水产品中副溶血性弧菌风险评估基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副溶血性弧菌是一种革兰氏阴性、嗜盐的食源性致病菌,天然存在于世界各地温暖的河口与海洋环境中,可导致伤口感染、败血症、腹泻、头痛和急性胃肠炎。副溶血性弧菌被认为是全球范围内由水产品引起食源性疾病的首要致病菌。副溶血性弧菌食物中毒常因食用被污染的生鲜、未充分煮熟或被交叉污染的水产品引起。在水产品消费日益扩大的今天,需要开展水产品中副溶血性弧菌的风险评估为水产品的质量安全控制提供科学依据和管理参考。本论文从水产品中副溶血性弧菌风险评估基础数据、实证分析及风险控制这三个层面开展了较为系统的研究。首先,研究了不同副溶血性弧菌菌株的最大比生长速率的多样性,建立了副溶血性弧菌的生长预测模型,其次,以本研究所建立的副溶血性弧菌的生长预测模型为基础开展水产品中副溶血性弧菌风险评估,在开展风险评估的基础之上,以风险评估为工具来评价传统调味品对水产品中副溶血性弧菌的风险降低效果,具体研究结果如下:
     第一部分致病性及非致病性副溶血性弧菌在培养基和南美白对虾中的最大比生长速率多样性研究
     1.致病性及非致病性副溶血性弧菌在培养基中的最大比生长速率的差异性分析
     为了建立Bioscreen全自动微生物生长曲线自动分析仪对副溶血性弧菌最大比生长速率的测定方法,并比较15,20和25°C下,9株不同致病性与非致病性副溶血性弧菌菌株在TSB(3%NaCl,pH8.0)中的最大比生长速率之间的差异,为副溶血性弧菌定量风险评估提供数据支撑。应用Bioscreen测定100微孔板中系列梯度稀释的培养液在540nm处的吸光值,并根据10倍梯度稀释培养液中的初始菌浓度,计算各株菌在15,20和25°C下的最大比生长速率。15,20和25°C下,变异系数分别为20.72%,17.5%和15.98%。不同副溶血性弧菌的最大比生长速率之间的差异随着温度的降低而增加,并且致病性基因与副溶血性弧菌在TSB中的最大比生长速率之间并无明显的相关性。
     2.六株不同的致病性及非致病性副溶血性弧菌在南美白对虾中的最大比生长速率差异性研究
     研究了致病性及非致病副溶血性弧菌在37°C下在南美白对虾中的最大比生长速率的差异性。通过对接种在南美白对虾上的副溶血性弧菌进行计数来进行研究。致病性副溶血性弧菌(pathogenic V. parahaemolyticus, pVp)和非致病性副溶血性弧菌(non-pathogenic V. parahaemolyticus, npVp)的最大比生长速率通过三阶段线性模型拟合生长数据而得。含有tdh基因的pVp菌株Vp2,Vp6和Vp16的最大比生长速率分别为1.54,1.68和1.2(log10CFU/g)·h~(-1)。含有trh基因的pVp菌株Vp3和Vp19的最大比生长速率分别为0.9和1.41(log10CFU/g)·h~(-1)。而npVp菌株Vp18菌株的最大比生长速率为0.95(log10CFU/g)·h~(-1)。由此可见,含有tdh基因的pVp比npVp生长得快,但是本研究中的副溶血性弧菌的基因型和最大比生长速率之间并无必然联系。
     3.三株不同致病性副溶血性弧菌在南美白对虾中的最大比生长速率差异性研究
     为了探讨不同致病性副溶血性弧菌在南美白对虾及其他生长基质(培养基和三文鱼)中生长动力学参数的差异。测定了12℃和35℃下,三株pVp(含有tdh基因):ATCC33847、F13、临床分离株(Clinical Vibrio parahaemolyticus strain,CV)在南美白对虾中的生长曲线,采用不同一级模型拟合得出生长动力学参数并与同类研究进行比较。结果显示,Baranyi模型对三株致病性副溶血性弧菌生长曲线的拟合效果最好。通过将本研究结果与同类研究相比可知,血清型为O3:K6的致病性副溶血性弧菌CV在12℃和35℃下在南美白对虾中的μmax均大于同类研究中的pVp在培养基和三文鱼中的μmax。
     第二部分水产品中副溶血性弧菌风险评估的基础数据研究
     1.致病性副溶血性弧菌大流行克隆株O3:K6在南美白对虾中的生长预测模型
     本研究建立并验证了副溶血性弧菌大流行克隆株O3:K6在南美白对虾中的生长预测模型。在12°C至40°C温度范围内,副溶血性弧菌O3:K6菌株的最大比生长速率为0.11至1.47(1/h)。平方根模型可很好地描述最大比生长速率和温度之间的关系。其中最低生长温度为1.0°C。
     2.2008-2011年上海市市售水产品中副溶血性弧菌污染分析
     研究表明,2008-2011年上海市售水产品的平均污染率为10.58%,虾中的副溶血性弧菌检出浓度的几何均值为各类水产品中最高,为3.65MPN/g。建议重点关注和监管上海水产品市场上虾类中的副溶血性弧菌污染、上海市水产品集贸市场的副溶血性弧菌污染,以及确定副溶血性弧菌的重点监测月份为5-10月。
     第三部分水产品中副溶血性弧菌风险评估的实证研究
     1.应用本研究模型进行水产品中副溶血性弧菌的定量风险评估实证研究
     应用本研究建立的不同温度下副溶血性弧菌在南美白对虾中的最大比生长速率预测模型和上海市场上水产品中副溶血性弧菌的污染情况开展风险评估。评估结果为上海市居民因食用污染了致病性副溶血性弧菌的水产品而致病的年患病人数(中位数)为1823人。各影响因素排序依次为:水产品中副溶血性弧菌的污染量>水产品生食比例>贮藏温度>贮藏时间>上海市居民每年食用水产品的份数。
     2.应用FAO/WHO采用的模型及参数进行水产品中副溶血性弧菌的定量风险评估实证研究
     应用FAO/WHO报告的模型及参数进行水产品中副溶血性弧菌的定量风险评估的结果如下:上海市每年因摄入被致病性副溶血性弧菌污染的水产品致病人数平均值为868人,各影响因素排序依次为:水产品中副溶血性弧菌污染量>水产品生食比例>贮藏温度>贮藏时间>生长速率调整系数>上海市居民每年食用水产品的份数>上海市居民每份水产品摄入量,副溶血性弧菌生长速率调整系数及上海市居民每份水产品摄入量与风险大小均呈负相关。
     3.本研究模型与FAO/WHO采用模型进行水产品中副溶血性弧菌风险评估的对比分析
     应用本研究模型与FAO/WHO采用模型进行水产品中副溶血性弧菌风险评估的对比分析发现,两种模型所评估出的上海市居民每年因食用污染了副溶血性弧菌的水产品的致病人数不同,其中应用本研究模型的风险估计值高于FAO/WHO采用的基于牡蛎建立的模型。本研究建议,从食品安全的角度而言,采用本研究建立的模型进行更为保守的风险评估有助于监管部门及相关企业制定更为严格的安全控制措施,基于我国的菌株和水产品所建立致病性副溶血性弧菌的预测模型更为符合我国国情,有助于保障我国的水产品食用安全。
     第四部分气调包装及调味品对水产品中致病性副溶血性弧菌的风险控制研究
     1.气调包装对南美白对虾中副溶血性弧菌大流行克隆株O3:K6的控制效果
     本章的研究目的在于探究4°C贮存条件下,两种气调包装对南美白对虾中副溶血性弧菌大流行克隆O3:K6菌株的风险控制效果。结果显示,低温下贮藏的气调包装的水产品中,副溶血性弧菌的潜在风险较高。
     2.醋和酒对水产品中副溶血性弧菌风险降低效果评价
     以风险评估作为工具来评价醋酒等对水产品中副溶血性弧菌的风险降低效果。其中,白酒对风险降低的效果最好,但也仅可降低41%(中位数)的风险,其他的醋或酒可降低风险的百分数均在20%左右。由此可知,大众观念中认为“喝酒吃海鲜”能确保水产品食用安全的观念是不科学的,本研究建议广大消费者在食用水产品时尽量确保充分加熟、避免生食水产品。
Vibrio parahaemolyticus is a Gram-negative and halophilic human pathogen thatoccurs naturally in marine or estuarine areas and is frequently isolated from aquaticproducts, including shrimp. V. parahaemolyticus can cause wound infections,septicemia, diarrhea, headache and acute gastroenteritis. This pathogen is considered tobe the leading cause of aquatic products-derived illness around the world. The majorityof infections are caused by consumption of contaminated undercooked orcross-contaminated cooked aquatic products. A better understanding of the riskassessmemt of V. parahaemolyticus is needed to support measures to the quality controlof aquatic products as aquatic products consumption becomes more popular. Thepresent study performed systematic research on three aspects, which are the researcheson fundamental data, case study and risk control of risk assessment of V.parahaemolyticus in aquatic products. Firstly, the variability of maximum specificgrowth rate of different V. parahaemolyticus strains was studied and the growthpredictive model of V. parahaemolyticus was established. Secondly, the risk assessmentof V. parahaemolyticus in aquatic products was performed based on the developedmodel in the present study, then taking the risk assessment as a tool to evaluate the riskreduction effect of the traditional flavouring on V. parahaemolyticus in aquatic products.The details are as follows:
