洛川剖面黄土的结构性及其力学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以前人对洛川黄土剖面土层的研究资料为基础,从宏、细、微观研究方法入手,通过土工常规实验、高压固结试验、三轴剪切试验、激光粒度分析、电镜扫描和CT扫描试验,对洛川剖面黄土的粒度组成、物理性质指标、微结构类型、结构性参数、压缩(湿陷)性、结构强度和抗剪强度进行了系统研究。从沉积环境和应力历史定性分析了黄土物理性质和微结构的关系及其在剖面上的差异性,以结构性参数和结构强度定量研究为基础,重点分析了结构性参数与黄土压缩性(湿陷性)以及结构强度与抗剪强度的相互关系,并基于土的微结构模型和广义有效应力原理,揭示了黄土结构压缩破坏和剪切破坏的力学机理,为结构性黄土压缩沉降变形的计算和抗剪强度参数的选取及稳定性分析提供了新的研究思路,对解决黄土工程问题具有重要的理论和实际意义,也促进了土结构性理论的发展和应用。取得的主要研究成果如下:
     (1)对洛川剖面黄土的粒度组成、孔隙特征、微结构和主要物理指标的试验研究表明,各层黄土的粒度组成以粗粉粒为主(含量大于50%),整体剖面上粒度比较均匀,不存在明显的粒度分异现象,而黄土微结构在剖面上的差异性主要受沉降环境和应力历史的影响。Q4、Q3新黄土以支架大孔微胶结和支架大孔半胶结为主的结构特征反映了干冷的气候环境和低应力下较短的沉积历史的共同作用;Q2老黄土以镶嵌微孔微胶结和镶嵌微孔半胶结为主的结构特征反映了高应力下的较长沉积历史是其主要影响因素,而干冷气候环境影响较小;Q2古土壤以絮凝状胶结和凝块状胶结为主的结构特征反映了湿热的气候环境和高应力下的较长沉积历史的共同作用。黄土物理性质指标和微结构类型在剖面上的变化具有很好的对应性,反映出黄土的结构对其工程性质具有控制作用。
     (2)通过高压固结试验,定量分析了各层黄土的应变综合结构势参数与含水量的关系,表明洛川剖面黄土从上到下(从新到老)其水敏性逐渐减弱。提出了基于应力的结构可稳性系数、结构可变性系数和应力综合结构势的定义和求取方法,重新定义了超固结比概念,并运用这些新概念、新方法对洛川剖面黄土的结构稳定性和固结状态进行了定量评价,结果表明Q4、Q3新黄土的结构稳定性差,处于欠压密状态,而Q2老黄土的结构稳定性相对较好,处于正常固结或轻超固结状态。上述研究结果与黄土的微结构特征和工程实际是一致的。
     (3)基于应变综合结构势的概念,推导出结构性参数与湿陷系数、水敏性系数与压缩系数的关系式,并定量分析了洛川剖面黄土的结构性参数与水敏性参数的变化规律。根据黄土三相物质的相互作用原理,提出了黄土微结构的概念模型,建立了非饱和黄土的广义有效应力模型,基于这些模型解释了黄土欠压密性和结构压缩破坏的力学机理,并探讨了结构性黄土固结沉降变形的计算方法。
     (4)运用土的抗剪强度理论,推导出结构强度的计算公式,建立了结构强度与抗剪强度的关系式,并通过原状黄土与重塑黄土的三轴剪切试验,定量分析了黄土结构强度和抗剪强度在剖面上的变化规律及其与含水量的关系,建立了原状黄土和重塑黄土的抗剪强度参数(粘聚力、内摩擦角)与含水量的拟合关系,探讨了以重塑土抗剪强度参数近似求取原状黄土强度参数的方法,为解决原状黄土三轴试验数据离散、强度参数变异性较大的问题提供了新的途径。同时基于三轴剪切的p-q应力路径,分析了黄土结构剪切破坏的力学机理。
     (5)通过黄土三轴剪切CT扫描试验,对初始、固结以及剪切过程中的CT数、损伤变量以及黄土细观结构损伤演化进行了全过程分析,运用损伤力学原理,建立了具有尺度效应的黄土结构损伤变量演化方程,并基于CT图像处理对三轴剪切过程中黄土细观结构损伤和硬化屈服的物理机制进行了量化分析。
Based on the previous academic research of Luochuan loess profile, this paper is considered from macroscopic, mesoscopic and microscopic ways,and systematically studied grain-size composition, physical property index, type of microstructure, structural parameter, compressive (collapsible) property, structural strength and shear strength of loess profile in Luochuan by means of routine soil test, high pressure consolidation test, triaxial shear test, laser particle size analysis technology, electron microscopic scanning and CT scanning tests. First, we qualitatively analyze the relationships between loess physical properties and microstructure under different sedimentary environment and stress history, and the differences on loess profiles. Following, on the basis of structural parameter and structural strength quantitative study, this paper focuses on the correlation between loess structural parameter and compressive (collapsible) property, and between structural strength and shear strength. The last but not the least, applying the model of soil microstructure and the principle of general effective stress, we reveal the mechanical mechanism of loess structural compressive failure and shear failure, which provides a method for profound study on the calculation of loess structural compression deformation, chosen of shear strength parameter and analysis of stability. So there is important academic significance and application value on solving loess project problem, and much contribution to the research and application of soil structure theory. The main contributions are as follows:
     (1) We take tests about grain-size composition, pore structural characteristics, microstructure and major physical property index. Result shows that the grain size of each layer is mainly coarse silt (content more than 50%), scattering in a fairly equal manner and showing no evident of grain size distribution. However, the differences of loess microstructure on the profile contribute to the sedimentary environment and stress history.The structure of Q4, Q3 neo-loess presents the bracketed-macropore weak-cemented structure and half-cemented structure characteristics, which reflects the result of interaction of dry and cold climate and short sedimentary history with low stress.The structure of Q2 old loess presents the inlaid-micropore