泊松白噪声激励下的随机时滞系统的数值解及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机时滞系统主要是用随机延迟微分方程来描述的,目前随机延迟微分方程已经广泛地应用在经济学、物理学、生物学等各个领域中。然而一般情况下,很难求出它的解析解,因此研究随机延迟微分方程的数值解法既有理论意义又有广泛的应用价值。
     近几年来,虽然也有不少学者研究了随机常延迟微分方程及其数值解法,也取得了一些成果,但对于带跳跃的随机延迟微分方程、随机延迟积分微分方程和跳跃的中立型随机延迟微分方程的研究却刚刚开始,还未见成果报导。因此,本文分别对这三种不同类型的随机延迟微分方程的数值方法及收敛性与均方稳定性进行了深入地研究,并具体应用到生物学领域中,取得的成果如下:
     1.将泊松白噪声加入到随机延迟微分方程中,得到了一种带跳跃的随机延迟微分方程,首先给出该类方程数值解均方稳定性的定义,然后研究了该类方程的Euler-Maruyama数值解的均方稳定性,并研究了该方法得到的数值解均方稳定性的充分条件,最后通过数值实验验证该理论结果的正确性。
     2.考虑带有分布式延迟项的线性随机延迟积分微分方程,将分步向后欧拉法用于具有一般性的线性随机延迟积分微分方程中,研究了该方法得到的数值解的收敛性和均方稳定性,并证明了该数值解收敛于解析解的阶为1/2,同时还得到了当方程的解析解渐近均方稳定时,该数值法得到的数值解保持均方稳定性的充分条件,最后,通过数值试验说明了该方法的有效性和正确性。
     3.将泊松白噪声加入中立型随机泛函微分方程中,得到了一类带跳跃的中立型随机泛函微分方程,首先研究了其解的存在唯一性定理,然后研究了一类带跳跃的中立型随机延迟微分方程的Euler-Maruyama数值方法的收敛性,最后证明了Euler-Maruyama法得到的数值解在局部Lipchitz条件下收敛于解析解,并且收敛阶为1/2。
     4.将带跳跃的随机延迟微分方程和随机延迟积分微分方程应用到生物种群动力学中,利用本文提出的数值方法对生物种群系统的响应进行了数值模拟,结果发现了生物种群的稳定性和Hopf分岔点。
Stochastic systems with time delays are mainly described by the sotchasic delay differential equations (SDDEs). Stochastic systems with delays are becoming increasingly used nowdays in dfferent fields, such as, economics, physics, medicine, ecology and so on. However few analytical solutions can be obtained for SDDEs, thus, developing appropriate numerical methods for SDDEs is interesting topic both in theory and in applications.
     In recent years, many scholars studied the approximate schemes for SDDEs and have achieved fruitful results. However, the study on the numerical schemes for stochastic delay differential equations with jumps (SDDEwJs), stochastic delay integro-differential equations (SDIDEs) and neutral stochastic delay differential equations with jumps (NSDDEwJs) has just begun. In this paper, we investigate the convergence and mean square stability of the numerical methods for these three types stochastic delay differential equations,at the same time we apply these stochachtic systems to biology and obtained the following results:
     1. For the SDDEs, Poisson white noise is added to this class equation to obtain a class of SDDEwJs. First, the definition of mean-square stability of numerical methods for SDDEwJs is established, and then the sufficient condition of mean square stability of the Euler-Maruyama method for SDDEwJs is derived, finally a class scalar test equation is simulated, the numerical experiments verify the results obtained from theory.
     2. The convergence and mean square stability of the numerical approximation of solutions for linear stochastic delay integro-differential equations (SDIDEs) was studied. Split-step backward Euler (SSBE) method for solving linear stochastic delay integro-differential equations is derived. It is proved that the SSBE method is convergent with strong order 12 in the mean-square sense. The condition under which the SSBE method is mean-square stable (MS-stable) is obtained. At last, the numerical experiments illustrate the validity and correctness the method.