     Part1: The variability of specific growth parameters of pathogenic andnon-pathogenic V. parahaemolyticus in broth and Litopenaeus vannamei
     1. The variation between the maximum specific growth rate of pathogenic andnon-pathogenic V. parahaemolyitcus in broth
     In order to develop the determination method for the maximum specific growthrate (μmax) of Vibrio parahaemolyticus (V. parahaemolyticus) using the automoatedturbidimetric system Bioscreen and comparing the variability of μmaxof9different pathogenic and non-pathogenic V. parahaemolyticus strains in TSB (3%NaCl,pH8.0)under15,20and25°C, to provide basic data for quantitative risk assessment of V.parahaemolyticus. Applying Bioscreen to determine OD540of the serially decimallycultures and combing the logarithm of initial bacterial concentrations (log CFU/mL) ofwhich to calculate the μmaxof9strains under15,20and25°C. Under15,20and25°C,coefficient of variation is20.72%,17.5%and15.98%respectively. The variability ofμmaxbetween different V. parahaemolyticus strains increased as temperature decreasedand there is no apparent relation between the maximum specific growth rate of V.parahaemolyticus in TSB and the pathogenic genes of V. parahaemolyticus.
     2. The growth variability of six different pathogenic and non-pathogenic V.parahaemolyticus on Litopenaeus vannamei
     The present research is to study the variability of maximum specific growth rate ofsix pathogenic and non pathogenic V. parahaemolyticus strains on shrimp under37°C.The V. parahaemolyticus counts on inoculated cooked shrimp (Litopenaeus vannamei)was enumerated. The maximum specific growth rate of pathogenic V. parahaemolyticus(pVp) and nonpathogenic V. parahaemolyticus (npVp) were obtained by fitting growthdata to the three-phase linear model. The maximum specific growth rate (μmax) of tdhgene positive (tdh+) pVp Vp2(tdh+/trh-), Vp6(tdh+/trh-), Vp16(tdh+/trh-) was1.54,1.68and1.2(log10CFU/g)·h~(-1)respectively. The μmaxof trh gene positive (trh+) pVp Vp3(tdh-/trh+) and Vp19(tdh-/trh+) was0.9and1.41(log10CFU/g)·h~(-1)respectively, Theμmaxof npVp Vp18(tdh-/trh-) was0.95(log10CFU/g)·h~(-1). It is revealed that tdh+pVpgrow faster than the npVp, but no relationship between the genotype and μmaxwas foundin the present study.
     3. The growth variability of three different pathogenic V. parahaemolyticus onLitopenaeus vannamei.
     In order to study the growth parameters differences of different pathogenic V.parahaemolyticus on Litopenaeus vannamei and other growth matrix (broth andsalmon). The growth curve of ATCC33847, F13and Clinical V. parahaemolyticus strainCV on Litopenaeus vannamei under12and35°C was tested and the growth data wasfitted by different primary models to derive the growth parameters and to compare themwith similar researches. It was revealed that Baranyi model fit the growth data of threepVp well. By comparing with similar researches under12and35the μmaxof pVp CVserotype O3:K6on was higher than the μmaxof pVp in broth and salmon.
     Part2: The research and analysis on the fundamental data required in the riskassessment of V. parahaemolyticus in aquatic products
     1. Modeling the growth of pandemic V. parahaemolyticus O3:K6on Litopenaeusvannamei
     Growth predictive model of pandemic V. parahaemolyticus O3:K6strain onLitopenaeus vannamei was developed and validated. The maximum specific growth rateof this pandemic O3:K6strain ranged from0.11to1.47(1/h) between12°C and40°C.A square root type model was then used to quantify the dependency between thespecific maximum growth rate and temperature and the temperature at which no growthwas observed was1.0°C.
     2. The contamination level analysis of V. parahaemolyticus in aquatic products inShanghai market between2008to2011
     The prevalence and concentration analysis of V. parahaemolyticus in aquaticproducts in Shanghai market shows that the mean prevalence of aquatic products inShanghai is10.58%, the shrimp shows the highest contamination level among variousaquatic products, which is3.65MPN/g. It’s revealed that it should be paid moreattention to shrimp, wholesale aquatic products market and the May to October.
