腰椎后路融合术后腰痛患者椎旁肌电生理和肌肉功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,腰部肌肉对于腰椎的稳定和功能具有重要的作用,而腰部椎旁肌(包括最靠近棘突和椎板的多裂肌、位于多裂肌外侧的最长肌和最外侧的髂肋肌)是腰椎后路手术最常涉及的结构。腰椎后路融合手术,目前在临床上应用愈来愈广泛,术中由于要剥离和牵开椎旁肌,不可避免的会损伤肌肉和支配其的神经,造成术后椎旁肌的萎缩和肌力下降。部分术后腰痛的患者,虽然其影像学检查显示减压充分、内固定位置良好、骨融合正常,但仍主诉持续的腰痛和腰部功能障碍。虽然临床上对于椎旁肌肉功能会对手术效果产生重要影响早有共识,但对于融合手术是否成功的判断还主要是基于影像学的结果,对于腰椎术后腰痛患者的神经、肌肉损伤程度如何,腰痛和无腰痛患者在椎旁肌的神经支配、力量和耐力方面是否具有差异,以及这些因素和术后腰痛的关系,目前还缺乏深入的研究。弄清这些问题,不仅能对临床上客观评价腰椎融合术后患者功能状态提供客观依据,还能为治疗这类术后腰痛患者提供理论指导。本研究通过测量比较腰椎后路融合术后腰痛和无痛的两组患者,在多裂肌失神经电位方面是否存在差异,明确术后疼痛和多裂肌失神经状态的关系。此外还通过测量术后患者躯干肌的肌肉力量和耐力,研究两组之间是否存在差异,并进一步分析这些因素之间以及这些因素和术后腰痛之间的相关关系,从而明确椎旁肌电生理和肌肉功能对于术后腰痛的影响。本研究分为两个部分:1、腰椎后路融合术后多裂肌异常自发电位的研究;2、腰椎后路融合术后椎旁肌功能及术后腰痛危险因子的研究。
     第一部分腰椎后路融合术后多裂肌异常自发电位的研究
     目的:通过将腰椎融合术后患者按疼痛程度分为腰痛组和对照组,比较两组患者多裂肌自发电位的数量,明确是否存在统计学差异,并分析自发电位的位置分布规律,明确自发电位产生和腰椎手术的关系。方法:将86名腰椎后路融合术后患者按疼痛程度分为腰痛组和对照组,采用针极肌电图测量其多裂肌中自发电位数量、位置,并比较两组患者在自发电位数量方面的差异,以及自发电位分布和手术区域、内固定区域、椎板开窗的关系。结果:1、腰痛组多裂肌中的异常自发电位分数明显大于对照组,差别有统计学意义。2、所有自发电位均位于手术区域内,手术区域以外的多裂肌中未见自发电位分布。3、腰痛组内固定区域内多裂肌自发电位数量显著高于内固定区域外,差别有统计学意义。4、开窗侧和未开窗侧自发电位分数接近,差异无统计学意义。结论:1、腰椎后路融合术后多裂肌中的自发电位,是由于手术本身所致。2、腰椎后路融合术后腰痛患者多裂肌中,自发电位数量显著多于对照组,提示腰痛患者多裂肌失神经支配明显较对照组严重。
     第二部分腰椎后路融合术后椎旁肌功能及术后腰痛危险因子的研究
     目的:明确腰痛组和对照组患者的躯干肌功能是否存在差异,自发电位数量、躯干肌力量、比值、耐力这些因素对于术后腰痛发病的影响,以及自发电位分数和背伸力量之间的相关关系。方法:测量两组患者躯干背伸和前屈的最大等长收缩肌力并计算比值,采用表面肌电图测量椎旁肌在次最大等长收缩时中位频率的平均下降斜率。比较这些因素在组间的差异,并分析这些因素之间的关系,以及这些因素和术后腰痛之间的关系。结果:1、腰痛组患者躯干背伸力量明显小于对照组,差别有统计学意义。2、腰痛组患者躯干前屈力量和对照组相比,差别无统计学意义。3、在前屈/后伸比值方面,腰痛组患者大于对照组,差别有统计学意义。4、在椎旁肌中位频率的平均下降斜率方面,腰痛组大于对照组,差别有统计学意义。5、自发电位分数和背伸力量与术后腰痛显著相关,自发电位分数是影响术后腰痛的危险因素,背伸力量是术后腰痛的保护性因素。6、随着自发电位分数的增加,背伸力量逐渐减小,两者之间具有负相关。结论:1、腰椎后路融合术后腰痛患者和对照组相比,躯干肌背伸力量显著减弱、前屈/后伸肌力比值明显增高,腰背肌耐力明显下降,而前屈力量无显著性差异。2、自发电位分数和背伸力量成显著负相关,随着自发电位增多,背伸力量逐渐下降。3、自发电位分数和背伸力量与腰椎后路融合术后腰痛显著相关,自发电位分数是影响术后腰痛的危险因素,而背伸力量则是术后腰痛的保护性因素。
During recent decades, posterior lumbar interbody fusion (PLIF) has been performed increasingly. However, the posterior access and the implant's position cause paraspinal muscle damage, which may lead to instability and a reduced capacity. Previous studies have noted over the paraspinal muscle after surgery, including a loss in muscle thickness on computer tomograph, edematous and fatty changes on magnetic resonance imaging. The success of an operation is thus still primarily made conditional on the radiological result, although it is only in the event of substantial correction losses that there is a correlation with occurring pain. Morphological factors (bones, intervertebral discs) are typically blamed for chronic pain syndromes in the literature, while less importance is attached to functional factors (nerves and muscles). The link between postoperative low back pain, denervation of lumbar paraspinal muscle, and the observed changes in muscle functions, such as weakness or fatigue, have not yet been clearly defined. The aims of this study was to follow PLIF patients suffering from postsurgery disability and low back problems (pain group) in everyday tasks by studying muscle EMG and factions changes in lumbar paraspinal muscle and compare them with postoperatively well-improved patients (control group). This study includes two parts. In the first part, the denervation condition of the multifidus in pain group was compared with control group. In the second part, the evaluation was performed by comparing the strength and endurance capacity of the lumbar paraspinal muscle in pain group and in control group as well as link between denervation of paraspinal muscle, muscle functions, and postoperative low back pain was investigated.