weak-cemented structure and half-cemented structure characteristics, which reflects the material effect by long sedimentary history with high stress, while the tiny effect by dry and cold climate.The structure of Q2 paleosol presents the flocculated-cemented structure and clotted cemented structure characteristics, which reflects the result of interaction of wet and hot climate and long sedimentary history with high stress.There is a perfect correspondence between loess physical property index and microstructure along with the change on the profile, illustrating that loess'structure controls its engineering properties.
     (2) From high pressure consolidation test, we quantitatively analyze the relationship between the parameter of strain comprehensive structure potential (strain-CSP) and content of water for each loess layer. It finds that the deeper the loess profiles, the weaker the water sensitivity of Luochuan loess. This paper introduces the definitions and calculation methods of structural stability coefficient, structural variability coefficient and stress comprehensive structure potential (stress-CSP) based on stress, and redefines the concept of over-consolidation ratio. We quantitatively evaluate the structural stability and consolidated state of Luochuan loess profile using these new concepts and methods.The results indicate that structural stability of Q4, Q3 new-loess is poor and at under-consolidated state. Correspondingly, structural stability of Q2 old loess is relatively good and at normal consolidated or slightly over-consolidated state. the research results above comply with loess microstructural properties and engineering practice.
     (3) With the concept of strain-CSP, we deduce the equations between structural parameter and collapsible coefficient, between water sensitivity and compression coefficient, and quantitatively analyze the variation rules of between structural parameter and water sensitivity parameter on Luochuan loess profile.According to the interaction theory of loess three-phase material, we put forward loess microstructure concept model, and establish general effective stress model of unsaturated soil. Under these models, we explain the mechanical mechanism of loess under-consolidated property and structural compression failure, and conclude the calculation method of structural loess consolidation settlement.
     (4) We deduce the calculation formula of structural strength and the relation between structural strength and shear strength by the means of the theory of shear strength. Through the triaxial shear test of original loess and remolded loess, we quantitatively analyze the variation rules of loess structural strength and shear strength when profile changes, and the relationships with the content of water.Following, we fit the relationship between the shear strength parameters (i.e. cohesion, internal friction angle) of original loess and remolded loess and the content of water, and discuss the approximate method to estimate original loess strength parameters by remolded loess shear strength parameters, which provide new way to solve the problems that there is great data dispersion and strength parameters variability in original loess triaxial shear test. Meanwhile, we analyze the mechanical mechanism of loess structural compressive failure, according to the p-q stress paths of triaxial shear test.
     (5) With the help of loess CT-triaxial shear test, we analyze the CT values, damage variable and the whole damage evolution of loess mesostructure during the initial process, consolidation and shear process, and eventually establish evolution equations of loess structural damage variable with scale effect on the basis of principle of damage mechanics. Also, we make a quantitative analysis on the mechanism of loess mesostructural damage and harden yield during the triaxial shear process, based on the CT images processing.
