钢筋混凝土箱梁非线性分析及剪滞、剪切效应的有限段法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土薄壁箱梁由于具有良好的空间整体受力性能而广泛用于现代铁路桥、公路桥和城市立交桥中。箱梁的分析计算与一般梁相比具有显著差别,其中剪滞及剪切变形效应不可忽略。带裂缝工作的钢筋混凝土箱梁已表现出明显的非线性力学性能,且与剪滞及剪切变形效应互相影响。
     本文针对影响钢筋混凝土箱梁力学性能和工作性能的主要因素,如剪滞、横向剪切变形、混凝土和钢筋的非线性本构关系、混凝土开裂导致的截面刚度变化等,围绕钢筋混凝土箱梁结构分析的非线性有限段法进行了研究。
     设计了钢筋混凝土箱梁剪滞效应的试验方案并完成试验,测得了钢筋混凝土箱梁的荷载-位移关系,获得了箱梁截面纵向应力分布情况,以及钢筋混凝土箱梁的裂缝分布及发展情况,证实了钢筋混凝土箱梁仍存在明显的剪滞效应,为钢筋混凝土箱梁的理论研究奠定了试验基础。
     在有限段单元中引入换算截面,建立了钢筋混凝土箱梁有限段单元刚度矩阵,使有限段法可方便地分析钢筋混凝土箱梁整截面工作阶段的剪滞、剪切变形双重效应,并编制了相应的FORTRAN语言程序EBOX。
     基于混凝土及钢筋非线性本构关系,建立了钢筋混凝土箱梁分层有限段模型,将应力不均匀系数引入该有限段模型以考虑单元内沿长度方向钢筋应力的不均匀分布及受拉刚化效应,编制了钢筋混凝土箱梁的材料非线性有限元程序RCBB,该程序可分析混凝土开裂前及开裂后的剪滞、剪切变形效应,且具有计算量小,精度较高的特点。程序RCBB计算结果与试验结果吻合较好,验证了程序的正确性,对钢筋混凝土箱梁而言,仅计算弯曲变形引起的挠度都是偏小的,故需要同时再考虑剪滞及剪切变形所引起的挠度,对于此类箱梁截面而言,在计算挠度时,横向剪切变形效应的影响大于剪滞效应的影响。
     利用所编有限段法计算程序,分析了荷载形式、结构体系、配筋量及材料非线性对剪滞、剪切效应的影响。首先计算了不同荷载形式及不同荷载等级作用下,在整截面工作阶段及带裂缝工作阶段,钢筋混凝土简支箱梁及连续箱梁的截面应力、剪力滞系数及荷载-挠度曲线;然后分析了顶板及底板配筋量变化时,对挠度及剪力滞系数的影响;最后对钢筋混凝土箱梁剪滞、剪切效应及材料非线性的相互影响进行了分析,得出了一些有助于工程应用的结论。
     对钢筋混凝土箱梁进行了剪滞、剪切及材料非线性的实用计算方法研究。提出了采用换算截面进行钢筋混凝土箱梁整截面工作阶段应力计算的方法,并基于能量原理分析了纵筋剪切应变能对截面纵向应力的影响;基于等效刚度原则,提出了钢筋混凝土变截面悬臂箱梁整截面工作阶段剪力滞系数及挠度近似计算方法,并采用该方法分析了一有机玻璃悬臂箱梁及一钢筋混凝土悬臂箱梁,计算结果与按有限段法及ANSYS板壳元法计算结果接近,说明了该方法的有效性;提出了采用分段换算截面进行钢筋混凝土箱梁带裂缝工作阶段挠度的近似计算方法,计算中可考虑剪滞、剪切变形效应,算例表明分段换算截面法能满足工程精度要求;最后基于莫氏假定,推导了钢筋混凝土箱梁纵向受拉钢筋最小配筋量计算公式,该公式可考虑箱形截面顶底板几何尺寸对开裂弯矩的影响,对工程设计有一定的参考价值。
Concrete thin-walled box girders have good mechanical properties of the space and have been widely used in modern railway bridges, highway bridges and urban interchange bridges. Analysis and calculation of box beams have significant difference from others. Shear lag and shear deformation phenomenon in box beam can not be ignored. The non-linear mechanical performance is clearly in reinforced concrete box beam after crack, and interacts with the effect of shear lag and shear deformation.
