全射流喷头理论及精确喷灌关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全射流喷头是我国具有自主知识产权的一种新型节水灌溉产品,应用水流附壁效应完成直射、步进和反向的功能,具有结构简单、造价低、无撞击部件、能量损失小和喷洒性能好等优点。对于此类新型产品,研究尚不够深入,对其进行系统研究具有很高的学术价值与实用意义。本文介绍了全射流喷头的原理和特点,通过理论分析、试验研究和数值模拟相结合的方法,对全射流喷头理论及精确喷灌关键技术进行了系统研究。主要研究工作和创新点有:
     (1)通过54次的正交试验,初步提出了全射流喷头设计方法。采用四因素三水平的正交试验获得了喷头主要结构参数影响关系:影响步进频率主次顺序为收缩角、取水孔角度、位差和作用区;影响步进角度主次顺序为位差、收缩角、取水孔角度和作用区。喷头重要结构参数中,基圆孔大小由喷头型号决定,补气孔和入水孔设计方法相同,收缩角选取14°,取水孔角度选取30°,用二次曲线方程回归分析得出位差与喷头基圆孔函数关系式,以及作用区与喷头基圆孔函数关系式。
     (2)首次研制开发了新型连续运转射流喷头、外取水射流喷头、三段式射流喷头和两次附壁射流喷头,分别介绍了它们的结构和工作原理。采用五因素四水平表对连续运转射流喷头和四因素三水平表对外取水射流喷头进行了正交试验研究,获得了连续运转射流喷头和外取水射流喷头的最优结构参数,开发了国内原创的喷灌设备。
     (3)总结得出全射流喷头力学特性的计算公式,通过试验与摇臂式喷头工作性能的对比,结果表明全射流喷头步进角度和步进频率可调幅度较大,均优于摇臂式喷头。为了扩大全射流喷头压力适用范围,提出在喷管处加转折角以增加喷头固有驱动力矩。转折角喷管的重要结构因素包括转折角角度和转折角力臂长度,选用7种不同的转折角角度或转折角力臂喷管进行试验,测量步进角度、步进频率、射程和均匀系数等性能指标。结果表明:转折角角度增大,步进角度增大,均匀系数增大,步进频率减小,射程变化不大;转折角力臂加长,步进角度增大,射程减小,步进频率和均匀系数变化不大。
     (4)建立了全射流喷头内部流场的CFD数学模型,采用FLUENT软件对喷头内部流场进行了数值模拟。在转折角喷管角度为2°和5°时,通过数值计算喷管推动力、转运驱动力和流量之间的关系,理论计算结果与CFD数值计算结果平均偏差小于5%。对喷头的流量—内部压力关系,喷头附壁点的位置,不同插拔深度、管长或工作压力情况下的喷头步进频率进行了较详细的数值计算,与试验结果进行对比,表明两者具有较好的一致性,说明采用CFD方法能较好地反映喷头的内部流动情况。
     (5)对全射流喷头实现变量喷洒进行了理论研究,推导出喷头实现正方形喷洒的边界方程,采用MATLAB语言对射程、工作压力与运行时间进行仿真。设计出实现正方形喷洒的全射流喷头动静片结构,经过外特性试验测量喷洒水量分布,绘制出三维水量分布图。将变频调速技术引入喷灌系统,对变域喷洒系统进行能耗分析,利用虚拟仪器技术测量采集试验数据。试验表明:机械方式设计动静片和利用变频调速都可以实现正方形的变量喷洒,为今后进一步开展变域喷洒喷头研究提供了理论基础。
     (6)对全射流喷头组合喷灌进行研究,分析处理喷头水量分布数据、实现三维可视化。研究表明:MATLAB语言可方便可靠地将喷头径向水量分布数据转换为网格型数据,并绘制出单喷头和喷头组合三维水量分布图。通过插值叠加求出各网格点总降水深,求出不同组合间距系数下的全射流喷头组合均匀系数,实现计算结果可视化。根据模拟分析,提出正方形布置时组合间距系数为1.2,各喷头均匀系数平均值为82.4%。三角形布置时组合间距系数为1.5,各喷头均匀系数平均值为85.7%。运用MATLAB语言编程进行喷头喷洒分析具有功能强大、方便快捷、可视性强等优点,适用于任何喷头水量分布的分析。
     (7)针对产业化生产出的系列PXH型塑料全射流喷头,通过田间试验提出了6个方面的改进措施,主要为修改空心轴与连接套配合尺寸和两片四氟圈之间的相互配合,以增加喷头田间运转可靠性。改进后可望进行大批量产业化生产。
This project was supported by the National High-tech Research and Development Program (Grant No. 2006AA100211)—"Light-duty Irrigation System for Variable Sprinkling".
