低维纳米材料的可控制备、表征及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维纳米材料由于他们依赖于形貌和大小而表现出来的独特性质受到广泛关注,纳米技术也被认为是21世纪最具有前途的科研领域。纳米材料的物相、尺寸和颗粒形状等决定其性能和应用,因而其可控制备就显得至关重要。本论文介绍了通过简捷通用的合成方法控制生长并表征了几种具有特殊性能的低维纳米材料,对其性质进行了研究,对其生长机理也进行了相关探讨。
     (1)通过溶胶-凝胶法制备其前驱体,系统研究了硼和铝摩尔比、反应温度等对硼酸铝纳米晶须生长的影响,摸索出了大尺度合成硼酸铝纳米晶须的最优化条件。在最优条件下,我们得到的Al_4B_2O_9纳米晶须直径在50hm左右,长度在1μm左右;得到的Al_(18)B_4O_(33)纳米晶须直径也在50nm左右,长度在1μm左右。
     (2)对硼酸铝纳米棒的热稳定性进行了研究,首次发现硼酸铝纳米棒在水热条件下可以分解生成具有分层结构花状的水合氧化铝(AlOOH)纳米建筑,我们也对其形成机理进行了合理的解释。我们发现在制备三维γ-AlOOH分层次纳米建筑中,Al_4B_2O_9纳米棒起着至关重要的作用:增加反应体系化学能、通过分开γ-AlOOH的成核与生长来控制体系饱和度、为反应体系提供铝源。这种简捷的方法和分开成核与生长的思想,可以延伸为制备其他水合氧化物,为工业化生产提供了可能。
     (3)在研究硼酸铝纳米棒热稳定性的基础上得到线索,首次探索出在水热条件下一个快速大尺度制备纳米水合氧化铝(AlOOH)材料的简捷方法。通过控制反应条件(溶剂、PH值、表面活性剂),大量制备了不同形貌的纳米水合氧化铝(AlOOH)材料,实现了纳米材料的可控生长。这种方法可以延伸为制备其他水合氧化物,且该方法成本低廉,工艺简单,为工业化生产提供了可能。
Low-dimensional nanomaterials have been attracting considerable attention due to their interesting properties dependent on size and shape, and the nanotechnology is also highly desirable in 21th century. Beceause of the composition, dimension and the shape of the nanomaterials play a crucial role in their properties and applications, it is necessary to synthesize morphology- and composition-controlled low-dimensional nanomaterials. In this dissertation, we synthesized some low-dimensional nanostructures by some simple controllable methods. The growth mechanisms have also been discussed.
     1.We have systematically investigated the preparing process of aluminum borate nanowhiskers. According to the synthesis process, we pay much attention to the key effects: the preparation of precursors from sol-gel method, the ratio of Al/B in the precursors, the calcined temperature. Under the optional conditions, The fine Al_4B_2O_9 nanowhiskers with the average diameter of-50 nm and the length of-1um were obtained by the calcination of Al/B-2 xerogel at 1000℃, while the heat treatment at 1100℃for Al/B-1 xerogel gave rise to the Al_(18)B_4O_(33) nanowhiskers with the average diameter of-50 nm and the length of -1μm. A possible growth mechanism was also proposed.
     2. A sophisticated production of 3Dγ-AlOOH (boehmite) hierarchical nanoarchitectures built up of nanostrips has been successfully synthesized. The template/substrate-free and surfactant-free synthetic methodology of hierarchical structures of 1D nanostructures reported in this chapter is a simple, inexpensive, scalable, and mild synthetic process. We have also discussed the thermal stability of the Al_4B_2O_9 nanorods under hydrothermal condition. After that, we obtain the conclusion that the addition of the Al_4B_2O_9 nanorods played a key role in the synthesis of such nanoarchitectures, such as increasing the chemical potential of the solution, control the saturation of the solution to separate the nucleation and growth and supply the Al source continuously. Such a facile method and the idea of control nucleation and growth are applicable to synthesize other metal hydroxide hierarchical nanoarchitectures.
     3. Controlled growth of the nanomaterials was carried out. We catch our clues from the pre-work of our group and my grope about the thermal stability of the Al_4B_2O_9 nanorods under hydrothermal condition, a facile method was firstly proposed to synthesize AlOOH nanomaterials with large yield. According to control the reaction conditions (solution, PH value and surfactant), A100H nanomaterials with various shapes were synthesized. Such a facile, inexpensive, scalable, and mild method was applicable to synthesize other metal hydroxide hierarchical nanoarchitectures.
引文
[1]张立德:牟季美。纳米材料和纳米结构,科学出版社,(2002)
    