     Part3: The case study about quantitative microbial risk assessment of V.parahaemolyticus in aquatic products
     1. Quantitative microbial risk assessment of V. parahaemolyticus in aquaticproducts applying the predictive model constructed in the present study
     The research in former chapters, the predictive growth model for Vibrioparahaemolyticus in shrimp and the prevalence and concentration data of Vibrioparahaemolyticus in aquatic products in Shanghai market, were applied in the riskassessment. It’s shown that there are1823people will suffer from V. parahamolyticus inaquatic products in Shanghai per year. Among various factors affecting the risk of V.parahaemoyticus, the rank is as follows: the contamination level of Vibrioparahaemolyticus in aquatic products> the ratio of raw/not raw eaten for aquaticproducts> storage temperature> storage time> servings of aquatic products consumedby Shanghai citizen per year.
     2. Quantitative microbial risk assessment of V. parahaemolyticus in aquaticproducts applying the predictive model and parameters used in the FAO/WHO report
     The result derived from the model and parameters from FAO/WHO report are as follows: It’s shown that there are868people will suffer from V. parahamolyticus inaquatic products in Shanghai per year. Among various factors affecting the risk of V.parahaemoyticus, the contamination level of V. parahamolyticus in aquatic products>the ratio of raw/not raw eaten for aquatic products> storage temperature> storagetime> the adjustment factor for maximum specific growth rate> servings of aquaticproducts consumed by Shanghai citizen per year> the amount of consumption perserving. Among this parameters, the adjustment factor for maximum specific growthrate and the amount of consumption per serving. show negative correlation to the risk.
     3. The comparative analysis of the risk assessment of V. parahamolyticus in aquaticproducts using the two different models, the one in the present study and the other onein FAO/WHO report.
     It is revealed from the comparative analysis of the risk assessment of V.parahamolyticus in aquatic products using the two different models, the one in thepresent study and the other one in FAO/WHO report that the number of illness inShanghai caused by V. parahamolyticus contaminated aquatic products is different. Theresult from the present model which is based on the Litopenaeus vannamei is higherthan the FAO/WHO model which is based on the oyster. It’s suggested that, at the pointof guaranteeing food safety, the model constructed in the present study should be usefulto be applied in performing more conservative risk assessment to assist in the foodsafety control measure formulation by regulators to protect people’s health and safety.The predictive model constructed based on local strain and aquatic products could bemore suitable to the situation of China to protect safety of aquatic products.
     Part4: The risk control of modified atmosphere packaging and seasoning on thepathogenic V. parahaemolyticus in aquatic products
     1. The effect of modified atmosphere packaging on pathogenic pandemic clone V.parahaemolyticus O3:K6on Litopenaeus vannamei
     The aim of this chapter is to study the risk control effect of two modifiedatmosphere packaging on V. parahaemolyticus pandemic clone O3:K6on Litopenaeusvannamei under4°C. It’s showed that the risk of V. parahaemolyticus in the modifiedatmosphere package is still high.
     2. The risk reduction effect of vinegar and wine on V. parahaemolyticus in aquaticproducts
     Applying risk assessment as a tool to evaluate the risk reduction effect of vinegar and wine on V. parahaemolyticus in aquatic products. The white spirit shows the bestrisk reduction effect, which can only reduce41%(median). Other vinegar or wine canreduce the risk the percentage of20%. It’s revealed that the common sense “drinkingwine and eating aquatic products” could guarantee the food safety with respect toaquatic products consumption is unscientific. It is suggested for consumers that theaquatic products should be cooked totally and avoid eating raw aquatic products.
引文
[1] Fujino T, Okuno Y, Nakada D, et al. On the bacteriological examination of shirasu food poisoning[J].Med. J. Osaka Univ,1953,4:299-304.
    [2] McCARTER L,Silverman M. Iron regulation of swarmer cell differentiation of Vibrioparahaemolyticus[J]. Journal of bacteriology,1989,171(2):731-736.
    [3] Jay JM, Loessner MJ,Golden DA. Modern food microbiology[M]. Springer.2005.
    [4] Yarbrough ML, Li Y, Kinch LN, et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effectorbinding and downstream signaling[J]. Science Signaling,2009,323(5911):269.
    [5] Ginovart M, Prats C, Portell X, et al. Analysis of the effect of inoculum characteristics on the firststages of a growing yeast population in beer fermentations by means of an individual-basedmodel[J]. Journal of industrial microbiology&biotechnology,2011,38(1):153-165.
    [6] DePaola A, Hopkins L, Peeler J, et al. Incidence of Vibrio parahaemolyticus in US coastal waters andoysters[J]. Applied and environmental microbiology,1990,56(8):2299-2302.
    [7] Makino K, Oshima K, Kurokawa K, et al. Genome sequence of Vibrio parahaemolyticus: apathogenic mechanism distinct from that of V cholerae[J]. The Lancet,2003,361(9359):743-749.
    [8] Nishibuchi M,Kaper JB. Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulencegene acquired by a marine bacterium[J]. Infection and immunity,1995,63(6):2093.
    [9] Jaloustre S, Cornu M, Morelli E, et al. Bayesian modeling of Clostridium perfringens growth inbeef-in-sauce products[J]. Food Microbiology,2011,28(2):311-320.
    [10] Fukui T, Shiraki K, Hamada D, et al. Thermostable direct hemolysin of Vibrio parahaemolyticus is abacterial reversible amyloid toxin[J]. Biochemistry,2005,44(29):9825-9832.
    [11] Sakazaki R, Iwanami S,Fukumi H. STUDIES ON THE ENTEROPATHOGENIC,FACULTATIVELY HALOPHILIC BACTERIA, VIBRIO PARAHAEMOLYTICUS. I.MORPHOLOGICAL, CULTURAL AND BIOCHEMICAL PROPERTIES AND ITSTAXONOMICAL POSITION[J]. Japanese journal of medical science&biology,1963,16:161.
    [12] Okuda J, Ishibashi M, Abbott SL, et al. Analysis of the thermostable direct hemolysin (tdh) gene andthe tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticusisolated on the West Coast of the United States[J]. Journal of clinical microbiology,1997,35(8):1965-1971.
    [13] Cook DW, Bowers JC,DePaola A. Density of total and pathogenic (tdh+) Vibrio parahaemolyticus inAtlantic and Gulf Coast molluscan shellfish at harvest[J]. Journal of Food Protection,2002,65(12):1873-1880.