     The complete fluidic sprinkler, a new type of water-saving product, which depends on the theory of Coanda effect to accomplish the function of direct-spraying, stepping and reversing, was originally invented in China. We have had the intellectual property and have owned several correlative patents. The sprinkler has several advantages, such as easy-constructed, low loss of energy, low price and so on. For such new products, research was not deep enough now. Systematic research for the complete fluidic sprinkler has high academic value and practical significance. First, the working principle and characteristics were introduced. Combined with theoretical analyses, experimental tests and numerical simulation, the theory of the complete fluidic sprinkler and the technology of the precise sprinkling irrigation were systematically investigated. The main contents and innovations in this dissertation were as follow:
     1. After fifty-four tests, design method of the complete fluidic sprinkler was put forward firstly. An orthogonal array with four factors and three levels was selected to carry out the experiments. The relationships between the main sprinkler structure parameters were obtained: the influencing factors in decreasing order of importance for stepped frequency are contractive angle, water fetching angle, offset length and working area; the influencing factors for stepped angle are offset length, contractive angle, water fetching angle and working area in decreasing order of importance. The important structure parameters were confirmed as follow, the size of base circle is determined by the type of the sprinkler. Design method for water inlet and air inlet were the same. 14 and 30 degrees were defined for contractive angle and water fetching angle respectively. The equation of offset length and base circle relationship as well as the equation of working area and base circle were established using the method of quadratic regression analysis.
     2. Some kinds of new type of fluidic sprinklers were developed, including the continuous operated fluidic sprinkler, the outside signal fluidic sprinkler, the three section fluidic sprinkler and the twice wall-attachment fluidic sprinkler. Their structure and working principle were described respectively. An orthogonal array with five factors and four levels was selected to carry out the experiments for the continuous operated fluidic sprinkler. An orthogonal array with four factors and there levels was selected to carry out the experiments for the outside signal fluidic sprinkler. The best values of their structure parameters were confirmed after the experiments.
     3. The formula for calculating the mechanics characteristics of the complete fluidic sprinkler was summarized up. The performance parameters for the complete fluidic sprinkler and impact sprinkler were contrasted by experiments. The results demonstrated that the adjustable range of stepping angle and frequency for the complete fluidic sprinkler was much bigger than that of the impact sprinkler. To enlarge the scope of working pressure for the complete fluidic sprinkler, the turning angle was added in the effuser. It can increase the intrinsic driving moment for the sprinkler. The important structure parameters for the turning angle effuser included the angle and arm of force. Experiments were carried out based on seven effusers of different turning angles or arms of force. It can be seen from the results that the testing value agreed well with the theoretical analysis. Turning angle positively influenced the stepping angle and uniformity coefficient, while negatively influenced the stepping frequency. Turning arm of force positively influenced the stepping angle, and negatively influenced the wetted diameter.
     4. Mathematical model for the inner flow of the complete fluidic sprinkler was established using computational fluid dynamics. The FLUENT was used to numerical simulate the inner flow of the sprinkler. When turning angle was 2 or 5 degree for the effuser, the relationships between driving force, transfer driving force and flux were calculated by numerical simulation. The average deviation of the results between theoretical analysis and numerical simulation was less than 5 percent. Computational fluid dynamics method was applied to calculate the stepping frequency, the lean-wall position and the relationship between flux and working pressure. The simulated results agreed well with the experimental results.