    [2]一ノ濑升(日)等著,赵修建等译,超微颗粒导论,武汉工业大学出版社,1991年
    
    [3]H.Gleiter(德)著,崔平;方永;葛庭燧译,纳米材料,原子能出版社,1994年
    
    [4]张中太等。材料工程,2000,3,42-48
    
    [5] Cahn R. w., Nature, 1988, 332 (6160),112-115
    
    [6] Feynman R. P., Engineering and Sxience, 1996, Feb., 22
    
    [7]张立德。纳米材料的发展 J.中国科学基金,1994(3),198-202
    
    [8]Hageued C.; Mayo M.J.,J. Nanostructured Materials, 1993, 3(3), 61-67
    
    [9]殷亚东;张志成。J.化学通报,1998(12),21-24
    
    [10]Shingu P.H.; Huang B.; Hishitani S. B., J.Chem.Rev, 1992(92), 1709-1711
    
    [11]张立德;牟季美。纳米材料学M.沈阳:辽宁科学技术出版社,1994
    
    [12]Izaki K.;Hakkei K.M.,Willey,1988
    
    [13]严东生。J.无机材料学报,1995,10;(1),1-4
    
    [14]徐华蕊:李凤生。J.化工进展,1996(5),29-33
    
    [15]王笃金;吴瑾光。J.化学通报,1995,9,125
    
    [16]Wang Y. ; Andriss; Mchug H.J., J. Chem. Phys, 1990, 92(11), 6927-6939
    
    [17]薛群基:徐康。J.化学进展,2000,12(4),431-446
    
    [18]于淑芳:何生笙。J.化学通报,1998(6),22-26
    
    [19]Iijima S., Nature, 1991, 354, 56-58
    
    [20] Chopra N.G.; Luyken R. J.; Cherrey K.; Crespi V. H.; Cohen M. L.; LouieS. G.; Zettl A., Science, 1995, 269, 966-967
    
    [21]Tenne R.; Homyonfer M.; Feldman Y., Chem. Mater., 1998,10, 3225-3238
    
    [22]Saito Y.; Matsumoto T., Nature, 1998, 392, 237-237
    
    [23]Trentler T. J. ; Hickman K. M.; Goel S. C.; Viano A. M.; Gibbons P. C.; BuhroW. E., Science, 1995, 270,1791-1794
    [24] Morales A. M. ; Lieber C.M., Science, 1998, 279,208-211
    
    [25] Dai H. J. ; Wong E.W. ; Lu Y. Z. ; Fan S.S. ; Lieber C.M., Nature, 1995,375, 769-772
    
    [26] Zhang Y. ; Suenaga K. ; Colliex C. ; Iijima S., Science, 1998, 281, 973-975
    [27] Wang Z. L. ; Dai Z. R. ; Gao R.P; Bai Z. G. ; Gole J. L., Appl. Phys. Lett., 2000, 77, 3349-3351
    
    [28] Pan Z.W. ; Dai Z. R. ; Wang Z.L., Science, 2001, 291,1947-1950
    [29] Shi W. ; Peng H. ; Wang N. ; Li C.P. ; Xu L. ; Lee C.S. ; Kalish R. ; Lee S. T., J. Am. Chem. Soc. 2001,123,11095-11096
    [30] Gibson J. M., Phys. Today, 1997, October, 56
    [31]Matsui S. ; Ochiai Y., Nanotechnology, 1996, 7, 247
    [32] Hong S.H. ; Zhu J. ; Mirkin C.A., Science, 1992, 286, 523
    [33] Daga-ta J. A., Science, 1995, 270,1625
    
    
    [1] Ibrahim I. A.; Mohamed F. A.; Lavernia E., J. Mater. Sci., 1991, 26, 1137.
    
    [2] Wa Y.; Lavernia E., J. Matall. Trans. A, 1992, 23A, 2923.
    
    [3]毕刚;吴人洁;施忠良;卢德宏。宇航材料工艺,1999,3,18
    
    [4] Suganuma K.; Fujita T., J. Mater. Sci. Lett., 1990, 9, 633.
    