引文
[1]王永炎.黄土与第四纪地质[M].西安:陕西人民出版社,1982.
    [2]刘东生.黄土与环境[M].北京:科学出版社.1985.
    [3]张宗枯著.中国黄土[M].石家庄:河北教育出版社.2003.
    [4]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [5]龚晓南,熊传祥,项可祥.粘土结构性对其力学性能的影响及形成原因分析[J].水利学报,2000,(10):43-47.
    [6]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):3-13.
    [7]Terzaghi K.Theoretical Soil Mechanics[M].NewYork:Weley,1943.
    [8]张成厚.两种结构性粘土的土工性质[J].水利水运科学研究,1983,(4):65-70.
    [9]高国瑞.我国黄土湿陷性质的形成研究[J].南京建筑工程学院学报,1994,(2):1-8.
    [10]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    [11]张茂花.湿陷性黄土增(减)湿变形性状试验研究[D].西安:长安大学,2002:2-10.
    [12]郑晏武.中国黄土的湿陷性[M].北京:地质出版社,1982.
    [13]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
    [14]钱鸿缙,王继唐.湿陷性黄土地基[M].北京:中国建筑工业出版社,1985.
    [15]陈正汉,刘祖典.黄土的湿陷变形机理.岩土工程学报[J],1986,12(2):1-12.
    [16]杨增光.黄土的湿陷性及评价[J].山西建筑,2001,28(3):41-42.
    [17]刘佑荣,张文殊,王清.工程岩土学[M].地质出版社,1987,10:128-132.
    [18]王永焱,林在贯等.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990:65-67.
    [19]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):3-13.
    [20]涂光祉.试论黄土地基的自重湿陷敏感性[J].工程勘察,1980:168-170.
    [21]Casagrande.A.The structure of clay and its importance in foundation engineering[J]. Journal of Boston Society of Civil Engineering,1932,19(4):168-209.
    [22]W.L.Kubiena.Micropedology[M].1938.
    [23]LambeT.W. The structure of compacted clay[J].J.SMFD.ASCE,1958,Vol.84.No.SM2.
    [24]Seed H.B,ChenC.K.Structure and strength characteristics of compacted clay and evolution during consolidation[J].Canadian Geotechnical Journal.1984,(21):21-25.
    [25]N.K.tovey.Quantitative analysis of electron microgaphs of soil microstructure[J]. Proceeding of the International Symposium on soil strueture,1973,50-58.
    [26]YongR.N, D.E.Sheeran.Fabric unit interaction and soil behavior[J].Proceeding of the International Symposium on soil structure,1973.
    [27]YongR.N, NagarajT.S.Investigation of fabric and compressibility of Louisviue clay[J]. Canadian Geotechnical Conference.1977,23-25.
    [28]Osipov V I. Microstructure and changes associated with thixotropic phenolmena inclay soils[J]. Geotechnique,1984,34(2):293-303.
    [29]Bai X,Smart P. Change in microstructure of Kailin in consolidation and undrained chear.Geotechnique, 1997,47(5):1009-1017.
    [30]Bai X,Smart P,Leng X.Polarizing microphoto metric anlysis[J].Geotechanique,1994,44(4):175-180.
    [31]Kuo C Y,Fost J D,A Chameau J L.Image analysis determination of stereology based fabric tensors[J]. Geotechnique,1998,48(4):515-525.
    [32]常宝琦.黄土湿陷性的初步研究[C].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文 集,1962,60-65.
    [33]林崇义.黄土的结构特性[C].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962,42-44.
    [34]张宗祜.我国黄土显微结构研究[J].地质学报,1964,44(3):152-155.
    [35]高国瑞.黄土湿陷变形的结构理论[J].岩土工程报,1990,12(4):1-10.
    [36]雷祥义.黄土的孔隙大小与湿陷性[J].水文地质与工程地质,1987,(5):10-14.
    [37]杨运来.黄土湿陷机理的研究[J].中国科学,1998,(7):756-765.
    [38]张宗枯.黄土湿陷变形过程中微结构变化特征及湿陷性评价[C].国际交流地质学术论集,1985,12-15.