     3. For the neutral stochastic functional differential equations (NSFDEs), Poisson white noise is added to this class equation to obtain a class of neutral stochastic functional differential equations with Poisson jumps (NSFDEwJs). First, the existence and uniqueness of solutions for NSFDEwJs is studied, then the Euler-Maruyama method for neutral stochastic delay differential equations with Poisson jumps (NSDDEwJs) is developed, and last we prove that the numerical solutions will converge to the true solutions for NSDDEwJs with strong order 1/2 under the local Lipschitz condition.
     4. The stochastic delay differential equations with jumps and stochastic delay integro-differential equations are applied to biological population dynamics. Using the numerical methods in this paper, we simulate the response of the systems and found that the stability and Hopf bifurcation point of the biological populations.
引文
[1] Wright E M. On a sequence defined by a non-linear recurrence formula, J. London Math. Soc., 1945, 20: 68~73
    [2]郑祖麻,泛函微分方程理论,合肥:安徽教育出版社, 1992
    [3] Bellen A, Guglielmi N, Ruehli A. Methods for linear systems of circuit delay differential equations of neutral type, IEEE Trans. Circuits Syst. I, 1999, 46 (1): 212~216
    [4] Yue D, Han Q L. A delay-dependent stability criterion of neutral systems and its application to a parital element equivalent circuit model, IEEE Trans. Circuits Syst.Ⅱ, 2004, 51 (12): 685~689
    [5] Ergen W K. Kinetics of the circulating fuel nuclear reaction, J. Appl. Phys., 1954, 25: 702~711
    [6] Dunkel G. Single-species model for population growth depending on past history, Seminar on Differential Equations and Dynamics Systems, Springer-Verlag, 1968
    [7]龚光鲁,钱敏平,应用随机过程教程-及在算法和智能计算中的随机模型,北京:清华大学出版社, 2004
    [8] ?ksendal B. Stochastic Differential Equations: An Introdution with Applications, NewYork: Springer-Verlag, 2003
    [9] Black F, Scholes M. The Pricing of options and corporate liabilities, J. Politic. Econ., 1973, 81: 637~654
    [10] Baker C, Buckwar E. Numerical analysis of explicit one-step methods for stochastic delay differential equations, LMS J. Comput. Math., 2000, 3: 315~335
    [11] Nie L R, Mei D C. Effects of time delay on symmetric two-species competition subject to noise, Physical Review E, 2008, 77: 031107
    [12] Su Y J, Mei D C. Effects of Time Delay on Three Interacting Species System with Noise, Int. J. Theor. Phys., 2008, 47 (9): 2409~2414
    [13] Stoica G. A stochastic delay financial model, Proceedings of the American Mathematical Society, 2005, 133 (6): 1837~1842
    [14] Grigoriu M. Response of dynamic systems to Poisson white noise, J. Sound Vib., 1996, 195 (3): 375~389
    [15] Grigoriu M. dynamic systems with Poisson white noise, Nonlinear Dynam., 2004, 36: 255~266
    [16] Kareem A, Zhao J. Analysis of non-Gaussian surge response of tension leg platforms under wind loads, Journal of Offshore Mechanics and Arctic Engineering, 1994, 116: 137~144
    [17] Kareem A, Hsieh C, Tognarelli M. Frequency-domain analysis of offshore platform in non-Gaussian seas, J. Eng. Mech., 1998, 124 (6): 668~683
    [18] Ricciardi G. Random vibration of beam under moving loads, J. Eng. Mech., 1994, 120 (11): 2361~2380
    [19] Tung C C. Random response of highway bridges to vehicle loads, J. Eng. Mech., 1967, 93 (5): 79~94
    [20] Lin Y K, Cai G Q. Probabilistic Theory of Structural Dynamics: Advanced Theory and Applications, New York: McGraw-Hill, 1995
    [21] Higham D J, Kloeden P E. Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 2005, 101 (1): 101~119
    [22] Chalmers G D, Higham D J. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes, Discrete Contin. Dyn Syst. Ser. B, 2008, 9 (1): 47~64