    [5]菅沼克昭;藤田辉昭。轻金属,1991,41,270.
    
    [6] Yao L. J.; Fukunaga H., Scripta. Mater., 1997, 36, 1267.
    
    [7] Liaw P. K.; Greggi J. G., J. Mater. Sci., 1987, 22, 1613.
    
    [8] Wada H.; Sakane K.; Kitamura T.; Hata H.; Kambara H., J. Mater, Sci, Lett.1991, 10, 1078.
    
    [9] Hu J.; Fei W. D.; Li C.; Yao C. K., J. Mater. Sci. Lett. 1994, 13, 1797.
    
    [10]Ray S. P., J. Am. Ceram. Soc. 1992, 75, 2605.
    
    [11]Gielisse P. J. ; Forster., Nature, 1962, 195(836), 69.
    
    [12]Ogawa J. Ri Takeoki, JP95, 330499.
    
    [13]赵铭;翟玉春。材料科学与工艺,1998,6(3),81.
    
    [14]隗学礼。材料科学进展,1991,5(3),276.
    
    [15] Cheng C.; Tang C. C.; Ding X. X.; Huang X. T.; Huang Z. X.; Qi S. R.;Hu L.; Li Y. C., Chem, Phys, Lett. 2003, 373, 629.
    
    [16]Ma R. Z.; Bando Y.; Sato T., Appl. Phys. Lett. 2002, 81, 3467.
    
    [17]Yang W. Y.; Xie Z. P.; Ma J. T.; Miao H. Z., J. Am. Ceram. Soc. 2005,88(2), 485.
    
    [18]Li Y.; Chang R. P., Materials Chemistry and Physics, 2006, 97, 23.
    
    [19]Liu Y. M.; Li Q. Q.; Fan S. S., Chem. Phys. Lett. 2003, 375, 632.
    
    [20]Zhang J.; Huang Y.; Lin J.; Ding X. X.; Huang Z. X.; Qi S. R.; Tang C.C, J. Phys. Chem. B, 2005, 109, 13060.
    
    [21] Zhang J.; Lin J.; Song H.S.; Elssfah E. M.; Liu S. J.; Luo J. J.; Ding X. X.; Tang C. C.; Qi S. R., Mater. Lett. 2006, 60, 3292.
    
    [22] Tang C. C.; Elssfah E. M.; Zhang J.; Chen D. F., Nanotechnology, 2006, 17, 2362.
    
    [23] Wagner R. S.; Ellis W. C., Appl. Phys. Lett. 1964, 4, 89.
    
    [24] Morales A. M.; Lieber C. M., Science, 1998, 279, 208.
    
    [25] Dai Z. R.; Pan Z. W.; Wang Z. L., J. Chem. Phys. B, 2002, 106, 902.
    
    [26]Guggilla S.; Manthiram A., Mater. Sci. Eng. B, 1996, 40, 191.
    
    [27] Ray S. P., J. Am. Ceram. Soc. 1992, 75, 3452.
    [1]Huang Y. ; Duan X.F. ; Wei Q.Q. ; Lieber C.M., Science, 2001, 291, 630
    
    [2]Whitesides G.M. ; Grzybowski B., Science, 2002, 295, 2418
    
    [3] Caruso F., Adv. Mater., 2001,13,11
    
    [4]Xu W. ; Akins D.L, Mater. Lett., 2004, 58, 2623
    
    [5]Fang X.S. ; Ye C.H. ; Zhang L.D. ; Xie T., Adv. Mater., 2005,17,1661
    
    [6]Shen G. Z. ; Bando Y. ; Golberg D., Appl. Phys. Lett., 2006, 88,123107
    
    [7]Yan C.L ; Xue D. F., J. Phys. Chem. B, 2006,110,7102
    
    [8]Liu Z.T. ; Fan T.X. ; Zhang D., J. Am. Ceram. Soc., 2006,89, 662
    
    [9]Ota T. ; Imaeda M. ; Takase H. ; Kobayashi M. ; Kinoshita N. ; Hirashita T. ; Miyazaki H. ; Hikichi Y., J. Am. Ceram. Soc., 2000, 83,1521
    [10] Shin Y. ; Liu J. ; Chang J. H. ; Nie Z. ; Exarhos J. G., Adv. Mater., 2001, 13, 728
    