     Some works have been done as following:shear lag in reinforced concrete box girder, transverse shear deformation, nonlinear models of concrete and steel, concrete cracking, section stiffness, and non-linear finite element analysis considering the above issues, et..
     Experiment program on shear lag effect of reinforced concrete box beam is designed, the load-displacement relationship of reinforced concrete box beam is measured, longitudinal stress distribution of box section, crack distribution and development of reinforced concrete box beam is obtained, the fact that there are still significant shear lag effect in reinforced concrete box beam is confirmed.
     Based on the initial parameters equation of thin-walled box beam, the finite element stiffness matrix is established, and the corresponding FORTRAN language program EBOX is developed. The finite segment method can be easily used to analyses the double effects of shear lag and shear deformation of reinforced concrete box beam before cracking when transformed section is used in the finite segment method.
     Based on the nonlinear constitutive relation models of concrete and reinforced, Hierarchical finite segment model of reinforced concrete box beam is established. Stress asymmetry coefficient is used to consider the uneven distribution of steel stress along.the length of the element and tension stiffening effect. Reinforced concrete box beam material nonlinear finite element program RCBB is developed, which can be used to analyses the double effects of shear lag and shear deformation of reinforced concrete box beam before and after cracking, and with the characteristics of small amount calculation as well as high precision. Results calculated by program RCBB are in good agreement with the experimental results, which verify the correctness of the program. In terms of reinforced concrete box beam, when calculating vertical displacement, the effect of shear-lag, shear deformation, should be considered enough. If only consider the effect of bending, the vertical displacement is less than the actual value. To the vertical displacement of reinforced concrete box beam, the effect of shear deformation is greater than the effect of shear-lag.
     The influence factors of the shear-lag and shear deformation, such as load type, structural system, reinforcement, and material nonlinear are analyzed by the program. The section stress, shear-lag coefficient and load-displacement of simple supported beam and continuous beam are calculated under different load type and different load grade. Then the effect of reinforcement is analyzed. At last, the interaction effect of shear-lag, shear deformation and material nonlinear is analyzed. The conclusion is helpful for applying in actual engineering.
     The practical calculation method for shear-lag, shear deformation, and material nonlinear of reinforced concrete box beam are proposed. The first simplified method is transformed section method. It can be applied to calculate the section stress in the working stage of whole cross-section. During the calculation and based on the energy principle, the effect of energy of shear strain on section stress is analyzed. The second simplified method is principle of equivalent stiffness. It can be applied to calculate the shear-lag coefficient and displacement of varying depth cantilever beam in the working stage of whole cross-section. As examples the method is used for shear lag analysis of an organic glass cantilever box beam with varying depth and a reinforced concrete box beam with varying depth. The results are agreed with the results by ANSYS well shows that the method is effective. The third simplified method is the uneven transformed section method. It can be applied to calculate the displacement of reinforced concrete box beam in the working stage after crack, and the effect of shear-lag and shear deformation can be considered in it. The fourth simplified method is minimum reinforcement calculation and helpful to design. The effects of geometries of top plate and bottom plate on cracking bending moment are considered init. All the simplified methods are explained with examples.
引文
[1]郭金琼.箱形梁设计理论.北京:人民交通出版社,1991.
    [2]Reissner E. Analysis of Shear lag in Box Beams by the principle of Minimum potential Energy. Quart. J. Appl. Math,1946,4(3):268-278.
    [3]Song Q. G., Scordelis. A. C. Shear lag analysis of T-, I-, and box beams, Journal of Structural Engineering,ASCE,1990,116 (5):1290-1305.
    [4]张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应.北京:人民交通出版社,1998.
    [5]黄剑源,杨允表.钱塘江二桥变截面箱形连续梁剪力滞效应的有限元分析.桥梁建设,1994,(1):70-76.
    [6]李国平,项海帆.上海南浦大桥结合梁翼板剪力滞分析.中国土木工程学会桥梁及结构工程学会第九届年会论文集,1990.