    [14] Dens EJ, Bernaerts K, Standaert AR, et al. Cell division theory and individual-based modeling ofmicrobial lag: Part II. Modeling lag phenomena induced by temperature shifts[J]. InternationalJournal of Food Microbiology,2005,101(3):319-332.
    [15] Nishibuchi M,Kaper J. Duplication and variation of the thermostable direct haemolysin (tdh) gene inVibrio parahaemolyticus[J]. Molecular microbiology,1990,4(1):87-99.
    [16] Augustin J-C. Challenges in risk assessment and predictive microbiology of foodbornespore-forming bacteria[J]. Food Microbiology,2011,28(2):209-213.
    [17] Honda T, Ni Y,Miwatani T. Purification and characterization of a hemolysin produced by a clinicalisolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to thethermostable direct hemolysin[J]. Infection and immunity,1988,56(4):961-965.
    [18] Lai C-J, Chen S-Y, Lin I, et al. Change of protein profiles in the induction of the viable butnonculturable state of Vibrio parahaemolyticus[J]. International Journal of Food Microbiology,2009,135(2):118-124.
    [19] Tirado M, Clarke R, Jaykus L, et al. Climate change and food safety: a review[J]. Food ResearchInternational,2010,43(7):1745-1765.
    [20] Park K-S, Iida T, Yamaichi Y, et al. Genetic characterization of DNA region containing the trh andure genes of Vibrio parahaemolyticus[J]. Infection and immunity,2000,68(10):5742-5748.
    [21] Xie J, Sun X, Pan Y, et al. Combining basic electrolyzed water pretreatment and mild heat greatlyenhanced the efficacy of acidic electrolyzed water against Vibrio parahaemolyticus on shrimp[J].Food Control,2012,23(2):320-324.
    [22] Daniels NA, MacKinnon L, Bishop R, et al. Vibrio parahaemolyticus infections in the United States,1973–1998[J]. Journal of Infectious Diseases,2000,181(5):1661-1666.
    [23] Wong H-C, Liu S-H, Ku L-W, et al. Characterization of Vibrio parahaemolyticus isolates obtainedfrom foodborne illness outbreaks during1992through1995in Taiwan[J]. Journal of FoodProtection,2000,63(7):900-906.
    [24] Mudoh M, DePaola A, Jones J, et al. Comparison of growth and survival of total and pathogenicVibrio parahaemolyticus in American and Asian oysters. in Vibrios in the EnvironmentInternational Conference.2010.
    [25]刘秀梅,陈艳,王晓英,等.1992~2001年食源性疾病暴发资料分析——国家食源性疾病监测网[J].卫生研究,2004(06):725-727.
    [26] Klontz K, Willisma L, Baldy L, et al. Raw oyster-associated Vibrio infections: linking epidemiologicdata with laboratory testing of oysters obtained from a retail outlet[J]. Journal of food protection,1993,56.
    [27] Commission CA. Draft principles and guidelines for the conduct of microbiological riskassessment[J]. FAO/WHO document CX/FH,1998,97(3).
    [28] Chase E,Harwood VJ. Comparison of the effects of environmental parameters on growth rates ofVibrio vulnificus biotypes I, II, and III by culture and quantitative PCR analysis[J]. Applied andenvironmental microbiology,2011,77(12):4200-4207.
    [29]赵志晶,刘秀梅.食品微生物危险性评估[J].中国食品卫生杂志,2003(04):341-345.
    [30] Iwahori Ji, Yamamoto A, Suzuki H, et al. Quantitative Risk Assessment of Vibrio parahaemolyticusin Finfish: A Model of Raw Horse Mackerel Consumption in Japan[J]. Risk Analysis,2010,30(12):1817-1832.
    [31]高围溦,刘弘,刘诚,等.上海市零售梭子蟹中副溶血性弧菌的污染状况及风险评估[J].中国食品卫生杂志,2010(04):371-374.
    [32]孟娣,水产品中副溶血性弧菌快速检测技术及风险评估研究,2007,中国海洋大学.
    [33] Zimmerman A, DePaola A, Bowers J, et al. Variability of total and pathogenic Vibrioparahaemolyticus densities in northern Gulf of Mexico water and oysters[J]. Applied andenvironmental microbiology,2007,73(23):7589-7596.
    [34] Tunung R, Margaret S, Jeyaletchumi P, et al. Prevalence and quantification of Vibrioparahaemolyticus in raw salad vegetables at retail level[J]. Journal of microbiology andbiotechnology,2010,20(2):391.
    [35]曹慧慧,赵峰,于维森,等.利用MPN-PCR法对国内8个沿海城市零售贝类中副溶血弧菌污染情况研究[J].中国卫生检验杂志,2010(04):723-725+730.
    [36]杨娟,杨海玉,周静.泰州市淡水产品中副溶血性弧菌污染状况调查[J].现代预防医学,2009(04):639-640.
    [37] McMeekin T, Olley J, Ratkowsky D, et al. Predictive microbiology: towards the interface andbeyond[J]. International Journal of Food Microbiology,2002,73(2):395-407.
    [38] McMeekin T, Baranyi J, Bowman J, et al. Information systems in food safety management[J].International Journal of Food Microbiology,2006,112(3):181-194.
    [39]王璐华,宁喜斌.副溶血性弧菌生长预测模型的建立与应用探讨[J].华北农学报,2008(S1):263-267.
    [40]刘代新,宁喜斌,张继伦.响应面分析法优化副溶血性弧菌生长条件[J].微生物学通报,2008(02):306-310.
    [41]傅鹏,李平兰,周康,等.冷却肉中假单胞菌温度预测模型的建立与验证[J].农业工程学报,2008(04):229-234.
    [42] McMeekin T, Bowman J, McQuestin O, et al. The future of predictive microbiology: strategicresearch, innovative applications and great expectations[J]. International Journal of FoodMicrobiology,2008,128(1):2-9.
    [43] Nauta MJ. Modelling bacterial growth in quantitative microbiological risk assessment: is itpossible?[J]. International Journal of Food Microbiology,2002,73(2):297-304.
    [44] Nauta M, Der Fels‐Klerx V,Havelaar A. A Poultry‐Processing Model for QuantitativeMicrobiological Risk Assessment[J]. Risk Analysis,2005,25(1):85-98.
    [45] Gospavic R, Kreyenschmidt J, Bruckner S, et al. Mathematical modelling for predicting the growthof Pseudomonas spp. in poultry under variable temperature conditions[J]. International Journalof Food Microbiology,2008,127(3):290-297.
    [46] Martinez-Urtaza J, Bowers JC, Trinanes J, et al. Climate anomalies and the increasing risk of Vibrioparahaemolyticus and Vibrio vulnificus illnesses[J]. Food Research International,2010,43(7):1780-1790.