     5. The theoretical study of variable irrigation for the complete fluidic sprinkler was carried out. The boundary equations of rectangular irrigated area were developed. The relationships between wetted diameter, working pressure and operated time were simulated using the MATLAB programe. The activity pieces to achieve rectangular irrigation for the complete fluidic sprinkler were designed. The irrigated water distribution was measured and the three-dimensional water distribution picture was drawn. The frequency control technology was brought into the sprinkler irrigation system. Energy consumption analysis was carried out for the variable-rate irrigated system. The data was tested and collected using the virtual instrument technology. The results demonstrated that rectangular irrigation can be achieved both by mechanical activity pieces designing and frequency control technology. It supplied theoretical foundation of variable rate irrigated sprinkler for the future.
     6. Combination irrigation for the complete fluidic sprinkler was studied firstly. The MATLAB was used to analyze the data of water distribution. The data can be made visible in multidimensional orientation as a result. It was proved to change the radial data into net data conveniently and reliably. And three-dimensional water distribution pictures for sprinkler and combined sprinklers were drawn. According to the tested data, the total water depth of net point was calculated using superposition method. Then the combined uniformity coefficient of the complete fluidic sprinkler was simulated in different combined spacing. After the simulation, combined spacing coefficient was chosen by 1.2 in the rectangular combination, and 1.5 in the triangular combination. The average uniformity coefficient can be 82.4% and 85.7% respectively. A case study shows that the MATLAB is reliable for simulating water distribution in sprinkler irrigation.
     7. Series of PXH sprinklers were manufactured into plastic sprinklers, but there were still some problems. After field experiments, six respects were put forward to improve the working conditions. There were two important respects that must be improved. First, the match of hollow shaft and connected case must be revised. Second, the two fluorine circle should be movable fitted. After the resolved schemes, the reliability of field operation was increased and the PXH complete fluidic sprinklers could be put into mass production.
引文
[1]Tso T C.Agriculture of the future[J].Nature Publishing Group,2004,428(11):215-217
    [2]陈志恺.21世纪中国水资源持续开发利用问题[J].中国工程科学,2000,2(3):7-11
    [3]钱正英.中国水资源战略研究中几个问题的认识[J].河海大学学报,2001,29(3):1-7