    [39]王永炎.黄土与第四纪地质[M].西安:陕西人民出版社,1982.
    [40]H Wan,Lwan, Z Yuan.Comparison of liquefaetion potentialof loess in Lan-zhou[M].Soil Dynamics and Earthquake Engineering,2000,33(5):389-395.
    [41]Z Y Gou, Z D Liu, WYRao.Nonlinear finite element analysis of reinforced concrete test tunnel in loess [M]. Rock Mechanics and Mining Science,1990,27(2):122-127.
    [42]苗天德,王正贵.考虑黄土微结构失稳的湿陷性和黄土变形机理[J].中国科学(B),1990,No.1
    [43]苗天德,王正贵.考虑黄土微结构失稳的湿陷性和黄土变形机理[J].中国科学(B),1993,(7):24-29
    [44]Wang Jian guo.A micromechanicalstructuralanalysis of collapse deformation of loess[J]. In:The 7th International Conference on Expansive soils,1992,8.
    [45]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):1-6.
    [46]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993(3):247-255.
    [47]沈珠江.岩土力学理论的某些进展[J].江苏力学,1994,35-36.
    [48]沈珠江.非饱和土土力学的回顾与展望[J].水利水电科技进展,1996,16(1):1-5.
    [49]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1-4.
    [50]谢定义.21世纪土力学的思考[J].岩土工程学报,1997,19(4):111-114.
    [51]谢定义.黄土力学特性与应用研究的过去现在与未来[J].地下空间,1999,19(4):273-284.
    [52]丁伯阳,苗天德.黄土振陷的骨架崩塌模型[J].地震工程与工程振动,1998,18(1):252-257.
    [53]胡瑞林,王思敬.21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999,(4):5-8.
    [54]张诚厚.两种结构性粘土的工程性质[J].水利水运科学研究,1983(4):66-71.
    [55]张炜,张苏民.非饱和黄土的结构强度特性[J].水文地质,1992(1):22-25.
    [56]张炜.黄土力学性质试验中的几个问题[J].工程勘察,1995,3:24-27.
    [57]党进谦,李靖.非饱和黄土的结构特征[J].岩土工程学报,1997,19(2):56-61.
    [58]党进谦.非饱和黄土结构强度及其应用[J].西北农业大学学报,1998.10(5):48-51.
    [59]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001,(7):79-83.
    [60]胡再强,沈珠江,谢定义.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779.
    [61]胡再强.非饱和黄土的显微结构与湿陷性[J].水利水运科学研究,2000,(2):68-71.
    [62]胡再强,谢定义,沈珠江.黄土稳定孔隙比原理的试验研究[J].水利学报,2002,(8):97-100.
    [63]田堪良,张慧莉,骆亚生.黄土的结构强度及其定量分析方法[A].见:第七届全国土力学及基础工程学术会议论文集[C].北京:中国科学技术出版社,2002:178-180.
    [64]骆亚生,谢定义,邢义川.原状黄土的地区湿陷特性及其潜在湿陷率[J].西北农林科技大学学报,2002,2(5):90-95.
    [65]齐吉琳.土的结构性及其定量化参数的研究[D].西安:西安理工大学,1999.
    [66]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [67]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形强度的关系[J].水利学报,1999,(10):1-6.
    [68]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-40.
    [69]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):3-13.
    [70]骆亚生.非饱和黄土在动静复杂应力条件下的结构变化特性及结构性本构关系研究[D].西安:西安理工大学博士学位论文,2003.
    [71]骆亚生,谢定义.复杂应力状态下的土结构性参数[J].岩石力学与工程学报,2004,23(24):4248-4251.
    [72]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531-536.
    [73]邵生俊,龙吉勇,杨生等.湿陷性黄土结构性变形特性分析[J].岩土力学,2006,27(10):1668-1672.
    [74]陈存礼,高鹏,唐杰.三轴应力状态下不同湿度原状黄土的结构性定量化参数[J].岩石力学与工程学报,2006,25(11):2313-2319.
    [75]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究[J].岩土力学,2006,27(11):1891-1896.
    [76]陈存礼,何军方,杨鹏.考虑结构性影响的原状黄土本构关系[J].岩土力学,2007,28(11):2284-2289.
    [77]肖智政,刘宝琛.残积红粘土的力学特性试验研究[J].地下空间与工程学报,2005,1(7):990-993.