    [11] Pu L. ; Bao X. M. ; Zou J. P. ; Feng D., Angew. Chem. Int. Ed., 2001, 40,1490
    [12] Porrata P. ; Goun E. ; Matsui H., Chem. Mater., 2002,14, 4378
    [13] Liu B. ; Zeng H. C., J. Am. Chem. Soc., 2004,126, 8124
    [14] Liu B. ; Zeng H. C., J. Am. Chem. Soc., 2004,126,16744.
    [15] Zhang Z. P. ; Sun H. P. ; Shao X. Q. ; Li D. F. ; Yu H. D. ; Han M. Y., Adv. Mater., 2005,17,42
    [16] Mao Y.B. ; Kanungo M. ; Benny T.H. ; Wong S. S., J. Phys. Chem. B, 2006, 110,702
    [17] Xu X. Y. ; Wei S. Q. ; Wang H. ; Zhu M. K. ; Yu R. ; Yan H., J. Cryst. Growth, 2006, 292,159
    
    [18] He Q. J. ; Huang Z. L. ; Liu Y. ; Chen W. ; Xu T., Mater. Lett., 2007, 61,141
    [19]Liu X.Y. ; Lim S.W., J. Am. Chem. Soc., 2003,125, 888
    [20] Zhang Z. P. ; Shao X. Q. ; Yu H. D. ; Wang Y. B. ; Han M. Y., Chem. Mater., 2005, 17, 332
    [21] Liu J. P. ; Huang X. T. ; Li Y. Y. ; Sulieman K. M. ; He X. ; Sun F. L., J. Mater. Chem., 2006,16, 4427
    [22]Raybaud P. ; Digne M. ; Iftimie R. ; Wellens W. ; Euzen P. ; Toulboat H., J. catal., 2001, 201, 236
    [23] Nedez C. ; Boitiaux J. P. ; Cameron C. J. ; Didillon B., Langmuir, 1996,12, 3927
    [24] Xue D. S. ; Huang Y. L. ; Ma Y. ; Zhou P. H. ; Niu Z. P. ; Li F. S. ; Job R. ; Fahrner W. R., J. Mater. Sci. Lett., 2003,22,1817
    [25]Music S.; Dragcevic O. ; Popovic S., Mater. Lett., 1999, 40,269
    [26] Lee H. C. ; Kim H. J. ; Chung S. H. ; Lee K. H. ; Lee H. C. ; Lee J. S., J. Am. Chem. Soc., 2003,125, 2882
    [27] Zhu H. Y. ; Gao X. P. ; Song D. Y. ; Bai Y. Q. ; Ringer S. P. ; Gao Z. ; Xi Y. X. ; Martens W. ; Riches J. D. ; Frost R. L., J. Phys. Chem. B, 2004,108,4245
    [28] Zhang J. ; Liu S. J. ; Lin J. ; Song H. S. ; Luo J. J. ; Elssfah E. M. ; Ammar E. ; Huang Y. ; Ding X. X. ; Gao J. M. ; Qi S. R. ; Tang C. C., J. Phys. Chem. B, 2006,110,14249
    
    [29] Zhang J. ; Wei S. Y. ; Lin J. ; Luo J. J. ; Liu S. J. ; Song H. S. ; Elssfah E. M. ; Ding X. X. ; Gao J. M. ; Qi S. R. ; Tang C. C., J. Phys. Chem. B, 2006,110, 21680
    [30] Zhang J. ; Lin J. ; Song H. S. ; Elssfah E.M. ; Liu S. J. ; Luo J. J. ; Ding X. X. ; Tang C. C. ; Qi S. R., Mater. Lett., 2006, 60, 3292
    [31] Alivisatos A. P., Science, 2000, 289, 736
    [32] Zhang J. ; Huang Y. ; Lin J. ; Ding X. X. ; Huang Z. X. ; Qi S. R. ; Tang C. C, J. Phys. Chem. B, 2005,109,13060
    
    [33] Deng Y. ; Wang J. L. ; Zhu K. R. ; Zhang M. S. ; Hong J. M. ; Gu Q. R. ; Yin Z., Mater. Lett., 2005, 59, 3272
    
    [34] Pierre A. C. ; Uhlmann D.R., J. Non-Cryst. Solids, 1986, 82,271
    [35] Hou H. W. ; Xie Y. ; Yang Q. ; Guo Q. X. ; Tan C. R., Nanotechnology, 2005,16, 741
    