    [47]毛雪丹,胡俊峰,刘秀梅.2003-2007年中国1060起细菌性食源性疾病流行病学特征分析[J].中国食品卫生杂志,2010(03):224-228.
    [48]姬华,韩海红,王洪新,等.副溶血弧菌预测模型与风险评估的研究进展[J].食品工业科技,2009(05):346-349+352.
    [49] Pouillot R, Albert I, Cornu M, et al. Estimation of uncertainty and variability in bacterial growthusing Bayesian inference. Application to Listeria monocytogenes[J]. International Journal ofFood Microbiology,2003,81(2):87-104.
    [50] Sani NA, Ariyawansa S, Babji AS, et al. The risk assessment of Vibrio parahaemolyticus in cookedblack tiger shrimps (Penaeus monodon) in Malaysia[J]. Food Control,2012.
    [51]刘弘,罗宝章,秦璐昕,等.生食三文鱼片副溶血性弧菌污染的定量风险评估研究[J].中国食品卫生杂志,2012(01):18-22.
    [52] Zhao F, Zhou D-q, Cao H-h, et al. Distribution, serological and molecular characterization of Vibrioparahaemolyticus from shellfish in the eastern coast of China[J]. Food Control,2011,22(7):1095-1100.
    [53] Food U, Drug Administration (FDA),2005. Quantitative Risk Assessment on the Public HealthImpact of Pathogenic Vibrio parahaemolyticus in Raw Oysters,2006.
    [54] Posada-Izquierdo GD, Pérez-Rodríguez F, López-Gálvez F, et al. Modelling growth of Escherichiacoli O157: H7in fresh-cut lettuce submitted to commercial process conditions: chlorine washingand modified atmosphere packaging[J]. Food microbiology,2012.
    [55] OSCAR TP. VARIATION OF LAG TIME AND SPECIFIC GROWTH RATE AMONG11STRAINS OF SALMONELLA INOCULATED ONTO STERILE GROUND CHICKENBREAST BURGERS AND INCUBATED AT25C [J]. Journal of food safety,2000,20(4):225-236.
    [56] Lianou A,Koutsoumanis KP. Effect of the growth environment on the strain variability of Salmonellaenterica kinetic behavior[J]. Food Microbiology,2011,28(4):828-837.
    [57] Pal A, Labuza TP,Diez-Gonzalez F. Comparison of primary predictive models to study the growth ofListeria monocytogenes at low temperatures in liquid cultures and selection of fastest growingribotypes in meat and turkey product slurries[J]. Food Microbiology,2008,25(3):460-470.
    [58] Hsieh JL, Fries JS,Noble RT. Dynamics and predictive modelling of Vibrio spp. in the Neuse RiverEstuary, North Carolina, USA[J]. Environmental Microbiology,2008,10(1):57-64.
    [59] Métris A, George S,Baranyi J. Use of optical density detection times to assess the effect of aceticacid on single-cell kinetics[J]. Applied and environmental microbiology,2006,72(10):6674-6679.
    [60] Lindqvist R. Estimation of Staphylococcus aureus growth parameters from turbidity data:Characterization of strain variation and comparison of methods[J]. Applied and EnvironmentalMicrobiology,2006,72(7):4862-4870.
    [61] Weerakkody NS, Caffin N, Dykes GA, et al. Effect of Antimicrobial Spice and Herb ExtractCombinations on Listeria monocytogenes, Staphylococcus aureus, and Spoilage MicrofloraGrowth on Cooked Ready-to-Eat Vacuum-Packaged Shrimp[J]. Journal of Food Protection,2011,74(7):1119-1125.
    [62]周康, Susie G, Jozsef B,等.不同浓度沙门氏菌细胞生长分布规律研究[J].食品科学,2012(13):254-258.
    [63] Francois K, Devlieghere F, Standaert A, et al. Effect of environmental parameters (temperature, pHand aw) on the individual cell lag phase and generation time of Listeria monocytogenes[J].International Journal of Food Microbiology,2006,108(3):326-335.
    [64] Baranyi J,Pin C. Estimating bacterial growth parameters by means of detection times[J]. Applied andEnvironmental Microbiology,1999,65(2):732-736.
    [65] Shen X, Cai Y, Liu C, et al. Effect of temperature on uptake and survival of Vibrio parahaemolyticusin oysters (Crassostrea plicatula)[J]. International Journal of Food Microbiology,2009,136(1):129-132.
    [66] McKellar RC,Lu X. Modeling microbial responses in food[M]. CRC PressI Llc.2004.
    [67]李青,钟青萍,王丽. EMA结合PCR技术有效鉴别副溶血弧菌死活细胞[J].华南农业大学学报,2011(01):108-111.
    [68] Baker‐Austin C, Stockley L, Rangdale R, et al. Environmental occurrence and clinical impact ofVibrio vulnificus and Vibrio parahaemolyticus: a European perspective[J]. EnvironmentalMicrobiology Reports,2010,2(1):7-18.
    [69] Malakar P,Barker G. Estimating single-cell lag times via a Bayesian scheme[J]. Applied andenvironmental microbiology,2008,74(22):7098-7099.
    [70] Fernandez-Piquer J, Bowman JP, Ross T, et al. Predictive Models for the Effect of StorageTemperature on Vibrio parahaemolyticus Viability and Counts of Total Viable Bacteria in PacificOysters (Crassostrea gigas)[J]. Applied and environmental microbiology,2011,77(24):8687-8695.
    [71] Lianou A, Stopforth JD, Yoon Y, et al. Growth and stress resistance variation in culture broth amongListeria monocytogenes strains of various serotypes and origins[J]. Journal of Food Protection,2006,69(11):2640-2647.
    [72] Lianou A, Koutsoumanis KP. A stochastic approach for integrating strain variability in modelingSalmonella enterica growth as a function of pH and water activity[J]. International Journal ofFood Microbiology,2011,149(3):254-261.
    [73] Miles DW, Ross T, Olley J, et al. Development and evaluation of a predictive model for the effect oftemperature and water activity on the growth rate of Vibrio parahaemolyticus[J]. InternationalJournal of Food Microbiology,1997,38(2):133-142.
    [74] Li H, Xie G,Edmondson A. Evolution and limitations of primary mathematical models in predictivemicrobiology[J]. British Food Journal,2007,109(8):608-626.
    [75]李寿崧,吴英娇,宁芊,等.杂色蛤中副溶血弧菌的定量风险评估[J].北京工商大学学报(自然科学版),2012(05):38-45.
    [76]陈艳,刘秀梅.福建省零售生食牡蛎中副溶血性弧菌的定量危险性评估[J].中国食品卫生杂志,2006(02):103-108.