    [23] Higham D J, Kloeden P E. Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems, J. Comput. Appl. Math., 2007, 205 949~956
    [24] Bruti-Liberati N, Platen E. Approximation of jump diffusions in finance and economics, Comput. Econ., 2007, 29: 283~312
    [25] Abundo M. On the Risk of Extinction for a Population Subject to Random Markov Evolution with Jumps, Open Syst. Inf. Dyn., 2004, 11 (2): 105~121
    [26] Turner T, Schnell S, Burrage K. Stochastic approaches for modelling in vivo reactions, Comput. Biol. Chem., 2004, 28 (3): 165~178
    [27] Li R H, Chang Z G. Convergence of numerical solution to stochastic delay differential equation with Poisson jump and Markovian switching, Appl. Math. Comput., 2007, 184 (2): 451~463
    [28] Li R H, Meng H B, Dai Y H. Convergence of numerical solutions to stochastic delay differential equations with jumps, Appl. Math. Comput., 2006, 172 (1): 584~602
    [29] Wang L S, Mei C L, Xue H. The semi-implicit Euler method for stochastic differential delay equation with jumps, Appl. Math. Comput., 2007, 192 (2): 567~578
    [30] Wang L S, Xue H. Convergence of numerical solutions to stochastic differential delay equations with Poisson jump and Markovian switching, Appl. Math. Comput., 2007, 188 (2): 1161~1172
    [31] Mao W. Convergence of numerical solutions for variable delay differential equations driven by Poisson random jump measure, Appl. Math. Comput., 2009, 212 (2): 409~417
    [32] Mohammed S E A. Stochastic Functional Differential Equations, Boston: Advanced Publishing Program, 1984
    [33] Mao X R. Exisitence and Uniqueness of the Solutions of Delay Stochastic Integral Equations, Stoch. Anal. Appl., 1989, 7 (1): 59~74
    [34] Mao X R. Exponential Stability of Stochastic Differential Equations, New York: Marcel Dekker, 1994
    [35] Kolmanovskii V B, Nosov V R. Stability of Functional Differential Equations, New York: Academic Press, 1986
    [36] Mohammed S E A. The Lyapunov spectrum and stable manifolds for stochastic linear delay equations, Stochastics and Stochastics Reports, 1990, 29 (1): 89~131
    [37] Mao X R. Almost sure exponential stability for delay stochastic differential equations with respect to semimartingales, Stoch. Anal. Appl., 1991, 9 (2): 177~194
    [38] Mao X R. Razumikhin type theorems on exponential stability of stochastic functional differential equations, Stochastic Processes Appli., 1996, 65: 233~250
    [39] Kolmanovskii V B, Shaikhet L E. A method for constructing Lyapunov functionals for stochastic diferential equations of neutral type, Differential Equations, 1996, 31 (11): 1819~1825
    [40] Mao X R. Exponential stability in mean square of neutral stochastic differential functional equations, Systems Control Lett., 1995, 26: 245~251
    [41] Liu K, Xia X. On the Exponetial Stability in the mean square of Neutial Stochastic Functional Differential Equations, Systems & Control Lett., 1999, 37: 207~215
    [42] Kolmanovskii V, Shaikhet L. Construction of Lyapunov functionals for stochastic hereditary systems: A survey of some recent results, Math. Comput. Model., 2002, 36 (6): 691~716
    [43] Mao X R. A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 2002, 268 (1): 125~142
    [44] Mao X R, Koroleva N, Rodkina A. Robust stability of uncertain stochastic differential delay equations, Systems Control Lett., 1998, 35 (5): 325~336
    [45] Mao X R. LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 1999, 236 (2): 350~369
    [46] Kloeden P E, Platen E. Numerical Solution of Stochastic Differential Equations, Berlin: Springer, 1999
    [47] Maruyama G. Continuous Markov Processes and Stochastic Equations, Rend. Circolo. Math. Palermo., 1955, 4: 48~90