     Part one. Denervation of Lumbar Multifidus After Posterior Lumbar Interbody Fusion
     Objective. To determine the effect of posterior lumbar interbody fusion on paraspinal muscle by means of electrophysiological.
     Methods. Of86patients who had undergone PLIF,40patients with good recovery and46patients with poor recovery but no evidence of abnormality on plain film, CT, and MRI were divided into control group and pain group respectively. Postoperative electromyography examination was performed.
     Results. In pain group, the spontaneous activity(consisting of positive waves and fibrillation) in multifidus presented a significant difference when compared with in control group (P<0.01). All spontaneous activity located in surgery region. In pain group, spontaneous activity presented a significantly higher in the fusion segment than in adjacent regions (P<0.01). Spontaneous activity in laminectomy side did not presented a significant difference when campared with in contralateral side (P=0.45)
     Conclusion. This results demonstrated that posterior lumbar interbody fusion resulted in spontaneous activity in multifidus. Denervation condition of multifidus in pain group was much severer than in control group.
     Part two. Performance Changes of the Lumbar Paraspinal Muscle After PLIF and Risk Factors of Postoperative Pain
     Objective. To determine the difference in muscle strength, muscle fatigue between pain group and control group and investigate the link between denervation of paraspinal muscle, muscle functions, and postoperative low back pain.
     Methods. Maximum voluntary isometric contractions strength of trunk extension and flexion as well as flexion/extension strength ratio were investigated on Tergumed lumbar training devices. Concurrent surface electromyograms were detected from paraspinal muscles during sustained isometric contractions at80%MVIC force level of trunk extension. Slope of median frequency(MFs parameters of the EMG power density spectrum were monitored to quantify localized muscle fatigue. The relationship between these factor (spontaneous activity score, muscle strength, flexion/extension strength ratio, MFs) and postoperative low back pain was investigated by the correlation analysis.
     Results. The group with low back pain showed significant lower extension strength than control group(P<0.01). The muscle performance test did not demonstrate a significant difference in flexion strength (P=0.75). Pain group presented a significant higher flexion/extension strength ratio and MFs than control group(P<0.01). Logistic regression analysis revealed that there was positive correlation of postoperative low back pain with spontaneous activity score and negative correlation with extension strength.
     Conclusion. Strength of paraspinal muscles in pain group decreased significantly after PLIF surgery. Denervation of multifidus can influence significantly extension strength and be one risk for postoperative low back pain. Nevertheless, extension strength can be a protect factor for postoperative low back pain.