    [78]米海珍,李如梦,牛军贤.含水量对兰州黄土剪切强度特性的影响[J].甘肃科学报,2006,18(1):78-81.
    [79]刘熙媛.河北省非饱和土含水量与抗剪强度参数关系的试验研究[J].河北工业大学学报,2006,(6):22-28
    [80]李兆平,张弥,赵慧丽.含水量的变化对非饱和土强度影响[J].西部探矿工程,2001,(4):30-34.
    [81]熊承任,刘保探,张家生,刘多文.重塑非饱和黏性土UU抗剪强度参数与饱和度的关系[J].水土保持通报,2003,23(6):19-22.
    [82]叶朝良,岳祖润,舒玉.原状残积粉质黏土的饱和度与抗剪强度关系的研究初探[J].路基工程,2002,(1):15-19.
    [83]张茂花,谢永利,刘保健.增湿时黄土的抗剪强度特性分析[J].岩石力学与工程学报,2006,27(7):1195-1200.
    [84]程小勇,项伟,于月娥等.原状黄土抗剪强度参数定量化研究[J].岩土力学,2008,29(5):1264-1268.
    [85]张引科,杨林德等.非饱和土的结构强度[J].西安建筑科技大学学报(白然科学版),2003,35(1):33-36.
    [86]徐永福,傅德明.非饱和土结构强度的研究[J].工程力学,1999,16(4):73-77.
    [87]张伯平,袁智海,王力.含水量对黄土结构强度影响的定量分析[J].西北农业大报,1994,22(1):32-36.
    [88]邵生俊,邓国华.原状黄土的结构性强度特性及其在黄土隧道围岩压力分析中的应用[J].土木工程学报,2008,41(11):93-95.
    [89]吴志刚,党进谦,高建勇.非饱和黄土结构强度特性的试验研究[J].路基工程,2007(5):77-78.
    [90]吴志刚,党进谦,高建勇.非饱和黄土抗剪强度与结构强度的关系特性[J].人民长江,2007,38(1):117-118.
    [91]王冠英,肖树芳,习春飞.海积软土前期固结压力与结构强度的关系及成因分析[J].世界地质,2004,23(1):69-74.
    [92]王国欣,肖树芳,周旺高.原状结构性土先期固结压力及结构强度的确定[J].岩土工程学报,2003,25(2):249-251.
    [93]房后国,肖树芳,汪士锋.天津地区海积软土结构强度及其对力学特性的影响[J].吉林大学学报(地球科学版),2002,32(1):73-76.
    [94]沈珠江.软土工程特性和软土地基设计.岩土工程学报[J].1998,20(1):100-112.
    [95]党进谦,李靖.含水量对黄土先期固结压力的影响[J],西北水资源与水工程,1995,6(3):74-76.
    [96]张洵亚,邵生俊.先期固结压力测定改进法[J].陕西水力发电,1999,25(2):43-46.
    [97]胡中雄,魏道垛.软粘土准前期固结压力试验及计算公式[A].中国土木工程学会主编第三届土力学及基础工程学术会议论文集.北京:中国建筑工业出社,1981:162.
    [98]陈立,李靖,王俊卿等.黄土的结构强度及其与结构屈服压力的关系[J].岩土工程学报,2008,30(6):895-899.
    [99]赵锡宏,孙红,罗冠威.损伤土力学[M].上海:同济大学出版社,2000.
    [100]刘洋,赵明阶.岩石损伤本构理论研究综述[J].山东交通学院学报,2005,13(4):40-44.
    [101]Dougill J W,Lau J C,Burt N J.Mechanics in Eng[J].ASCE.EMD,1976,333-355.
    [102]Lemaitre J,Chaboche J L. Aspect phenomenologique de la Rupture Par Endommagement[J].J.de Mec.Appl,2(3),1978.
    [103]Dragon A,Mroz Z,A continuum model for plastic brittle behavior of rock and concrete [J].Int.J.Eng. Sci.,1979,17:121-137.
    [104]Krajcinovic D et al.The continuous damage theory of brittle materials [J].J.Appl.Mech,1981,48(4): 809-815.
    [105]Lemaitre J.How to use damage mechanics [J].Nuclear Eng.Design,1985,80(1):233-245.
    [106]Gurson a l.Plastic flow and fracture behavior of ductile materials incorporating void nucleation,growth andinteraction[D].Providence:Brown University,1975.