    [7]罗旗帜,俞建立.钢筋混凝土连续箱梁桥翼板横向裂缝问题.桥梁建设,1997(1):41-45.
    [8]周若来,沈成武.某高速公路跨线桥裂缝成因分析.武汉理工大学学报,2003(1):84-86.
    [9]方淑君,戴公连,狄谨.梁板结构在轴力及弯矩作用下截面剪力滞效应的研究.长沙铁道学院学报,2001,19(3):45-48.
    [10]过镇海,时旭东.钢筋混凝土原理与分析.北京:清华大学出版社,2003.
    [11]S.铁摩辛柯等.材料力学.北京:科学出版社,1978.
    [12]吴亚平.薄壁箱梁剪力滞后及剪切变形双重效应分析.工程力学增刊,1994:425-428.
    [13]江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社,2005.
    [14]Karman T. V., Die mittragende breite, beitrage zur technischen mechanik undtechnischen physic, Berlin:August Foppl Festschrift, Julius Springer,1924:114-127.
    [15]Leejan, Effective width of Tee-beams, The structural Engineer:1962,40(1):21-27.
    [16]Evans H. R., Ahmad M. K. H., Kristek V. Shear lag in composite box girders of complex cross section, Constructional Steal Research,1993,24(3):183-204.
    [17]Hildbrand P. B., The exact solution of shear lag problems in flat panels and box beams assumed rigid in the transverse direction, NACA,1943, (TN894):90-95.
    [18]Abdel-Sayed G., Effective width of steel deck plate in bridge, J. Struct. Div, ASCE,1969,95(ST7):1459-1474.
    [19]Malcolm D. J., Redwood R. G., Shear lag in stiffened box girders, J. Struct. Div, ASCE,1970,96 (ST7): 1403-1419.
    [20]Adekola A.O., On shear lag effects in orthotropic composite beams, Solids Structures,1974,10(4):735-754.
    [21]Adekola A.O.,The dependence of shear lag on partial interaction in composite beams,Solids Structures,1974,10(7):389-400.
    [22]Goldberg J. E., Leve H.L., Theory of prismatic folded plate structure, International Assoc for Bridge and Structure Engineering Publications,1957, (17):59-86.
    [23]Defries-Skene A.,Scrodelis A. C., Direct stiffens solution for folded plates, Struct Div, ASCE,1964,90 (ST4):15-47.
    [24]Chu K..H., Pjnjarkar S. G.,Multiple folded plate structures, Struct. Div, ASCE,1966,92 (ST2):297-321.
    [25]Chu K. H., Dudnik E., Concrete box girder bridges analyzed as folded plates, Concrete Bridge Design ACI,1969, (SP23):221-246.
    [26]Van Dalen K., Narasimham S. V., Shear lag in shallow wide-flanged box girders, J. Struct Div, ASCE,1976,102(ST10):1969-1979.
    [27]蔡松柏,李存权.箱形梁桥剪力滞效应的精确分析,中南公路工程,1989,(3):33-41.
    [28]Taheriana R., Evans H. R., The bar simulation method for the calculation of shear lag in multi-cell and continuous box girder, Proc Instn Civ Engrs,1977,2(63):881-897.
    [29]程翔云,汤康恩,计算箱形梁桥剪力滞效应的比拟杆法,中南公路工程,1984,(1):65-73.
    [30]Wu Yap ing, Yu Shaoshui, Shi Chonghui, Li Jianjun, Lai Yuanming and Zhu Yuanlin. Ultimate load analysis of thin-walled box beams considering shear lag effect. Thin-Walled Structures. 2004, Vol.42, No.8:1199-1210.
    [31]吴亚平,杨玫,周大为,林丽霞,苏强.荷载横向变位下箱梁顶板与底板的剪滞效应分析.土木工程学报,2007,40(10):8-13.
    [32]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析,土木工程学报,1983,16(1):1-13.
    [33]倪元增.槽型宽梁的剪力滞问题,土木工程学报,1986,19(4):32-40.
    [34]程翔云,罗旗帜,箱梁在压弯荷载共同作用下的剪力滞,土木工程学报,1991,24(1):52-64.