    [4]Mccann I R,King B A,Stark J C.Variable rate water and chemical application for continuous-move sprinkler irrigation systerns[J].Applied Engineering in Agriculture,1997,13(5):609-615
    [5]冯广志.我国节水灌溉发展的总体思路[J].中国农村水利水电,1998,(11):1-6
    [6]李岚清.节水新理念:行走式节水灌溉[M].北京:中国农业出版社,2004
    [7]中国工程院“21世纪中国可持续发展水资源战略研究”项目组.中国可持续发展水资源战略研究综合报告[J].中国工程科学,2000,2(8):1-17
    [8]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001
    [9]许迪.现代节水农业技术研究进展与发展趋势[EB/OL].[2006-11-09].http:?/www.66wen.com/06gx/shuili/shuiwen/20061109/50120.html
    [10]许志方.农民管理大型灌区的新模式[J].中国农村水利水电,2003,(6):6-7
    [11]汪懋华.实现现代集约持续农业的工程科学技术——以色列、荷兰科技考察观感[J].农业工程学报,1998,14(3):1-9
    [12]曲小红,王仰仁.以色列农业模式和中国节水灌溉发展方向[J].节水灌溉,2000,(3):11-12
    [13]中国赴以色列、澳大利亚节水灌溉考察团.以色列和澳大利亚的农业节水灌溉[R].中国水利科技信息网,2001.11.13
    [14]李里特.节水农业是我国农业发展的必由之路——以色列节水农业发展的启示[J].农业工程学报,1999,15(3):11-15
    [15]黄冠华,李光永,李久生.国外农业节水发展状况与启示专题研究报告[R].中国水利科技信息网,2001
    [16]中国赴法国、意大利节水灌溉技术考察团.法国、意大利的节水灌溉技术[R].中国水利科技信息网,2001.11.13
    [17]黄修桥.灌溉用水需求分析与节水灌溉发展研究[D].杨凌:西北农林科技大学,2005
    [18]陈池.国内外喷灌系统研究简史与发展趋势[J].排灌机械,1999,17(2):45-47
    [19]匡秋明,赵燕东,白陈祥.节水灌溉自动控制系统的研究[J].农业工程学报,2007,23(6):136-139
    [20]王力,吴光华,杜新.林业苗圃喷灌系统设计[J].排灌机械,2004,22(6):24-27
    [21]郭慧滨,史群.国内外节水灌溉发展简介[J].节水灌溉,1998,(5):23-25
    [22]冯广志.“九五”节水灌溉工作综述[J].中国农村水利水电,2001,(7):5-8
    [23]中华人民共和国水利部.全国节水灌溉“十五”计划及2010年发展规划[R].2000.8
    [24]国家发展和改革委员会、水利部、建设部.节水型社会建设“十一五”规划[R].2006.12
    [25]William P.Adjustable pattern irrigation sprinkling device[P].United Stated Patent Office:US2780488,1957-02-05
    [26]Charles H G.Center pivot irrigation system[P].United Stated Patent Office:US4011990,1977-03-15
    [27]Bonetti R A.Controlled irrigation system for a predetermined area[P].United Stated Patent Off.tee:US 4265403,1981
    [28]Hunter E R.Irrigation sprinkler with present spray pattern-has nozzle apertures adjusted in size during rotation to vary spraying distance[P].GB 2094181 A,1982-09-15
    [29]李久生,康国义,黄修桥等.喷灌系统关键设备研制与产业化进展[EB/OL].[2006-04-10]http://www.kills.cn/landscaping/ArticleShow.asp?ArticlelD=290
    [30]袁寿其,王新坤.我国排灌机械的研究现状与展望[J].农业机械学报,2008,39(10):52-58
    [31]李英能.对我国喷灌技术发展若干问题的探讨[J].节水灌溉,2000,(1):1-3
    [32]李世英.喷灌喷头理论与设计[M].北京:兵器工业出版社,1995
    [33]殷春霞,许炳华.我国喷灌发展五十年回顾[J].中国农村水利水电,2003,(2):9-11
    [34]苏德风,李世英.我国节水灌溉设备现状与展望[J].排灌机械,1997,15(3):22-26
    [35]李英能.我国现阶段发展节水灌溉应注意的几个问题[M].水利部农村水利司等.农业节水探索,北京:中国水利水电出版社,2001,159-163
    [36]康绍忠,李永杰.21世纪我国节水农业发展趋势及其对策[J].农业工程学报,1997,3(4):1-7
    [37]兰才有.我国发展节水灌溉若干问题的探讨[EB/OL].[2006-04-6].http://www.zgny.com.cn /TechHtml/5/4/1/41451.html
    [38]卢国荣,李英能.加入WTO后我国喷灌设备发展的前景与对策[J].节水灌溉,2002,(4):29-31
    [39]侯素娟,梁芝兰,李世英.我国喷灌设备制造行业发展思路[J].排灌机械,2002,20(6):26-28