    [107]Kemeny J. Effective moduli.Nonlinear deformation and strength of a cracked elastic solid[J]. Int.J.Rock Mech. Min. Sci.&Geometh.Abstract.1986,23(2):107-118.
    [108]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [109]谢和平.分形几何及在岩土力学中的应用[J].岩土工程学报,1992,14(1):1-17.
    [110]谢和平.分形损伤力学[A].中国青年学者岩土工程力学及其应用讨论会论文集[C].北京:科学出版社,1994.
    [111]谢和平.动态裂纹扩展中的分形效应[J].力学学报,1995,27(1):1-10.
    [112]谢和平.分形-岩石力学导论[M].北京:科学出版社,1997.
    [113]肖洪天,周维垣,杨若琼.岩石裂纹流变扩展的细观机理分析[J].岩石力学与工程学报,1999,18(5):512-515.
    [114]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
    [115]高文学等.脆性岩石冲击损伤模型研究[J].岩石力学与工程学报,2000,19(2):153-156.
    [116]黄树华.岩石力学研究中AE和CT装置的应用[J].岩土力学,1989,10(1):83-86.
    [117]沈珠江.土体变形特性的损伤力学模拟[J].第五界全国岩土力学数值分析与解析方法讨论会论文集,1994,1-8.
    [118]沈珠江.岩土力学理论的某些进展[J].江苏力学,1994,35-36.
    [119]苗天德,魏雪霞,张长庆.冻土蠕变过程的微结构损伤理论[J].中国科学(B集),1995,25(3):309-317.
    [120]何平,程国栋.冻土粘弹塑性损伤耦合本构理论[J].中国科学(D集),1999,22(1):158-162.
    [121]刘增利,李洪升,朱元林.冻土单轴压缩损伤特征和细观损伤测试[J].大连理工大学学报,2002,42(2):15-19.
    [122]张树光,张向东.单轴压缩条件下冻土的动态损伤和分形演化规律[J].岩土力学,2003,24:77-79.
    [123]刘增利,李洪升,朱元林,等.冻土单轴压缩动态试验研究[J].岩土力学,2002,23(1):51-53.
    [124]孙星亮,汪稔,胡明鉴.冻土弹塑性各向异性损伤模型及其损伤分析[J].岩石力学与工程学报2005,24(19):3517-3521.
    [125]施建勇,赵维炳,顾吉,等.考虑损伤的软土地基变形分析[J].岩土工程学报,1998,20(2):33-35.
    [126]孙红,赵锡宏.结构性软土的损伤及其对地基沉降的影响[J].岩土力学.1999,20(1):19-21.
    [127]吴能森,侯伟生,赵尘.土的结构性损伤与损伤模型问题探讨[J].福建工程学院学报,2005,3(1):21-23.
    [128]熊玉春,房营光.饱和软粘土地基的损伤模型与震陷计算[J].振动工程学报,2006,19(3):359-363.
    [129]熊传祥,龚晓南.一种改进的软土结构性弹塑性损伤模型[J].岩土力学,2006,27(3):395-398.
    [130]陈正汉,卢再华,蒲毅彬.非饱和土三轴仪的CT机配套及其应用[J].岩土工程学报,2001,23(4):387-392.
    [131]卢再华,陈正汉,蒲毅彬.原状膨胀土损伤演化的三轴CT试验研究[J].水利学报,2002(6):106-112.
    [132]卢再华,陈正汉,蒲毅彬.膨胀土干湿循环胀缩裂隙演化的CT试验研究[J].岩土力学,2002,23(4):417-422.
    [133]卢再华,陈正汉.非饱和原状膨胀土的弹塑性损伤本构模型研究[J].岩土工程学报,2003,25(4):422-426.
    [134]卢再华,陈正汉,蒲毅彬.原状膨胀土剪切损伤演化的定量分析[J].岩石力学与工程学报,2004,23(9):1428-1432.
    [135]雷胜友,许瑛.膨胀土损伤增量规律试验研究[J].铁道科学与工程学报,2005,2(4):6-10.
    [136]沈珠江,胡再强.黄土的二元介质模型[J].水利学报,2003(7):1-6.
    [137]夏旺民,郭增玉.Q1黄土的弹塑性损伤本构模型[J].岩土力学,2004,25(9):1423-1426.