引文
1 Mayer TG, Vanharanta H, Gatchel RJ, et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine, 1989,14:33-36.
    2 Sihvonen T, Herno A, Paljarvi L, et al. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine,1993,18(5):575-581.
    3 Rantanen J, Hurme M, Falck B, et al. The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine,1993, 18(5):568-574.
    4 Suwa H, Hanakita J, Ohshita N, et al. Postoperative changes in paraspinal muscle thickness after various lumbar back surgery procedures. Neurol Med Chir,2000,40(3):151-154.
    5 Fan S, Hu Z, Zhao F, et al. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion:minimally invasive procedure versus conventional open approach. Eur Spine J,2010,19(2):316-324.
    6 Kuroki H, Tajima N, Kubo S. Clinical results of posterolateral fusion for degenerative lumbar spinal diseases:a follow-up study of more than 10 years. J Orthop Sci,2002,7(3):317-324.
    7 Bradl I, Mori F, Scholle HC, et al. Back muscle activation pattern and spectrum in defined load situations. Pathophysiology,2005,12(4):275-280.
    8 Ward SR, Kim CW, Eng CM, et al. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am,2009,91(1):176-185.8
    9 Nardin RA, Raynor EM, Rutkove SB. Fibrillations in lumbosacral paraspinal muscles of normal subjects. Muscle Nerve,1998,21(10):1347-1349.
    10 Dumitru D, Diaz CA, King JC. Prevalence of denervation in paraspinal and foot intrinsic musculature. Am J Phys Med Rehab,2001,80(7):482-490.
    11 Kim BJ, Date ES, Derby R, et al. Electromyographic technique for lumbar multifidus examination:comparison of previous techniques used to localize the multifidus. Arch Phys Med Rehabil,2005,86(7):1325-1329.
    12 Haig AJ. Paraspinal denervation and the spinal degenerative cascade. Spine J, 2002,2(5):372-380.
    13 Bogduk N. Clinical anatomy of the lumbar spine and sacrum. Edinburgh: Churchill Livingstone.1999,101-125.
    14 Kim BJ, Date ES, Derby R, et al. Electromyographic technique for lumbar multifidus examination:comparison of previous techniques used to localize the multifidus. Arch Phys Med Rehabil,2005,86(7):1325-1329.
    15卢祖能,曾庆杏,李承宴,等.实用肌电图学.北京:人民卫生出版社,2000:460.
    16 Taylor H, McGregor AH, Medhi-Zadeh S, et al.The impact of self-retaining retractors on the paraspinal muscles during posterior spinal surgery. Spine,2002, 27(24):2758-2762.
    17 Dumitru D, Diaz CA, King JC. Prevalence of denervation in paraspinal and foot intrinsic musculature. Am J Phys Med Rehab,2001,80(7):482-490.
    18 MacDonald DA, Moseley GL, Hodges PW. The lumbar multifidus:does the evidence support clinical beliefs? Man Ther,2006,11(4):254-263.
    19 Wallwork TL, Stanton WR, Freke M, et al. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Manual Ther,2009, 14(5):496-500.
    20 Dickx N, Cagnie B, Parlevliet T, et al. The effect of unilateral muscle pain on recruitment of the lumbar multifidus during automatic contraction-an experimental pain study. Man Ther,2010,15(4):364-369.
    1 Geisser ME, Ranavaya M, Haig AJ, et al. A meta-analytic review of surface electromyography among persons with low back pain and normal, healthy controls. J Pain,2005,6:711-726.
    2 Hubley-Kozey CL, Vezina MJ. Differentiating temporal electromyographic waveforms between those with chronic low back pain and healthy controls. Clin Biomech (Bristol, Avon),2002,17:621-629.
    3 Krismer M, van Tulder M. Strategies for prevention and management of musculoskeletal conditions. Low back pain. Best Pract Res Clin Rheumatol, 2007,21:77-91.
    4 Panjabi MM. A hypothesis of chronic back pain:ligament subfailure injuries lead to muscle control dysfunction.2006,15(5):668-676.
    5 Stevens VK, Parlevliet TG, Coorevits PL, et al. The effect of increasing resistance on trunk muscle activity during extension and flexion exercises on training devices. J Electromyogr Kinesiol,2008,18(3):434-445.
    6 Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord,1992,5(4):383-389.
    7 Crisco III JJ, Panjabi MM, Yamamoto I,et al. Euler stability of the human ligamentous lumbar spine-Part Ⅱ:Experiment. Clinical Biomechanics,1992, 7:27-32.