    [35]Chang S T. Prestress influence on shear-lag effect in continuous box-girder bridge. Journal of Structural Engineering, ASCE,1992,118(11):3113-3121.
    [36]Foutch D. A., Cang P. C., A shear lag anomaly, Struct Engrg, ASCE,1982,108 (7):1653-1658.
    [37]Sushkewich K. W.,Negative shear lag explained, Struct Engrg, ASCE,1991,117(11): 3543-3545.
    [38]程翔云,悬臂薄壁箱梁的负剪力滞,上海力学,1987,(2):52-62.
    [39]Chang S. T., Fang Z. Z. Negative shear lag in cantilever box girders with constant depth,Struct Engrg, ASCE,1987,113(1):20-35.
    [40]罗旗帜,余建立.变截面箱梁的负剪力滞,重庆交通学院学报,1997,(3):18-25.
    [41]罗旗帜.薄壁曲箱梁桥剪滞效应分析,铁道学报,1999,21(5):88-93.
    [42]杨允表.曲线箱梁考虑曲率及剪力滞影响的力学分析,土木工程学报,1999,32(1):43-49.
    [43]韦成龙,刘小燕,曲箱梁桥考虑翘曲和剪滞效应的弯扭耦合变形分析,华东公路,2000,(3):3-6.
    [44]吴亚平,复合材料薄壁箱梁的剪滞剪切效应分析,土木工程学报,1996,29(4):31-38.
    [45]Singh Y, Nagpal A. K., Negative shear lag in framed-tube buildings, Struct Engrg, ASCE, 1994,120(11):3105-3121.
    [46]彭大文,颜海,曲线脊骨箱梁的剪力滞效应分析,铁道学报,2001,23(4):76-80.
    [47]杨绿峰,高兑现,李桂青,箱型梁剪力滞效应求解的样条里兹法,广西大学学报,1998,23(1):18-23.
    [48]刘世忠,吴亚平,朱元林,薄壁箱梁剪滞剪切变形双重效应分析的矩阵方法.工程力学,2001,18(4):140-146.
    [49]Kuzmanovic B 0, Graham H J. Shear Lag in Box Girders. Journal of Structural Division,ASCE,1981,107(9):1701-1713.
    [50]吴亚平.多室箱梁剪滞效应的变分法分析.兰州铁道学院学报,1992,11(2):36-48.
    [51]魏丽娜,方放,余天庆等.变截面箱型梁桥剪滞效应的近似计算方法.土木工程学报,1997,30(1):64-72.
    [52]谢旭,黄剑源.薄壁箱形梁桥约束扭转下翘曲、畸变和剪滞效应的空间分析.土木工程学报,1995,28(4):3-14.
    [53]朱伯芳.有限元法原理与应用,北京:中国水利电力出版社,1998.
    [54]Zhong W. X., Y. K. Cheung, Y. Li. The precise finite strip method, Comput. Struct.,69 (6),773-783,1998.
    [55]Cheung Y. K., The finite strip method in the analysis of elastic plates with two opposite simply supported ends, Proceeding Inst,Civ. Engrs.,1968, (40):1-7.
    [56]Cheung M. S., Cheung Y. K. Analysis of curved box girder bridges by finite strip method, IABSE Publications,1971,31(I):1-19.
    [57]Cheung Y. K., Cheung M. S. Free vibration of curved and straight beam-slab or box-girder bridges, IABSE Publications,1972,32(ⅠⅠ):41-52.
    [58]罗旗帜,曲线箱梁有限条法计算程序,佛山大学学报,1993,11(4):33-41.
    [59]杨允表,黄剑源.广义有限条法分析多室箱梁的剪滞效应,桥梁建设,1995,(4):40-46.
    [60]Chang S. T., Yung D., Shear lag effect in box girder with varying depth, Journal Structural Engrg,1988,114(10):2280-2292.
    [61]Luigino D., Fabrizio G.,Graziano Angelo M. T., Time-dependent analysis of shear lag effect in composite beams, Journal of Engineering Mechanic.2001,127(1):71-78.
    [62]罗旗帜.薄壁箱型梁剪力滞计算的梁段有限元方法,湖南大学学报,1991,18(2):33-39.