    [48] Milstein G N. Approximate Integration of Stochastic Differential Equations, Thoery Probab. Appl., 1974, 19: 557~562
    [49] Higham D J. Mean square and asymptotic stability of the stochastic theta mehtod, SLAM J. Numer. Anal., 2000, 38 (3): 753~769
    [50] Kloeden P E, Platen E. A Survey of Numerical Methods for Stochastic Diffferential Equations, J. Stoch. Hydrol. Hydraul., 1989, 3: 155~178
    [51] Rümelin W. Numerical treatment of stochastic differential equations, SLAM J. Numer. Anal., 1982, 19: 604~613
    [52] Burrage K, Burrage P M. High strong order explicit Rugge-Kutta method for sotchastic ordinary differential equations, Appl. Numer. Math., 1996, 22: 81~101
    [53] Burrage K, Burrage P M. General order conditions for stochastic Runge-Kutta methods for both commuting and non-commuting stochastic ordinary differential equation systems, Appl. Numer. Math., 1998, 28 (2-4): 161~177
    [54] Burrage K, Burrage P M, Belward J A. A bound on the maximum strong order of stochastic Runge-Kutta methods for stochastic ordinary differential equations, Bit, 1997, 37 (4): 771~780
    [55] Burrage P M, Burrage K. A variable stepsize implementation for stochastic differential equations, SLAM J. Sci. Comput., 2003, 24 (3): 848~864
    [56] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations, SLAM Rew., 2001, 43 (3): 525~546
    [57] Burrage K, Burrage P M, Tian T. Numerical methods for strong solutions of stochastic differential equations: an overview, Proc. R. Soc. Lond. A, 2004, 460 (2041): 373~402
    [58] Platen E. An introduction to numerical methods for stochastic differential equations, Acta Numer., 1999, 8: 197~246
    [59]朱位秋,随机振动,北京:科学出版社,1998
    [60]朱位秋,非线性随机动力学与控制—Hamilton理论体系框架,北京:科学出版社,2003
    [61]张琪昌,王洪礼,分岔与混沌理论及应用,天津:天津大学出版社,2005
    [62]王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科技出版社,2002
    [63]赵德敏,张琪昌,何学军,用复规范形法研究窄带随机动力系统,天津大学学报,2008,41(3):267~270
    [64]王洪礼,冯剑丰,吴金可等,赤潮生态动力学与预测,天津:天津大学出版社,2006
    [65] Huang D W, Wang H L, Feng J F, et al. Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics, Appl. Math. Model., 2008, 32 (7): 1318~1326
    [66] Huang D W, Gao Q, Wang H L, et al. On chaotic motion of some stochastic nonlinear dynamic system, Chaos Solitons & Fractals, 2007, 31 (1): 242~246
    [67] Huang D W, Wang H L, Feng J F, et al. Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics, Chaos Solitons & Fractals, 2006, 27 (4): 1072~1079
    [68]黄东卫,王洪礼,随机微分方程的计算机代数研究,天津工业大学学报,2004,23(2):78~81
    [69]黄东卫,王洪礼,竺致文等,一类随机Normal-Form的研究与应用,天津大学学报,2003,36(3):673~676
    [70]王洪礼,许佳,葛根,海洋生态非线性动力学模型的随机Hopf分岔,海洋通报,2008,27(3):38~42
    [71]王洪礼,许佳,葛根,赤潮藻类非线性动力学模型的随机分岔,海洋通报,2008,27(2):37~42
    [72]王洪礼,许佳,许晖等,赤潮藻类模型的非线性随机稳定性研究,青岛大学学报(自然科学版),2005, 18(3):30~32
    [73]王洪礼,许佳,郭龙等,海洋赤潮藻类的生态动力学稳定性研究,动力学与控制学报,2005, 3(2):40~43
    [74] Buckwar E. Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math., 2000, 125 (1-2): 297~307
    [75] Küchler U, Platen E. Strong discrete time approximation of stochastic differential equations with time delay, Math.Comput. Simulation, 2000, 54 (1-3): 189~205
    [76] Küchler U, Platen E. Weak discrete time approximation of stochastic differential equations with time delay, Math.Comput. Simulation, 2002, 59 (6): 497~507
    [77] Mao X R, Sabanis S. Numerical solutions of stochastic differential delay equations under local Lipschitz condition, J. Comput. Appl. Math., 2003, 151: 215~227
    [78] Hu Y, Mohammed S E A, Yan F. Discrete-time approximations of stochastic delay equations: the Milstein Scheme, Ann. Probab., 2004, 32: 265~314