    [40]樊桂林,梁芝兰.摇臂式喷头摇臂应力分布的试验研究[J].排灌机械,1997,13(2):34-36
    [41]Tang F M,Kang Z H.Fluidic sprinkler for irrigation with stepwise rotation[CJ].Tokyo:Fluid control and measurement,1986:415-420
    [42]李红,袁寿其,谢福祺等.隙控式全射流喷头性能特点及与摇臂式喷头的比较研究[J].农业工程学报,2006,22(5):82-85
    [43]Aldo L,Van N.Controlled contour sprinkler[P].United Stated Patent Office:US2654635, 1953-10-06
    [44]陈雷.垂直摇臂式喷头运动原理的研究[D].北京:华北水利水电学院北京研究生部,1985
    [45]Nelson Irrigation Corp.3000 series pivot products[C].(http://www.nelsonirrigation.com /products) 2002-10-22
    [46]Rechardo A R.Controlled thrust rotary adjustable topography sprinkler[P].United Stated Patent Office:US 4198001,1980-04-15
    [47]Benjamin F R.Irrigation sprinkler[P].United Stated Patent Office:US4277029,1981-07-07
    [48]Edwin J.Rotating sprinkler[P].GB 2094181A,1982-09-15
    [49]Charles Skinner.Sprinkler device[P].GB20103,1984-09-12
    [50]Van L,Timothy O.Sprinkler head[P].EU 0395230A1,1990-10-31
    [51]Lindermeir.Sprinkler device[P].WO 41815,2000-07-20
    [52]金宏智,李光永.国外节水灌溉技术与设备的发展趋势——美国第24届国际灌溉展览会观感[J].节水灌溉,2004,(3):46-48
    [53]汪永斌,施已平,胡家芬.特殊的多功能喷头设计研究[J].浙江大学学报,2002,(3):237-241
    [54]金宏智.我国喷灌机械发展的回顾与展望[J].农业机械,1999,(9):9-11
    [55]严海军,刘竹青,王富星等.我国摇臂式喷头的研究与发展[J]冲国农业大学学报,2007,12(1):77-80
    [56]兰才有,仪修堂,薛桂宁.我国喷灌设备的研发现状及发展方向[J].排灌机械,2005,23(1):1-6
    [57]韩小扬.PSH-40型步进互控全射流喷头[J].节水灌溉,1980,(2):11-14
    [58]干浙民,陈苏.PSBZ型水流自控步进式全射流喷头[P].中国,87203621,1987
    [59]黄志斌.PSZ型自反馈式射流喷头的研究[J].镇江农业机械学院学报,1981,2(2):28-31
    [60]黄志斌,张世芳.自反馈式射流喷头的设计[J].江苏工学院学报,1985,6(2):35-38
    [61]王振海.喷灌喷头喷水范围限制器[P].中国,96212526,1996
    [62]韩小扬.一种全射流喷头[P].中国,86209507,1986
    [63]李红,谢福祺,郎涛等.全射流喷头的研究现状及发展趋势[J].中国农村水利水电,2004,(5):80-92
    [64]Coanda Henri.Device for deflecting a stream of elastic fluid projected into an elastic fluid[P].United Stated Patent Office:US2052869,1936-09-1
    [65]Christiansen J E.Irrigation by sprinkling[R].Bulletin 670,Califomia agricultural experiment Station,University of California,Berkeley,California,1942
    [66]Hills D J,Barragan J.Application uniformity for fixed and rotating spray plate sprinklers[J].Applied Engineering in Agriculture,1998,14(1):33-36
    [67]Tarjuelo J M,Montero J,Valiente M,et al.Irrigation uniformity with medium size sprinklers. Part Ⅰ:Characterization of water distribution in no-wind conditions[J].Transactions of the ASAE,1999,42(3):665-675
    [68]Tarjuelo J M,Montero J,Valiente M,et al.Irrigation uniformity with medium size sprinklers.Part Ⅱ:Influence of wind and other factors on water distribution[J].Transactions of the ASAE,1999,42(3):677-689
    [69]Zanon E R,Testezlaf R,Matsura E J.Data acquisition system for sprinkler uniformity testing[J].Applied Engineering in Agriculture,2000,16(2):123-127