    [63]罗旗帜.变截面多跨箱梁桥剪滞效应分析,中国公路学报,1998,11(1):63-70.
    [64]韦成龙,曾庆元,刘小燕.薄壁曲线箱梁桥剪滞效应分析的一维有限单元法,中国公路学报,2000,13(1):65-72.
    [65]Wu Yaping, Lai Yuanming, Zhu Yuanlin, Pan Weidong. A curved box beam element considering shear lag effect and its static and it dynamic applications. Journal of Sound and Vibration. 2002,253 (5):1131-1139.
    [66]Yaping Wu, Yuanming Lai,Xuefu Zhang et. A finite beam element for analyzing shear lag and shear deformation effects in composite-laminated box griders. Computers & Structures, 2004, (82):763-771.
    [67]Wu Yaping, Liu Shizhong, Zhu Yuanlin, Lai Yuanming. Matrix Analysis of Shear Lag and Shear Deformation in Thin-Walled Box Beams. Journal of Engineering Mechanics. ASCE.2003, 129 (8):944-950.
    [68]Wu Yaping, Zhu Yuanlin, Lai Yuanming, Pan Weidong.Analysis of shear lag and shear deformation effects in laminated composite box beams under bending loads. Composite Structures.2003.55 (2):147-156.
    [69]李华,曾庆元.大跨度连续刚构桥预应力混凝土箱梁极限承载力分析,中国公路学报,2000,13(1):38-43.
    [70]段海娟,赵人达.薄壁曲线箱梁空间分析的梁段单元,土木工程学报,2004,37(12):1-5.
    [71]潘家英,张国政.大跨度桥梁极限承载力的几何与材料非线性耦合分析,土木工程学报,2000,33(1):5-8.
    [72]方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究,桥梁建设,2000,(4):1-3.
    [73]Moffatt P. J., British shear lag rules for composite girders, Journal of the Structural Division, ASCE,1978,104(ST7):1123-1130.
    [74]楚永艳.荷载横向变位下箱梁剪力滞效应试验研究和有限元分析.(硕士学位论文).兰州:兰州交通大学,2009.
    [75]刘山洪,何广汉,杨永贤.PPC箱梁节段模型剪滞效应的试验研究,桥梁建设,2000,(3):5-7.
    [76]罗旗帜,吴幼明.薄壁箱梁剪力滞理论的评述和展望,佛山科学技术学院学报(自然科学版),2001,19(3):29-35.
    [77]Luo Q Z, Li Q S, Tang J. Shear Lag in Box Girder Bridges. Journal of Bridge Engineering, ASCE,2002,7(5):308-313
    [78]Luo Q Z, Tang J, Li Q S. Finite Segment Method for Shear Lag Analysis of Cable stayed Bridges. Journal of Structural Engineering, ASCE,2002,128(12):1617-1623.
    [79]Chang S T. Prestress influence on shear-lag effect in continuous box-girder bridge. Journal of Structural Engineering, ASCE,1992,118(11):3113-3121.
    [80]Chang S T. Shear lag Effect in Simply Supported Prestressed Concrete Box girder Bridge. J of Bridge Engineering, ASCE,2004,9(2):178-184.
    [81]张元海,李乔.斜交箱梁桥剪滞效应的有限元分析.西南交通大学学报,2005,40(1):64-68.
    [82]张元海,李乔.宽翼缘梁剪力滞效应分析的改进方法.兰州交通大学学报,2004,23(3):94-97.
    [83]张元海,李乔.箱梁剪力滞效应分析中的广义力矩研究.铁道学报,2007,29(1):78-81.
    [84]周世军.箱梁的剪力滞效应分析[J].工程力学,2008,25(2):204-208.
    [85]Shushkewich K. W. Negative shear lag explained. J. Stucrt. Div., ASCE,1991,117(11):3543- 3546.
    [86]Fabrizio Gara, Graziano Leoni, Luigino Dezi. A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks. Engineering Structures.2009, Vol.31:1888-1902.
    [87]倪元增,钱寅泉.弹性薄壁梁桥分析.第一版.北京,人民交通出版社,2000.