    [79] Cao W R, Liu M Z, Fan Z C. MS-stability of the Euler–Maruyama method for stochastic differential delay equations, Appl. Math. Comput., 2004, 159: 127~135
    [80] Liu M Z, Cao W R, Fan Z C. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation, J. Comput. Appl. Math., 2004, 170: 255~268
    [81] Wang Z Y, Zhang C J. An analysis of stability of Milstein method for stochastic differential equations with delay, Comput. Math. Appl., 2006, 51: 1445~1452
    [82] Zhang H M, Gan S Q, Hu L. The split-step backward Euler mehtod for linear stochastic delay differential equations, J. Comput. Appl. Math., 2009, 225: 558~568
    [83] Jacob N, Wang Y T, Yuan C G. Numerical Solutions of Stochastic Differential Delay Equations with Jumps, Stoch. Anal. Appl., 2009, 27 (4): 825~853
    [84] Liu Z M, Peng J. p-Moment Stability of Stochastic Nonlinear Delay Systems with Impulsive Jump and Markovian Switching, Stoch. Anal. Appl., 2009, 27 (5): 911~923
    [85] Hou Z T, Tong J Y, Zhang Z Z. Convergence of jump-diffusion non-linear differential equation with phase semi-Markovian switching, Appl. Math. Model., 2009, 33 (9): 3650~3660
    [86] Buckwar E. Theθ-Maruyama scheme for stochastic functional differential equations with distributed memory term, Monte Carlo Methods Appl., 2004, 10 (3-4): 235~244
    [87] Shaikhet L E, Roberts J A. Reliability of difference analogues to preserve stability properties of stochastic Volterra integro-differential equations, Adv. Difference Equ., 2006
    [88] Ding X, Wu K, Liu M Z. Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations, Int. J. Comput. Math., 2006, 83: 753~763
    [89] Golec J, Sathananthan S. Strong approximations of stochastic integro-differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2001, 8 (1): 139~151
    [90] Golec J, Sathananthan S. Sample path approximation for stochastic integro-differential equations, Stoch. Anal. Appl., 1999, 17 (4): 579~588
    [91] Mao X R. Stability of stochastic integro-differential equations, Stoch. Anal. Appl., 2000, 18 (6): 1005~1017
    [92] Rathinasamy A, Balachandran K. Mean-square stability of Milstein method for linear hybrid stochastic delay integro-differential equations, Nonlinear Anal. Hybrid Syst., 2008, 2: 1256~1263
    [93] Tan J, Wang H. Convergence and stability of the split-step backward Euler method for linear stochastic delay integro-differential equations, Math. Comput. Model., 2010, 51 (5-6): 504~515
    [94] Liu D, Yang G, Zhang W. The stability of neutral stochastic delay differential equations with Poisson jumps by fixed points, J. Comput. Appl. Math. (2008), doi:10.1016/j.cam.2008.10.030
    [95] Liu D, Yang Y. Doubly perturbed neutral diffusion processes with Markovian switching and Poisson jumps, Appl. Math. Lett.(2009), doi:10.1016/j.aml.2009. 07.004
    [96] Luo J W, Taniguchi T. The Existence and Uniqueness for Non-Lipschitz Stochastic Neutral Delay Evolution Equations Driven by Poisson Jumps, Stoch. Dyn., 2009, 9 (1): 135~152
    [97]黄志远,随机分析学基础(第二版),北京:科学出版社, 2001
    [98]胡适耕,黄成明,吴付科,随机微分方程,北京:科学出版社, 2008
    [99] Grigoriu M. Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, New Jersey:Prentice Hall: Englewoods Cliffs., 1995
    [100] Grigoriu M. Stochastic Calculus. Applications in Science and Engineering. , Birkh¨auser Boston: Massachusetts, 2002
    [101] DiPaola M, Pirrotta A. Direct derivation of corrective terms in SDE through nonlinear transformation on Fokker-Planck equation, Nonlinear Dynam., 2004, 36: 349~360
    [102] Vasta M. Exact stationary solution for a class of non-linear systems driven by a non-normal delta-correlated process, Int. J. Non-Linear Mechanics, 1995, 30 (4): 407~418