    [70]Louie M J,Selker J S.Sprinkler head maintenance effects on water application uniformity[J].Joumal of Irrigation and Drainage Engineering,2000,126(3):142-148
    [71]Faci J M,Salvador R,Playan E,et al.Comparison of fixed and rotating spray plate sprinklers[J].Journal of Irrigation and Drainage Engineering,2001,127(4):224-233
    [72]Sourell H,Faci J M,Playan E.Performance of rotating spray plate sprinklers in indoor experiments[J].Journal of Irrigation and Drainage Engineering,2003,129(5):376-380
    [73]Wrachien D D,Lorenzini G.Modelling jet flow and losses in sprinkler irrigation:Overview and perspective of a new approach[J].Biosystems Engineering,2006,94(2):297-309
    [74]Dukes M D.Effect of wind speed and pressure on linear move irrigation system uniformity[j].Applied Engineering in Agriculture,2006,22(4):541-548
    [75]Pascal M,Kadem N,Tchiftchibachian A.Investigation of the influence of sprinkler fins and dissolved sir on jet flow[J].Journal of Irrigation and Drainage Engineering,2006,132(1):41-46
    [76]李久生,饶敏杰.喷灌水量分布均匀性评价指标的试验研究[J].农业工程学报。1999,15(4):78-82
    [77]张社奇,刘淑明,韩维生等.改变喷头喷洒轨迹的力学途径[J].西北农林科技大学学报:自然科学版,2001,29(4):118-121
    [78]喻黎明,吴普特,范兴科.模糊综合评判在评价喷头水力性能中的应用[J].节水灌溉,2001,(3):7-8,21
    [79]邓鲁华,郝培业.基于Delphi的喷头喷洒分析软件[J1.山东理工大学学报:自然科学版,2003,17(3):33-36
    [80]郝培业.六方(四方)型摇臂式喷头(一)[J].节水灌溉,2003,(2):25-26
    [81]韩鑫,郝培业.六方(四方)型摇臂式喷头水力学特征分析(四)[J].节水灌溉,2004,(2):15-18
    [82]李小平.喷灌系统水量分布均匀度研究[D].武汉:武汉大学,2005
    [83]韩文霆.变量喷洒可控域精确灌溉喷头及喷灌技术研究[D].杨凌:西北农林科技大学,2003
    [84]范兴科,吴普特,冯浩等.全圆旋转摇臂式喷头的非圆形域喷洒[J].灌溉排水学报,2006,25(1):58-61
    [85]脱云飞,杨路华,柴春岭等.喷头射程理论公式与试验研究[J].农业工程学报.2006,22(1):23-26
    [86]黄修桥,仵峰,范永申.喷头仰角调节机构的研制及其对喷头性能的影响[J].排灌机械,2006,24(5):29-32
    [87]李红.隙控式全射流喷头理论及试验研究[D].镇江:江苏大学,2006
    [88]王波雷,马孝义,范严伟等.旋转式喷头射程的理论计算模型[J].农业机械学报,2008,39(1):41-45
    [89]谢福祺,张世芳,顾子良等.PSF-50型反馈式流控喷头的原理与分析[J].江苏工学院学报,1983,4(2):13-20
    [90]杨诗通,谢福祺.PSF-50型喷头步进稳定性的研讨[J].排灌机械,1984,2(2):16-18
    [91]干浙民.PSBZ型自控式全射流喷头的研究[J].节水灌溉,1982,(3):5-8,17
    [92]韩小杨.双击同步全射流喷头的研制[J].节水灌溉,1991(2):38-40
    [93]干浙民,谢福祺.对PSZ型全射流喷头元件的分析[J].农业机械学报,1985,16(6):87-91
    [94]韩小杨,孙才华,沈方兴等.双击同步全射流喷头[P],中国,90200784,1990
    [95]Hoch J,JiJi L M.Two-dimension turbulent offset jet-boundary interaction[J].Transactions of the ASME,1981,103(99):154-161
    [96]Pelfrey J R R,Liburdy J A.Mean flow characteristics of a turbulent offset jet[J].Transactions of the ASME,1986,(108):82-88
    [97]陆宏析.喷射技术理论及应用[M].武汉:武汉大学出版社,2004
    [98]Bourque L,Newman B G.Reattachment of a two-dimension incompressible jet to an adjacent flat plate[J].Aeronautical Quarterly,1960,99(11):201-232