    [88]王慧东,朱杰.义鸟经发大桥预应力混凝土单箱梁悬灌施工的剪力滞效应分析.铁道标准设计,2001,21(4):12-13.
    [89]黄弘读.虚拟层合单元在有限元结构分析中的应用.公路交通技术,2003,(4):45-46.
    [90]曹国辉,方志.变分原理分析开裂简支箱梁剪力滞效应.计算力学学报,2007,24(6):853-858.
    [91]吴文清,叶见曙,万水.波形钢腹板结合箱梁在对称加载作用下剪力滞效应的试验研究.中国公路学报,2003,16(2):48-51.
    [92]杜嘉斌,罗旗帜,张学文.计算薄壁曲线箱梁剪力滞效应的有限段法.华南理工大学研究生学报,2004,18(5):68-75.
    [93]曹国辉,方志,王济川.钢筋混凝土箱梁剪力滞效应试验研究.中南公路工程,2000,25(3):26-28.
    [94]程海根,强士中.变截面悬臂箱梁剪滞效应分析.公路,2003,(3):54-56.
    [95]陈德伟,白植舟.P.C.斜拉桥施工中主梁的剪力滞分析.第十四届全国桥梁学术会议论文集.上海,同济大学出版社,2000,605-613.
    [96]王小岗,黄义.箱梁剪力滞计算的三维退化梁板单元法.应用力学学报,2001,18(4):120-123.
    [97]彭卫,陆光闾.混凝土箱梁的剪力滞效应对徐变的影响.桥梁建设,1998,(1):28-30.
    [98]潘建杰,欧阳永金,刘世忠.曲线箱梁斜腿刚构系杆拱桥剪力滞效应分析.兰州铁道学院学报,2002,21(4):42-45.
    [99]蔡华炳,裴若娟.连续刚构宽箱梁剪力滞效应的计算分析.长沙铁道学院学报,2003,21(3):36-40.
    [100]彭大文,王忠.连续弯箱梁剪力滞效应分析和实用计算研究.中国公路学报,1998,11(3):41-49.
    [101]彭大文,王忠.低矮截面箱梁桥剪滞效应分析.福州大学学报,1999,27(4):73-76.
    [102]李新平,谭世霖.展翅梁结构剪力滞.华南理工大学学报,2000,28(7):83-87.
    [103]Tiago Jose Limoeiro de Oliveira, Eduardo de Miranda Batista. Modelling beam-to-girder semi-rigid composite connection with angles including the effects of concrete tension stiffness. Engineering Structures.2009, Vol.31:1865-1879.
    [104]徐彬,夏锋,梁启智.考虑剪力滞后框筒结构位移解析解.昆明理工大学学报,1998,23(6):75-83.
    [105]罗旗帜,李树光.简支箱梁的负剪力滞.佛山大学学报,1995,13(4):40-46.
    [106]刘寒冰,刘文会,张云龙.用变分法分析预应力钢-混凝土组合T梁的剪力滞效应.公路交通科技,2004,21(5):65-66.
    [107]张士铎,王文州.荷载横向作用位置对箱型梁剪力滞效应的影响.湖南大学学报,1995,22(2):109-115.
    [108]黄培元.普通钢筋混凝土连续箱梁桥开裂等问题的探讨.东北公路,2003,26(1):61-64.
    [109]周坚,涂令康.再论槽型宽梁的剪力滞.工程力学,1994,11(2):67-75.
    [110]刘小燕,韦成龙.槽型宽翼压弯构件的剪滞效应分析.长沙电力学院学报,1999,4(2):167-170.
    [120]Mingqiao Zhu, Zhi Fang, Zhiwu Yu, Qizhi Wei. Experimental research and analysis on the flexible behaviors of high-strength concrete thin-walled box girder . Key Engineering Materials.2009, Vol.400-402:295-300.
    [121]邵爱军,吴代华.基于能量法的槽型梁剪滞效应分析.武汉理工大学学报,2003,25(3):52-55.
    [122]罗许国,李朝奎.大悬臂钢脊骨梁结构模型剪力滞效应探讨.湘潭师范学院学报,2004,26(1):102-106.