    [103] Proppe C. Exact stationary probability density functions for non-linear systems under Poisson white noise excitation, Int. J. Non-Linear Mechanics, 2003, 38: 557~564
    [104] Wu Y, Zhu W Q. Stationary Response of MDOF Dissipated Hamiltonian Systems to Poisson White Noises, ASME J. Appl. Mech., 2008, 75: 044502~044501
    [105] Wu Y, Zhu W Q. Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises, Phys. Lett. A 2008, 372: 623~630
    [106] Di Paola M, Falsone G. Ito and Stratonovich integrals for delta-correlated processes, Probab. Eng. Mech., 1993, 8: 197~208
    [107] Di Paola M, Falsone G. Stochastic dynamics of nonlinear systems driven by non-normal delta-correlated processes, Trans. ASME J. Appl. Mech., 1993, 60: 141~148
    [108]张明,非白噪声激励的非线性系统非平稳响应的一种计算方法,振动工程学报, 1994, 7 (3): 223~229
    [109] Pirrotta A. Non-linear systems under parametric white noise input: Digital simulation and response, Int. J. Non-Linear Mechanics, 2005, 40: 1088~1101
    [110] Kim C. Numerical method for solving stochastic differential equations with Poissonian white shot noise, Physical review E, 2007, 76: 01109
    [111] ?ksendal B, Sulem A. Applied Stochastic Control of Jump-Diffusions, Universitext, Berlin: Springer, 2005
    [112] Nicola B-L, Eckhard P. Strong approximations of stochastic differential equations with jumps J. Comput. Appl. Math., 2007, 205 (2): 982~1001
    [113] Higham D J, Kloeden P E. Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 2005, 101: 101~119
    [114] Higham D J, Kloeden P E. Convergence and stability of implicit methods for jump-diffusion systems, Int. J. Numer. Anal. Model, 2006, 3 (2): 125~140
    [115] Bruti-Liberati N, Platen E. Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 2007, 205 (2): 982~1001
    [116] Chalmers G D, Higham D J. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes, Discrete Contin. Dyn. Syst. Ser. B 2008, 9: 47~64
    [117] Sobczyk K. Stochastic Differential Equations with Applications to Physics and Engineering, Dordrent: Kluwer Academic, 1991
    [118] Baker C T H, Ford J M, Ford N J. Bifurcations in approximate solutions of Stochastic delay differential equations, Int. J. Bifurcat. Chaos, 2004, 14 (9): 2999~3021
    [119] Kolmanovskii V, Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht: Kluwer Academic Publishers, 1999
    [120] Kuang Y. Delay Differential Equations with Applications in Population Dynamics, San Diego: Academic Press, 1993
    [121] Higham D J, Mao X R, Stuart A M. Strong convergence of Euler-type methods for nonlinear stocahstic differential equations, SLAM J. Numer. Anal., 2002, 40: 1041~1063
    [122] Mao X R. Stochastic Differential Equations and Their Applications, Chichester: Horwood, 1997
    [123] Kolmanovskii V, Koroleva N, Maizenberg T, et al. Neutral stochastic differential delay equations with Markovian switching, Stoch. Anal. Appl., 2003, 21 (4): 819~847
    [124] Kolmanovskii V B, Nosov V R. Stability and Periodic Modes of Control Systems with Aftereffect, Moscow: Nauka, 1981
    [125] Luo Q, Mao X R, Shen Y. New criteria on exponential stability of neutral stochastic differential delay equations, Systems & Control Lett., 2006, 55 (10): 826~834
    [126] Zhou S B, Hu S G. Razumikhin-Type Theorems of Neutral Stochastic Functional Differential Equations, Acta Math. Sci. Ser. B Engl. Ed., 2009, 29 (1): 181~190
    [127] Zhang H M, Gan S Q. Mean square convergence of one-step methods for neutral stochastic differential delay equations, Appl. Math. Comput., 2008, 204 (2): 884~890
    [128] Zhou S B, Wu F K. Convergence of numerical solutions to neutral stochastic delay differential equations with Markovian switching, J. Comput. Appl. Math., 2009, 229 (1): 85~96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700