    8 Goel VK, Kong W, Han JS, et al. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine, 1993,18:1531-1541.
    9 Chiang J, Potvint JR. The in vivo dynamic response of the human spine to rapid lateral bend perturbation. Spine,2001,26:1457-1464.
    10 Moseley GL, Hodges PW, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine,2002,27(2):29-36.
    11 Kramer M, Katzmaier P, Eisele R, et al. Surface electromyography-verified muscular damage associated with the open dorsal approach to the lumbar spine. Eur Spine J,2001,10(5):414-420.
    1 North RB, Campbell JN, James CS, et al. Failed back surgery syndrome:5-year follow-up in 102 patients undergoing repeated operation. Neurosurgery,1991, 28(5):685-691.
    2 Wilkinson HA. The Failed Back Surgery Syndrome:Etiology and Therapy,2nd edition. Philadelphia, PA.Harper & Row; 1991.
    3 Law JD, Lehman RA, Kirsch WM. Reoperation after lumbar intervertebral disc surgery.J Neurosurg,1978,48:259-263.
    4 Lehmann TR, LaRocca HS. Repeat lumbar surgery.A review of patients with failure from previous lumbar surgery treated by spinal canal exploration and lumbar spinal fusion. Spine,1981,6:615-619.
    5 Fritzell P, Hagg O, Wessberg P, et al. Swedish Lumbar Spine Study Group.2001 Volvo Award Winner in Clinical Studies:Lumbar fusion versus nonsurgical treatment for chronic low back pain:A multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine,2001,26:2521-2532.
    6 Brox J, Sorenson R, Friis A, et al. Randomized clinical trial of instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine,2003,28:1913-1921.
    7 Brox J, Reikeras O, Nygaard O, et al. Lumbar instrumented fusion compared with cognitive intervention and exercises in patients with chronic back pain after previous surgery for disc herniation:A prospective randomized controlled study. Pain,2006,122:145-155.
    8 Peul WC, van Houwelingen HC, van den Hout WB, et al. Leiden-The Hague Spine Intervention Prognostic Study Group. Surgery versus prolonged conservative treatment for sciatica. N Engl J Med,2007,356:2245-2256.
    9 Peul WC, van den Hout WB, Brand R, et al. Prolonged conservative care versus early surgery in patients with sciatica caused by lumbar disc herniation:Two year results of a randomized control trial. BMJ,2008,336:1355-1358.
    10 Santos ES, Goss DG, Morcom RK, et al. Radiologic assessment of interbody fusion using carbon fibre cages. Spine,2003,28:997-1001.
    11 Hazard RG. Failed back surgery syndrome:surgical and nonsurgical approaches. Clin Orthop Relat Res,2006,443:228-232.
    12 Guzman J, Esmail R, Karjalainen K, et al. Multidisciplinary rehabilitation for chronic low back pain:systematic review. BMJ,2001,322(7301):1511-1516.
    13 Bogduk N, Aprill C, Derby R. Selective nerve root blocks. In:Wilson DJ, ed. Interventionl Radiology of the Musculoskeletal System. London:Edward Arlod;1995:121-132.
    14 Dreyfuss P, Halbrook B, Pauza K, et al. Efficacy and validity of radiofrequency neurotomy for chronic lumbar zygapophysial joint pain. Spine 2000;25: 1270-1277.
    15 Manchikanti L, Pampati S, Cash KA. Making sense of the accuracy of diagnostic lumbar facet joint nerve blocks:An assessment of the implications of 50% relief,80% relief, single block, or controlled diagnostic blocks. Pain Physician,2010,13:133-143.
    16 Shealy CN, Mortimer JT, Res wick JB. Electrical inhibition of pain by stimulation of the dorsal columns:Preliminary clinical report. Anesth Analg, 1967,46:489-91.
    17 Meyerson BA, Linderoth B. Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage,2006,31:S6-12.
    18 Kumar K, Taylor RS, Jacques L, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain:A multicentre randomized controlled trial in patients with failed back surgery syndrome. Pain, 2007,132:179-188.
    19 North RB, Kidd DA, Frrohki F, et al. Spinal cord stimulation versus repeated spine surgery for chronic pain:A randomized control trial. Neurosurgery,2005, 56:98-107.
    20 Krames ES. Intrathecal infusional therapies for intractable pain:Patient management guidelines. J Pain Symptom Manage,1993,8:36-46.
    21 Krames ES. Implantable therapies for pain control:Spinal cord stimulation and intrathecal therapies. Best Pract Res Clin Anaesthesiol,2002,16:619-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700