    [123]唐怀平,唐达培.大跨径连续刚构箱梁剪力滞效应分析.西南交通大学学报,2001,36(6):617-619.
    [124]郭健,孙炳楠.斜拉桥主塔在施工过程中的剪力滞效应分析.中国市政工程,2004,(2):33-35.
    [125]张启伟,张士铎.单索面斜拉桥箱梁恒载剪力滞效应分析.中国公路学报,1997,10(1):39-43.
    [126]Kristek V., Studnick A. J., Negative shear lag in flanges of plated structures, Struct. Div, ASCE,1991,117(12):3553-3569.
    [127]蔡松柏,程翔云,邵旭东.门型梁剪力滞效应的解析解.工程力学,2003,20(5):82-86.
    [128]罗旗帜.基于能量原理的薄壁箱梁剪力滞理论与试验研究.(博士学位论文).湖南大学,2005.
    [129]杨国平,车惠民.混凝土箱梁的非线性研究.西南交通大学学报,1990,25(2):54-62.
    [130]Hawkins N M, Liu I J, Jeang F L. Local bond strength of concrete for cyclic reversed loadings. Proceeding of the International Conference on Bond in Concrete,1982:151-161.
    [131]Tassios T. P., Yanriopoulos P. J. Analytical Studies on Reinforced Concrete Members Under Cyclic Loading Based on Bond Stress-slip Relationships, ACI,1981,78(3):206-216.
    [132]Nilson A. H. Internal Measurement of Bond-slip. ACI,1972,69(7):439-441.
    [133]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究.(博士学位论文).北京:清华大学,1990.
    [134]Oliver J, Cervera M, Manzoli 0. Strong discontinuities and continuum plasticity models. the strong Discontinuity approach, International Journal of Plasticity.1999,15: 319-351.
    [135]Krishnamoorthy C. S.,Yu C. W.. Simplified computer approach to the ultimate Load analysis and design of reinforced concrete frames. ACI,1972,69(11):690-698.
    [136]Lazaro A. L., Richards R.Full-range analysis of concrete frames. Journal of Structural Division, ASCE,1973,99(8):1761-1783.
    [137]朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985.
    [138]Prakash Desayi, S. Krishnan. Equation for the Stress-stain Curve of concrete. ACI. 1964,61(3):345-350.
    [139]余勇,吕西林.三向受压砼的三维本构关系,同济大学学报,1998,12(6):622-626.
    [140]宋玉普,赵国藩.复杂应力状态下混凝土的变形和强度特性.海洋工程,1991.9(2):20-33.
    [141]宋玉普.多种混凝土材料的本构关系和破坏准则.北京:中国水利水电出版社,2003.
    [142]卢朝晖.混凝土随机损伤本构关系建模理论与试验研究.(硕士学位论文).上海:同济大学,2003.
    [143]赵振铭,陈宝春.杆系与箱型梁桥结构分析及程序设计.广州:华南理工大学出版社,1997.
    [144]张盛东,樊承谋.混凝土受拉损伤本构关系的研究.哈尔滨建筑大学学报,2000,33(1):68-72
    [145]宋天霞,黄荣杰,杜太生.钢筋混凝土非线性有限元及其优化设计.华中科技大学出版社,2003.
    [146]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1993.
    [147]康清梁,钢筋混凝土有限元分析.北京:中国水利水电出版社,1996.
    [148]周氐,康清梁,童保全.现代钢筋混凝土基本理论.上海:上海交通大学出版社,1989.
    [150]Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beam. ACI,1967,64(3):152-154.
    [151]Nilson A H. Nonlinear analysis of reinforced concrete by finite element method. ACI,1968,65(9):757-766.
    [152]S.pietruszcak, A. Winnicki, Constitutive model for concrete with embeded sets of reinforcement. Journal of Engineering Mechanics. ASCE,2003,129(7):725-738.
    [153]Cervenka V. Constitutive model for cracked reinforced concrete. ACI, 1985,82 (3):877-883.
    [154]T. Y. Chang, H. Taniguchi, W. F. Chen. Nonlinear finite element analysis of reinforced concrete panels. Jouranl of Structural Engineering, ASCE,1987,113(1):122-140.