    [138]胡再强,沈珠江,谢定义.结构性黄土的本构模型[J].岩石力学与工程学报,2005,24(4):565-569.
    [139]邵生俊,李彦兴,周飞飞.湿陷性黄土结构损伤演化特性[J].岩石力学与工程学报,2004,23(24):4161-4165.
    [140]邵生俊,周飞飞,宋春霞.考虑黄土结构性变化的地基增湿压缩变形分析[J].土木工程学报,2006,39(6):94-99.
    [141]邵生俊,罗爱忠,于清高等.加荷增湿作用下Q3粘黄土的结构损伤特性[J].岩土工程学报,2006,28(12):2077-2081.
    [142]雷胜友,唐文栋.黄土在受力和湿陷过程中微结构变化的CT扫描分析[J].岩石力学与工程学报,2004,23(24):4166-4169.
    [143]雷胜友,唐文栋,王晓谋等.原状黄土损伤破坏过程的CT扫描分析[J].兰州理工大学学报,2004,30(4):110-114.
    [144]雷胜友,唐文栋.原状黄土硬化屈服的损伤试验研究[J].土木工程学报,2006,39(2):73-77.
    [145]倪万魁,杨泓全,王朝阳.路基原状黄土细观结构损伤规律的CT检测分析[J].公路交通科技,2005,22(6):81-83.
    [146]王朝阳,庞旭卿,倪万魁等.黄土三轴应力条件下的细观试验研究[J].岩土工程界,2005,8(8):65-66.
    [147]林斌,赵法锁.黄土的损伤及其演化规律研究[J].安徽理工大学学报(自然科版),2006,26(3):17-21.
    [148]谢星,赵法锁,王东红.Q2黄土的结构损伤演化分析[J].西安科技大学学报,2007,3(1):78-82.
    [149]谢星,王东红,赵法锁.单轴压缩下结构性Q2黄土的损伤本构模型研究[J].水文地质工程地质,2008,(3):47-50.
    [150]黄树华.岩石力学研究中AE和CT装置的应用.岩土力学,1989,10(1):83-86.
    [151]Colliant-Dangus J L,Desrues J, Foray P. Triaxial testing of granular soil under elevated cell pressure.In:Donaghe R T, Chaney R C, Silver M L,ed.Advanced Triaxial Testing for Soil andRocks.Philadelphia,1988.STP977,290-310。
    [152]Mokni M.Relaitons entre deformations en masse et deformantions localisees dansles materiaus granulaires[D].Ph. D thesis,Universite J.Fourier de Grenoble, Fance,1992
    [153]Tillard-Ngan D,Desrues J, Raynaud S, et al. Strain localization in the Beaucaire marl[J]. In:Geotechnical engieering of hard soils-soft rocks.Rotterdam:Balkema.1992.1697-1686
    [154]Desrues J,Chambon R, Mokni M, et al. Void ratio evolution inside shear bands in trixial and speciments studied by computed tomography [J]. Geotechnique,1996,46(3):529-546.
    [155]Robert AJ,John SS,Louis MC,et al. Nondestruetive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography[J]. Journal of Geophysical Research,1993,98(B2): 1889-1900.
    [156]Verhelst F,Vervoort A.Debosscher P H, et al.X-ray computerized tomography:Determination of heterogeneities in rock samples. In:Sakurai S ed.Proceedings of the 8th International Congress on Rock Mechanics. Rotterdam:A.A.Balkema,1995,105-108.
    [157]Kawakata H,Cho A,Kiyama T,et al.Three-dimensional observations of faulting process in Westerly granite under uniaxial condintions by CT X-ray scan[J].Tectonophysics,1999,313:293-305.
    [158]Ueta K,Tani K,KatoT.Computerized X-ray tomography analysis of three-dimensional fault geometries in basement-induced wrench faulting.Engineering Geology,2000,56:197-210.
    [159]Kruse G A M, Bezuijen A.The use of CT scans to evaluate soil models[J].Proc.of Centrifuge'98. Balkema,1998.79-84
    [160]Otani J, Mukunoki T, Obara Y. Application of X-ray CT Method for characterization of failure in soils[J].Soils and Foundations,2000,40(2):111-118
    [161]Otani J, Mukunoki T,Obara Y.Computer methods and Advances in geomechanics[J].Fesai et al.ed. Balkema, Rotterdam,2001.997-980.