    [36] Peng Z. A. ; Peng X. G., J. Am. Chem. Soc., 2001,123,1389
    [37] Wang X. ; Li Y. D., Angew. Chem. Int. Ed., 2002, 41, 4790
    
    
    [1]贡长生;张克立。新型功能材料.北京:化学工业出版社,2001
    
    [2]张立德;牟季美。纳米材料和纳米结构.北京:科学出版社,2001
    
    [3] Huang M.H.; Mao S.; Feick H., Science, 2001, 292, 1897
    
    [4] Peng X.G.; Manna L.; Yang W.D., Nature, 2000, 404, 9
    
    [5] Ahmad T.S.; Wang Z.L.; Green T. C., Science, 1996, 272, 1924
    
    [6]苗建国;李小斌;龚辉辉。轻金属,1997,8,12-16
    
    [7]刘昌华;廖海达;龙翔云。中南民族大学学报(自然科学版),2004,23(1), 18220
    
    [8]王秀峰;王永兰;金志浩。硅酸盐通报,1995,3,25-30
    
    [9]李继光;孙旭东;茹红强。材料研究学报,1998,12(1),105-107
    
    [10]许珂敬。过程工程学报,2003,3(2),186-191
    
    [11]余忠清;赵秦生;张启修。无机材料学报,1994,9(4),475-479
    
    [12]丁安平;饶拴民。有色冶炼,2001,30(3),6-9
    
    [13]付高峰;毕诗文;孙旭东。有色矿冶,2000,16(1),39-41
    
    [14] Cheng H.M.; Ma J.M.; Zhu B. J. Am. Ceram. Soc. 1993, 76, 625-629
    
    [15]赖振宇;徐光亮;陈其。佛山陶瓷,2004,2(85),11-13
    
    [16]陈之战;施尔畏;元如林。中国科学E辑,2003,7(33),589-591
    
    [17]卢瑶;尹衍升;陈守刚。江苏陶瓷,2005,38(1),13-14
    
    [18]吴东辉;施新宇;章忠秀。硅酸盐通报,2004,5,24-28
    
    [19]钟永科;唐国凤;朱万强。功能材料,2003,34(1),86-90
    
    [20] Zhang Z.; Blom D.A.; Gai Z., J. Am.Chem. Soc, 2003, 12(25),7528
    
    [21] Deng Z. X.; Wang C.; Li Y. D., Inorg. Chem, 2002, 41(4), 869
    
    [22] Wei S. Y.; Zhang J.; Elsanousi A.; Lin J.; Shi F. J.; Liu S. J.; Ding X. X.; Gao J.M.; Qi S. R.; Tang C.C., Nanotechnology, 2007, 18, 255605
    
    [23] Zheng D. S.; Yin Z. L.; Zhang W. M. Tan X. J. Sun S. X., Cryst. Growth&Des. 2006,6(8),1733-1735
    
    [24]刘洪波;刘孝恒;江信。材料导报,2003,17(专辑Ⅰ),27
    
    [25]徐燕莉。表面活性剂的功能,北京:化学工业出版社,2000
    
    [26]沈钟;王果庭。胶体与表面化学,北京:化学工业出版社,1997
    
    [27] Li Z.; Xiong Y.; Xie Y., Inorg.Chem. 2003, 42, 8105
    
    [28] Liu J.P.; Huang X. T., J. Solid. State. Chem. 2006, 179, 843-848
    
    [29] Hou H.W.; Xie Y.; Yang Q.; Guo Q.X.; Tan C.R., Nanotechnology, 2005,16, 741
    
    [30] Sun X.M.; Chen X.; Deng Z.X.; Li Y.D., J. Mater. Chem. Phys. 2002, 78,99
    
    [31]Li Y.Y.; Liu J. P.; Jia Z. J., Mater. Lett. 2006, 60, 3586-3590
    
    [32]Jing H.Y.; Li X. L.; Lu Y.; Mai Z.H.; Li M., J. Phys. Chem. B. 2005, 109,2881
    
    [33] Peng Z. A.; Peng X.G., J. Am. Chem. Soc. 2001, 123, 1389
    
    [34] Wang X.; Li Y.D., Angew.Chem. Int. Ed. 2002, 41, 4790

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700