    [77] Lopez‐Joven C, de Blas I, Ruiz‐Zarzuela I, et al. Experimental uptake and retention of pathogenicand nonpathogenic Vibrio parahaemolyticus in two species of clams: Ruditapes decussatus andRuditapes philippinarum[J]. Journal of applied microbiology,2011,111(1):197-208.
    [78] Nauta MJ,Dufrenne JB. Variability in growth characteristics of different E. coli O157: H7isolates,and its implications for predictive microbiology[J]. Quantitative Microbiology,1999,1(2):137-155.
    [79] Pérez-Rodríguez F, Van Asselt E, Garcia-Gimeno R, et al. Extracting additional risk managersinformation from a risk assessment of Listeria monocytogenes in deli meats[J]. Journal of FoodProtection,2007,70(5):1137-1152.
    [80] Chiang M-L, Yu R-C,Chou C-C. Fatty acid composition, cell morphology and responses to challengeby organic acid and sodium chloride of heat-shocked Vibrio parahaemolyticus[J]. InternationalJournal of Food Microbiology,2005,104(2):179-187.
    [81] Nishina T, Wada M, Ozawa H, et al. Growth kinetics of Vibrio parahaemolyticus O3: K6undervarying conditions of pH, NaCl concentration and temperature[J]. Shokuhin eiseigaku zasshi.Journal of the Food Hygienic Society of Japan,2004,45(1):35.
    [82] DePaola A, Ulaszek J, Kaysner CA, et al. Molecular, serological, and virulence characteristics ofVibrio parahaemolyticus isolated from environmental, food, and clinical sources in NorthAmerica and Asia[J]. Applied and environmental microbiology,2003,69(7):3999-4005.
    [83] SESSMENTSERIES M. Risk assessment of Vibrio parahaemolyticus in seafood[J].2011.
    [84] Chen W, Xie Y, Xu J, et al. Molecular typing of Vibrio parahaemolyticus isolates from themiddle-east coastline of China[J]. International Journal of Food Microbiology,2012,153(3):402.
    [85] Su Y-C,Liu C. Vibrio parahaemolyticus: A concern of seafood safety[J]. Food Microbiology,2007,24(6):549-558.
    [86] Broberg CA, Calder TJ,Orth K. Vibrio parahaemolyticus cell biology and pathogenicitydeterminants[J]. Microbes and Infection,2011,13(12):992-1001.
    [87] Evrendilek GA, Balasubramaniam V. Inactivation of Listeria monocytogenes and Listeria innocua inyogurt drink applying combination of high pressure processing and mint essential oils[J]. FoodControl,2011,22(8):1435-1441.
    [88] Hongping W, Jilun Z, Ting J, et al. Insufficiency of the Kanagawa hemolytic test for detectingpathogenic Vibrio parahaemolyticus in Shanghai, China[J]. Diagnostic microbiology andinfectious disease,2011,69(1):7-11.
    [89] Yang Z-q, Jiao X-a, Zhou X-h, et al. Isolation and molecular characterization of Vibrioparahaemolyticus from fresh, low-temperature preserved, dried, and salted seafood products intwo coastal areas of eastern China[J]. International Journal of Food Microbiology,2008,125(3):279-285.
    [90] Baross J,Liston J. Isolation of Vibrio parahaemolyticus from the Northwest Pacific[J]. Nature,1968,217:1263-1264.
    [91] Hoelzer K, Pouillot R,Dennis S. Listeria monocytogenes Growth Dynamics on Produce: A Review ofthe Available Data for Predictive Modeling[J]. Foodborne Pathogens and Disease,2012,9(7):661-673.
    [92] Yoon K, Min K, Jung Y, et al. A model of the effect of temperature on the growth of pathogenic andnonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea[J]. Food Microbiology,2008,25(5):635-641.
    [93] Ponniah J, Robin T, Paie MS, et al. Listeria monocytogenes in raw salad vegetables sold at retaillevel in Malaysia[J]. Food Control,2010,21(5):774-778.
    [94] Makino Y, Ito Y, Oshita S, et al. Mathematical Analysis for Growth Depression of Vibrioparahaemolyticus in Shrimp under a High Carbon Dioxide Atmosphere[J]. Food science andtechnology research,2010,17(1):63-68.
    [95] Fujikawa H, Kimura B,Fujii T. Development of a predictive program for Vibrio parahaemolyticusgrowth under various environmental conditions[J]. Biocontrol science,2009,14(3):127-131.
    [96] Huang L. Mathematical Modeling and Numerical Analysis of the Growth of Non-O157ShigaToxin-Producing Escherichia coli in Spinach Leaves[J]. International Journal of FoodMicrobiology,2012.
    [97]张凡非.副溶血性弧菌及其引起的食物中毒检验研究进展[J].中国卫生监督杂志,2003(01):8-10+7.
    [98]方伟,黎微,柯昌文,等.2006-2008年广东省水产品和食物中毒患者副溶血性弧菌分离株血清分型研究[J].中国食品卫生杂志,2009(04):352-356.
    [99] Yamamoto A, Iwahori Ji, Vuddhakul V, et al. Quantitative modeling for risk assessment of Vibrioparahaemolyticus in bloody clams in southern Thailand[J]. International Journal of FoodMicrobiology,2008,124(1):70-78.
    [100]李涛,宁喜斌.副溶血性弧菌温度-盐度双因素预测模型的建立[J].微生物学通报,2009(08):1200-1205.
    [101]王璐华,宁喜斌.副溶血性弧菌的温度预测模型[J].食品与生物技术学报,2009(02):262-266.
    [102] Burnham V, Janes M, Jakus L, et al. Growth and survival differences of Vibrio vulnificus and Vibrioparahaemolyticus strains during cold storage[J]. Journal of food science,2009,74(6):M314-M318.
    [103] Juneja VK, Valenzuela Melendres M, Huang L, et al. Modeling the effect of temperature on growthof Salmonella in chicken[J]. Food Microbiology,2007,24(4):328-335.
    [104] Mytilinaios I, Salih M, Schofield HK, et al. Growth curve prediction from optical density data[J].2012.
    [105]杨振泉,焦新安.不同副溶血弧菌的分子鉴别与生长动力学模型比较[J].中国人兽共患病学报,2008(03):210-215.
    [106] Zarei M, Borujeni MP, Jamnejad A, et al. Seasonal prevalence of Vibrio species in retail shrimpswith an emphasis on Vibrio parahaemolyticus[J]. Food Control,2012,25(1):107-109.
    [107] Broberg CA, Calder TJ,Orth K. Vibrio parahaemolyticus cell biology and pathogenicitydeterminants[J]. Microbes and Infection,2011,13(12):992-1001.
