-1174.
    9. Kemper K, Prasetyanti PR, De Lau W, et al. Monoclonal antibodies against Lgr5identify human colorectal cancer stem cells. Stem Cells.2012;30(11):2378-2386.
    10. McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression oforphan G protein-coupled receptor GPR49in human colon and ovarian primarytumors. Cancer Biol Ther.2006;5(4):419-426.
    11. Simon E, Petke D, B ger C, et al. The spatial distribution of LGR5+cells correlateswith gastric cancer progression. PLoS One.2012;7(4):e35486.
    12. Bu Z, Zheng Z, Zhang L, Li Z, et al. LGR5is a promising biomarker for patientswith stage I and II gastric cancer.Chin J Cancer Res.2013;25(1):79-89.
    13. Becker L, Huang Q, Mashimo H. Lgr5, an intestinal stem cell marker, isabnormally expressed in Barrett's esophagus and esophageal adenocarcinoma. DisEsophagus.2010;23(2):168-174.
    14. Yamamoto Y, Sakamoto M, Fujii G, et al. Overexpression of orphanG-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas withbeta-catenin mutations. Hepatology.2003;37(3):528-533.
    15. Fukuma M, Tanese K, Effendi K, et al. Leucine-rich repeat-containing Gprotein-coupled receptor5regulates epithelial cell phenotype and survival ofhepatocellular carcinoma cells. Exp Cell Res.2013;319(3):113-121.
    16. McClanahan T, Koseoglu S, Smith K, et al. Identification of overexpression oforphan G protein-coupled receptor GPR49in human colon and ovarian primarytumors. Cancer Biol Ther.2006;5(4):419-426.
    17. Tanese K, Fukuma M, Yamada T, et al. G-protein-coupled receptor GPR49isup-regulated in basal cell carcinoma and promotes cell proliferation and tumorformation. Am J Pathol.2008;173(3):835-843.
    18. Nakata S, Campos B, Bageritz J, et al. LGR5is a Marker of Poor Prognosis inGlioblastoma and is Required for Survival of Brain Cancer Stem-Like Cells. BrainPathol.2013;23(1):60-72.
    19. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals,pitfalls anduncertainties lessons for and from the crypt. Development.1990;110:1001-1020
    20. Montgomery RK, Breault DT. Small intestinal stem cell markers. J Anat.2008;213(1):52-58.
    21. Sato T, Vries R, Snippert H, et al. Single Lgr5stem cells build crypt-villusstructures in vitro without a mesenchymal niche. Nature.2009;469:415-418.
    22. Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5stemcells in intestinal crypts. Nature.2010;459:262-265.
    23. Barker N, Bartfeld S, Clevers H. Tissue-resident adult stem cell populations ofrapidly self-renewing organs. Cell Stem Cell.2010;7:656-670.
    24. Lee ER, Trasler J, Dwivedi S, et al. Division of the mouse gastric mucosa intozymogenic and mucous regions on the basis of gland features. Am J Anat.1982;164:187-207.
    25. Karam SM. Lineage commitment and maturation of epithelial cells in the gut. FrontBiosci.1999;4:286-298.
    26. Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair folliclesfrom adult multipotent stem cells. Cell.2010;104:233-245.
    27. Trempus CS, Morris RJ, Bortner CD, et al. Enrichment for living murinekeratinocytes from the hair follicle bulge with the cell surface marker CD34. JInvest Dermatol.2003;501-511.
    28. Blanpain C, LowryWE, Geoghegan A, et al. Self-renewal, multipotency, and theexistence of two cell populations within an epithelial stem cell niche. Cell.2004;118:635-648.
    29. Morris RJ, Liu Y, Marles L, et al. Capturing and profling adult hair follicle stemcells. Nat Biotechnol.2004;22:411-417.
    30. Tumbar T, Guasch G, Greco V, et al. Defning the epithelial stem cell niche in skin.Science.2004;303:359-363.
    31. Jaks V, Barker N, Kasper M, et al. Lgr5marks cycling, yet long-lived, hair folliclestem cells. Nat Genet.2008;40:1291-1299.
    32. Kasper M, Jaks V, Are A, et al. Wounding enhances epidermal tumorigenesis byrecruiting hair follicle keratinocytes. Proc Natl Acad Sci U S A.2011;108:4099-4104.
    33. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den BornM, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature.2009;457:608-611.
    34. Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of coloncancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl AcadSci U S A.2008;105(36):13427-13432.
    35. Takeda K, Kinoshita I, Shimizu Y, et al. Expression of LGR5, an intestinal stem cellmarker, during each stage of colorectal tumorigenesis. Anticancer Res.2011;31(1):263-270.
    36. Uchida H, Yamazaki K, Fukuma M, et al. Overexpression of leucine-richrepeat-containing G protein-coupled receptor5in colorectal cancer. Cancer Sci.2010;101:1731-1737.
    37. Saigusa S, Inoue Y, Tanaka K, et al. Clinical significance of LGR5and CD44expression in locally advanced rectal cancer after preoperative chemoradiotherapy.Int J Oncol.2012;41(5):1643-1652.
    38. Saigusa S, Inoue Y, Tanaka K, et al. Significant correlation between LKB1andLGR5gene expression and the association with poor recurrence-free survival inrectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol.2013;139(1):131-138.
    39. Park WS, Oh RR, Park JY, et al. Frequent somatic mutations of the beta-cateningene in intestinal-type gastric cancer. Cancer Res.1999;59:4257-4260.
    40. Clements WM, Wang J, Sarnaik A, et al. beta-Catenin mutation is a frequent causeof Wnt pathway activation in gastric cancer. Cancer Res.2002;62:3503-3506.
    41. Tomita H, Yamada Y, Oyama T, et al. Development of gastric tumors in Apc(Min/+)mice by the activation of the beta-catenin/Tcf signaling pathway. Cancer Res.2007;67:4079-4087.
    42. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization oftumorigenic, stem-like neural precursors from human glioblastoma.Cancer Res.2004;64(19):7011-7021.
    43. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cellin human brain tumors. Cancer Res.2003;63(18):5821-5828.
    44. Singh SK, Hawkins C, Clarke ID, et al. Identification of human braintumour initiating cells. Nature.2004;432(7015):396-401.
    45. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer.2006;6(6):425-436.
    46. Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-)glioblastoma-derived cancer stem cells show differential growth characteristics andmolecular profiles. Cancer Res.2007;67(9):4010-4015.
    47. Pollard SM, Yoshikawa K, Clarke ID, et al. Glioma stem cell lines expandedin adherent culture have tumor-specific phenotypes and are suitable forchemical and genetic screens. Cell Stem Cell.2009;4(6):568-580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700