    [155]H. Park, R. e. Klingner. Nonlinear analysis of RC members using plasticity with multiple failure criteria. Journal of Structural Engineering, ASCE,1997,123(5):643-651.
    [156]D. N. Trikha. An analytical and experimental investigation of post-tensioned single cell box girders. PhD thesis, University of London,1971.
    [157]Spence RJS, Morley C T. The strength of single-cell concrete box girders of deformable cross-section. Institution of Civil Engineers,1975,59(12):743-761.
    [158]Jack G. Bouwkamp, Alexander C. Scordelis, S. Tanvir Wasti, Ultimate strength of concrete box girder bridge. Journal of the Structural Division,1974,100(1):31-49.
    [159]M. A. Murtuza, R. J. Cope. Investigation of Concrete Spine Beam Bridge Deck. ACI, 1985,82(3):895-909.
    [160]A. G. Razaqpur, M. Nofal. A finite element for modelling the nonlinear behavior of shear connectors in composite structures. Computers & Structures,1989,32(1):169-174.
    [161]周世军.钢筋混凝土箱梁的非线性有限元分析及模型试验研究.土木工程学报,1996,29(4):21-30.
    [162]方志,张志田.钢筋混凝土箱梁横向受力有效分布宽度的试验研究.中国公路学报.2001,14(1):35-38.
    [163]单旭,碳纤维布加固混凝土箱梁的界面应力研究.(硕士学位论文).兰州:兰州交通大学,2008.
    [164]林丽霞,吴亚平,丁南宏,单旭,张江峰.考虑剪滞效应下钢筋混凝土箱梁应力计算的换算截面法.兰州理工大学学报.2009;35(2):122-126.
    [165]林丽霞,吴亚平,丁南宏.钢筋混凝土箱形截面受弯构件最小配筋量的计算.兰州理工大学学报.2007;33(1):129-131.
    [166]吴鸿庆,任侠.结构有限元分析.北京.中国铁道出版社,2000.
    [167]董哲仁.钢筋混凝土非线性有限元法.北京:中国铁道出版社,1993.
    [168]Saenz L. P., Discussion of Equation for the Stress-Strain Curve of Concrete by Desayi and Krishnan, Journal of ACI,1964,61(9).
    [169]Kupfer H, Hilsdorf H K. Behavior of Concrete under Biaxial Stresses. ACI,1969, 66(8):656-666.
    [170]王德人.非线性方程组解法与最优化方法.北京:人民教育出版社,1979.
    [171]混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002.
    [172]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997.
    [173]黄棠,王效通.结构设计原理(上).北京:中国铁道出版社,1989.
    [174]叶见曙.结构设计原理.北京:人民交通出版社,2005.
    [175]铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10003.3-2005).北京:中国铁道出版社,2005.
    [176]李艳.钢筋混凝土薄壁箱梁的非线性受力性能分析.(硕士学位论文).长沙:湖南大学,2003.
    [177]范立础,桥梁工程.北京:人民交通出版社,2001.
    [178]ACI Committee 435. Proposed revisions by Committee 435 to ACI Building Code and commentary provisions on deflections. ACI,1978,75(6):229-238.
    [179]周世军.钢筋混凝土箱梁的极限承载力分析.铁道学报.1997,19(2):73-79.
    [180]谭周玲,余瑜,傅剑平,白绍良.非抗震梁受拉钢筋最小配筋率取值分析与建议.重庆建筑大学学报.2003,25(2):37-43.
    [181]公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004.
    [182]张树仁,郑绍洼,黄侨,鲍卫刚.钢筋混凝土及预应力混凝土桥梁结构设计原理.北京:人民交通出版社,2004.
    [183]白青侠,郝宪武.钢筋混凝土箱形截面构件最小配筋计算方法.东北公路.2000,23(3):56-58.
    [184]郭文复.钢筋混凝土箱形截面构件最小配筋计算.上海公路.1994(4):7-8.
    [185]赵国藩.高等钢筋混凝土结构学.北京:中国电力出版社,1999.
    [186]赵国藩,李树瑶.钢筋混凝土结构的裂缝控制.北京:海洋出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700