    [108] Baranyi J, Roberts TA. Mathematics of predictive food microbiology[J]. International Journal ofFood Microbiology,1995,26(2):199-218.
    [109] Mejlholm O, Kjeldgaard J, Modberg A, et al. Microbial changes and growth of Listeriamonocytogenes during chilled storage of brined shrimp (Pandalus borealis)[J]. InternationalJournal of Food Microbiology,2008,124(3):250-259.
    [110] Strauss EJ, Falkow S. Microbial pathogenesis: genomics and beyond[J]. Science,1997,276(5313):707-712.
    [111] Koseki S. Microbial Responses Viewer (MRV): A new ComBase-derived database of microbialresponses to food environments[J]. International Journal of Food Microbiology,2009,134(1):75-82.
    [112] Ross T,McMeekin TA. Modeling microbial growth within food safety risk assessments[J]. RiskAnalysis,2003,23(1):179-197.
    [113] Sant’Ana AS, Franco BD,Schaffner DW. Modeling the growth rate and lag time of different strainsof Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce[J]. Food Microbiology,2012,30(1):267-273.
    [114] Chao G, Jiao X, Zhou X, et al. Serodiversity, pandemic O3: K6clone, molecular typing, andantibiotic susceptibility of foodborne and clinical Vibrio parahaemolyticus isolates in Jiangsu,China[J]. Foodborne Pathogens and Disease,2009,6(8):1021-1028.
    [115] Nair GB, Ramamurthy T, Bhattacharya SK, et al. Global dissemination of Vibrio parahaemolyticusserotype O3: K6and its serovariants[J]. Clinical microbiology reviews,2007,20(1):39-48.
    [116] Chao G, Wang F, Zhou X, et al. Origin of Vibrio parahaemolyticus O3: K6pandemic clone[J].International Journal of Food Microbiology,2011,145(2):459-463.
    [117] Yang Z-q, Jiao X-a, Li P, et al. Predictive model of Vibrio parahaemolyticus growth and survival onsalmon meat as a function of temperature[J]. Food Microbiology,2009,26(6):606-614.
    [118] FAO/WHO. Risk assessment of Vibrio parahaemolyticus in seafood: interpretative summary andtechnical report.[R]. Microbiology Risk Assessment Series no.16. Food and AgricultureOrganization of the United Nations, Rome, Italy, and World Health Organization, Geneva,Switzerland.,2011.
    [119] Zwietering M, De Wit J, Cuppers H, et al. Modeling of bacterial growth with shifts intemperature[J]. Applied and environmental microbiology,1994,60(1):204-213.
    [120] Ratkowsky D, Olley J, McMeekin T, et al. Relationship between temperature and growth rate ofbacterial cultures[J]. Journal of bacteriology,1982,149(1):1-5.
    [121] Malakar P, Barker G,Peck M. Quantitative risk assessment for hazards that arise fromnon-proteolytic Clostridium botulinum in minimally processed chilled dairy-based foods[J].Food Microbiology,2011,28(2):321-330.
    [122] Ross T. Indices for performance evaluation of predictive models in food microbiology[J]. Journal ofapplied microbiology,1996,81(5):501-508.
    [123] Boonyawantang A, Mahakarnchanakul W, Rachtanapun C, et al. Behavior of pathogenic Vibrioparahaemolyticus in prawn in response to temperature in laboratory and factory[J]. Food Control,2012,26(2):479-485.
    [124] Guillier L,Augustin J-C. Modelling the individual cell lag time distributions of Listeriamonocytogenes as a function of the physiological state and the growth conditions[J].International Journal of Food Microbiology,2006,111(3):241-251.
    [125] Boonyawantang A, Mahakarnchanakul W, Rachtanapun C, et al. Behavior of pathogenic Vibrioparahaemolyticus in prawn in response to temperature in laboratory and factory[J]. Food Control,2012,26(2):479-485.
    [126] Gil MM, Brand o TR,Silva CL. A modified Gompertz model to predict microbial inactivationunder time-varying temperature conditions[J]. Journal of food engineering,2006,76(1):89-94.
    [127] Fernandez‐Piquer J, Bowman J, Ross T, et al. Molecular analysis of the bacterial communities inthe live Pacific oyster (Crassostrea gigas) and the influence of postharvest temperature on itsstructure[J]. Journal of applied microbiology,2012,112(6):1134-1143.
    [128] Yang Z-q, Jiao X-a, Li P, et al. Predictive model of Vibrio parahaemolyticus growth and survival onsalmon meat as a function of temperature[J]. Food Microbiology,2009,26(6):606-614.
    [129] Chen S-Y, Jane W-N, Chen Y-S, et al. Morphological changes of Vibrio parahaemolyticus undercold and starvation stresses[J]. International Journal of Food Microbiology,2009,129(2):157-165.
    [130] Ji H, Chen Y, Guo Y, et al. Occurrence and characteristics of Vibrio vulnificus in retail marineshrimp in China[J]. Food Control,2011,22(12):1935-1940.
    [131] DaSilva L, Parveen S, DePaola A, et al. Development and validation of a predictive model for thegrowth of Vibrio vulnificus in postharvest shellstock oysters[J]. Applied and environmentalmicrobiology,2012,78(6):1675-1681.
    [132] Rahimi E, Ameri M, Doosti A, et al. Occurrence of toxigenic Vibrio parahaemolyticus strains inshrimp in Iran[J]. Foodborne Pathogens and Disease,2010,7(9):1107-1111.
    [133] Yoon K, Min K, Jung Y, et al. A model of the effect of temperature on the growth of pathogenic andnonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea[J]. Food Microbiol,2008,25(5):635-641.
    [134] Yang ZQ, Jiao XA, Li P, et al. Predictive model of Vibrio parahaemolyticus growth and survival onsalmon meat as a function of temperature[J]. Food Microbiol,2009,26(6):606-14.
    [135] Wong H-C, Chen L-L,Yu C-M. Occurrence of vibrios in frozen seafoods and survival ofpsychrotrophic Vibrio cholerae in broth and shrimp homogenate at low temperatures[J]. Journalof Food Protection,1995,58(3):263-267.
    [136] Singh A, Korasapati NR, Juneja VK, et al. Dynamic predictive model for the growth of salmonellaspp. in liquid whole egg[J]. Journal of food science,2011,76(3): M225-M232.
    [137] Drake SL, DePaola A,Jaykus LA. An overview of Vibrio vulnificus and Vibrio parahaemolyticus[J].Comprehensive Reviews in Food Science and Food Safety,2007,6(4):120-144.
    [138] Xanthiakos K, Simos D, Angelidis A, et al. Dynamic modeling of Listeria monocytogenes growthin pasteurized milk[J]. Journal of applied microbiology,2006,100(6):1289-1298.