    [162]蒲毅彬.CT在岩土实验中的数值分析[J].CT理论与应用研究,1994,3(3):8-12.
    [163]蒲毅彬,吴紫汪,马巍等.冻土CT试验的数学方程[J].冰川冻土,1995,17(增):35-139.
    [164]杨更社,孙钧.岩石材料损伤变量与CT数间的关系分析[J].力学与实践,1998,20(4):47-49.
    [165]杨更社等.岩石单轴受力CT识别损伤本构关系的探讨[J].岩土力学,1997,18(2):29-34.
    [166]杨更社,谢定义,张长庆等.岩石损伤特性的CT识别[J].岩石力学与工程学报,1996.15(1):48-54.
    [167]吴紫汪,马巍,蒲毅彬.冻土蠕变变形特征细观分析[J].岩土工程学报,1997,19(3):1-6.
    [168]吴紫汪等.冻土蠕变过程体积变化的CT分析[J].冰川冻土,1995.17(增刊):41-46.
    [169]吴紫汪等.冻土蠕变过程中结构的CT分析[J].CT理论与应用研究,1995,4(3):34-40.
    [170]吴紫汪等.冻土单轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1996,18(4):306-311
    [171]蒲毅彬,朱元林.CT用于冻结土、岩、冰的无损动态试验研究[J].自然科学进展,1998,8(2): 251-253.
    [172]马巍,吴紫汪等.冻土三轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1997,19(1):52-57.
    [173]Ma W,et al.Monitoring the change of structure in frozen soil during the creep process by CT[J]. The International Conference on Permafrost,Canada,1998.
    [174]杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998.
    [175]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [176]葛修润,任建喜,蒲毅彬.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195.
    [177]葛修润,任建喜,蒲毅彬等.岩石细观损伤扩展规律的CT实时试验[J].中国科学E辑2000,30(2):104-111.
    [178]葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [179]任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19(6):697-701
    [180]任建喜,葛修润.2001.单轴压缩岩石损伤演化细观机理及其本构模型研究[J].岩石力学与工程学报,20(4):
    [181]蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报,2000,22(1):49-54.
    [182]李晓军,张登良.CT技术在土体结构性分析中的应用初探[J].岩土力学,1999,20(2):62-66.
    [183]唐文栋.湿陷性黄土的静力特性及三轴试验过程的CT扫描研究[D].西安:长安大学,2003.
    [184]孙红,葛修润,牛富俊等.上海粉质粘土的三轴CT实时细观试验[J].岩石力学与工程学报,2005,24(24):4559-4564.
    [185]孙红,葛修润,蒲毅彬等.三轴应力条件下上海灰色粘土的CT细观试验研究[J].岩土力学,2004,25(9):1455-1459.
    [186]孙建中.刘建民.黄土的未饱和湿陷、剩余湿陷和多次湿陷.岩土工程学报[J].2000,22(3):365-367.
    [187]郭正堂,丁仲礼,刘东生.黄土中的沉积-成壤事件与第四纪气候旋回[J].科学报,1996,41(1):56-59.
    [188]路化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学,1998,28(3):278-283.
    [189]李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报,1982,4(1):34-45.
    [190]唐大雄,刘佑荣,张文殊等.工程岩土学[M](第二版),北京:地质出版社,1999.
    [191]陈立.黄土的结构强度及其与结构屈服压力的关系[D].硕士学位论文,西安:西北农林科技大学,2008.
    [192]李涛,钱寿易.土样扰动影响的评价及其先期固结压力的确定[J].岩土工程学报,1987,9(5):21-30.
    [193]钱家欢,郭志平等.土工原理与计算[M].北京:水利电力出版社,1982.180-183.
    [194]钱家欢.土力学[M].南京:河海大学出版社,1988.86-87.
    [195]邹越强,王建斌.推求先期固结压力的逐步逼近法[J].岩土工程学报,1994,16(3):54-61.
    [196]Schmertmann J H.The undisturbed consolidation behavior of clay trans [J].ASCE,1955,120:1201-1227.
    [197]刘海松.考虑沉积环境和应力历史的黄土力学特性研究[D].长安大学博士论文,2008.
    [198]倪万魁,颜斌,刘海松等.湿陷性黄土工程特性及地基处治技术研究[R].西安,长安大学,2005.
    [199]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992,94-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700