    [139] Mejlholm O, Gunvig A, Borggaard C, et al. Predicting growth rates and growth boundary ofListeria monocytogenes—An international validation study with focus on processed andready-to-eat meat and seafood[J]. International Journal of Food Microbiology,2010,141(3):137-150.
    [140] Aguirre‐Guzmán G, Sánchez‐Martínez JG, Pérez‐Casta eda R, et al. Pathogenicity andinfection route of Vibrio parahaemolyticus in American white shrimp, Litopenaeus vannamei[J].Journal of the World Aquaculture Society,2010,41(3):464-470.
    [141]姬华,对虾中食源性弧菌预测模型建立及风险评估,2012,江南大学.
    [142]田明胜,郑雷军,彭少杰,等.2000~2007年上海市副溶血性弧菌致集体性食物中毒资料分析及对策[J].上海食品药品监管情报研究,2009(02):42-45.
    [143]卫生部,2010年中国卫生统计年鉴[EB/OL].
    [144]王志雄,马俊贤.上海市统计局.上海统计年鉴[M].中国统计出版社.2011.
    [145]宁芊,李寿崧,陈守平.文蛤中副溶血性弧菌的风险评估[J].现代食品科技,2010(11):1259-1263+1292.
    [146] Sani NA, Ariyawansa S, Babji AS, et al. The risk assessment of Vibrio parahaemolyticus in cookedblack tiger shrimps (Penaeus monodon) in Malaysia[J]. Food Control,2012.
    [147] RISK M. Risk assessment of Listeria monocytogenes in ready-to-eat foods[J].
    [148]刘弘.上海市1990~2000年集体性食物中毒分析[J].中国自然医学杂志,2003(01):17-20.
    [149]田明胜,郑雷军,彭少杰,等.2000-2007年上海市副溶血性弧菌致集体性食物中毒分析及对策[J].中国食品卫生杂志,2008(06):514-517.
    [150]彭少杰,田明胜,王颖,等.2008—2010年上海市夏秋季市售海产品中副溶血性弧菌污染监测结果分析[J].中国食品卫生杂志,2011(05):469-471.
    [151]赵勇,王敬敬,唐晓阳,等.水产品中食源性致病微生物风险评估研究现状[J].
    [152]何晖,邓庆丽,李秀珍,等.检测水产品食物中副溶血弧菌基因分型方法的建立[J].热带医学杂志,2007,7(11).
    [153] Bej AK, Patterson DP, Brasher CW, et al. Detection of total and hemolysin-producing Vibrioparahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh[J]. Journal ofmicrobiological methods,1999,36(3):215-225.
    [154]俞莺,宁喜斌.对虾副溶血弧菌的风险评估[J].现代食品科技,2006(03):184-186+196.
    [155] TAKIKAWA I. Studies on pathogenic halophilic bacteria[J]. Yokohama Medical Bulletin,1958,9(5):313.
    [156] Aiso K,Fujiwara K. Feeding tests of the pathogenic halophilic bacteria[J]. Ann. Res. Inst. FoodMicrobiol. Chiba Univ,1963,15:34-38.
    [157] Sanyal S,Sen P. Human volunteer study on the pathogenicity of Vibrio parahaemolyticus. in libro:International Symposium on Vibrio parahaemolyticus. Fujimo, T., Sakaguchi, G., Sakazaki, R., yTakeda, Y. Tokyo.1974.
    [158] Gooch J, DePaola A, Bowers J, et al. Growth and survival of Vibrio parahaemolyticus inpostharvest American oysters[J]. Journal of Food Protection,2002,65(6):970-974.
    [159]熊建文,张佳艳,蔡锦源.水产品物理保鲜技术研究进展[J].河南工业大学学报(自然科学版),2012(05):92-97.
    [160]励建荣,刘永吉,李学鹏,等.水产品气调保鲜技术研究进展[J].中国水产科学,2010(04):869-877.
    [161]江津津,陈椒,周培根,等.罗氏沼虾的气调保鲜[J].上海水产大学学报,2001(03):248-251.
    [162]韩丽,赵勇,朱丽敏,等.不同保藏方式南美白对虾的电子鼻分析[J].食品工业科技,2008(11):240-243.
    [163]李杉,岑剑伟,李来好,等.充气比率对罗非鱼片冰温气调贮藏期间品质的影响[J].南方水产,2010(01):42-48.
    [164]何耀辉,卢敏仪,刘康,等.气调包装技术用于草虾保鲜的研究[J].食品与发酵工业,2001(02):26-29.
    [165]翁丽萍,钟立人,戴志远.国内外鱼和鱼制品的气调保鲜研究[J].食品与机械,2006(03):160-163.
    [166]巢国祥,副溶血性弧菌传播特征、O3:K6流行克隆分子生物学特性及多位点序列种群遗传研究[D],2010,扬州大学.
    [167]田超群,王继栋,盘鑫,等.水产品保鲜技术研究现状及发展趋势[J].农产品加工(创新版),2010(08):17-21+25.
    [168] Lu S. Effects of bactericides and modified atmosphere packaging on shelf-life of Chinese shrimp(Fenneropenaeus chinensis)[J]. LWT-Food Science and Technology,2009,42(1):286-291.
    [169] Mejlholm O, Devitt TD,Dalgaard P. Effect of brine marination on survival and growth of spoilageand pathogenic bacteria during processing and subsequent storage of ready-to-eat shrimp(Pandalus borealis)[J]. International Journal of Food Microbiology,2012.
    [170] Jay JM, Loessner MJ,Golden DA. Modern food microbiology.7thed.[M]. Springer Verlag.2005:44.
    [171]吕飞,张碧娜,丁玉庭.不同气调包装对醉虾贮藏品质的影响[J].食品与发酵工业,2013(02):223-226.
    [172]刘柳,孔保华.温度及气调包装对冷却猪肉中单核细胞增生性李斯特菌生长的影响[J].食品科学,2008(01):334-337.
    [173]张赟彬,缪存铅,宋庆.荷叶精油与气调包装协同对鲜肉的抑菌活性研究[J].食品工业,2010(01):57-60.
    [174] CORTEZ‐VEGA W, PIZATO S,PRENTICE C. QUALITY OF RAW CHICKEN BREASTSTORED AT5C AND PACKAGED UNDER DIFFERENT MODIFIED ATMOSPHERES[J].Journal of food safety,2012,32(3):360-368.
    [175] Posada-Izquierdo GD, Perez-Rodriguez F, Lopez-Galvez F, et al. Modelling growth of Escherichiacoli O157:H7in fresh-cut lettuce submitted to commercial process conditions: Chlorine washingand modified atmosphere packaging[J]. Food microbiology,2013,33(2):131-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700