    [99]Sawyer R A.Two-dimensional reattachment jet flows including the effect of curvature on entertainment[J].The Journal of Fluid Mechanics,1963,(17):481-498
    [100]Song H B,Yoon S H,Lee D H.Flow and heat transfer characteristics of a two-dimensional oblique wall attaching offset jet[J].International Journal of Heat and Mass Transfer,2000,(43):2395-2404
    [101]原田正一,尾崎省太郎(陆润林、郭荣译).射流工程学[M].北京:科学出版社,1977
    [102]王琪,卢颖.确定附壁射流主要参数的理论依据[J].吉林农业大学学报,1996,18(1):69-71,76
    [103]向清江,朱兴业.全射流喷头内部附壁点距离的计算[J].排灌机械,2008,26(3):55-58
    [104]张政权,熊劲庆,金峰等.水平附壁射流破异重流试验研究[J].水动力学研究与进展,2000,15(4):476-484
    [105]Li J S,Kawano H,Yu K.Droplet size distributions from different shaped sprinkler nozzles[J].Transactions of the ASAE,1994,37(6):1871-1878
    [106]Li J S,Kawano H.Sprinkler performances as function of nozzle geometrical parameters[J].Journal of Irrigation and Drainage Engineering,1996,122(4):244-247
    [107]Li J S,Kawano H.Sprinkler performance as affected by nozzle inner contraction angle[J].Irrigation Science,1998,(18):63-66
    [108]汤跃,袁寿其,李红.基于分布式总线的喷头水量分布的自动测试[J].农业工程学报,2006,22(4):112-115
    [109]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003
    [110]Robert T P,Victor P.Irrigation process optimization using taguchi orthogonal experiments[J].Computer and Industrial Engineering,1998,35(1-2):209-212
    [111]Chang W J,Hills D J.Sprinkler droplet effects on infiltration.Ⅰ:Impact simulation[J].Journal of Irrigation and Drainage Engineering,1993,119(1):142-156
    [112]Chang W J,Hills D J.Sprinkler droplet effects on infiltration.Ⅱ:Laboratory study[J].Journal of Irrigation and Drainage Engineering,1993,119(1):157-169
    [113]Lamaddalena N,Fratino U,Daccache A.On-farm sprinkler irrigation performance as affected by the distribution system[J].B iosystems Engineering,2007,96(1):99-109
    [114]Robert P C.Precision Agriculture:An information revolution in agriculture[M].Agriculture Outlook Forum,1999:1-5
    [115]朱兴业,袁寿其,向清江等.旋转式射流喷头设计与性能正交试验[J].农业机械学报,2008,39(7):76-79
    [116]朱兴业,袁寿其,李红等.全射流喷头的原理及实验研究[J].排灌机械,2005,23(2):23-26
    [117]陈振宁,高志强,苗果园等.ZY-2型喷头水力性能及喷头组合试验[J].山西农业科学,1999,27(2):41-46
    [118]龚时宏,郭志新,仵峰.恒压喷灌系统田间允许调压范围的研究[J].农业工程学报,1998,14(3):107-111
    [119]Roger P,Thomas D T.Computational Methods for Fluid Flow[M].New York:Spring-Verlag New York Inc,1983
    [120]中华人民共和国机械工业部.旋转式喷头标准[S].JB/T 7867-1997
    [121]Edling R J.Kinetic Energy,Evaporation and wind drift of droplet from low pressure irrigation nozzles[j].Transaction of the ASAE,1985,28(5):1543-1550
    [122]干浙民,杨生华.旋转式喷头射程的试验研究及计算公式[J].农业机械学报,1998,29(4):145-149
    [123]朱兴业,袁寿其,李红.全射流喷头与摇臂式喷头的对比实验[J].农业机械学报,2008,39(2):70-72,184
    [124]许炳华,曹万健,郭荣良.中灌ZPY组合式长喷管金属摇壁喷头的设计特点和性能[J]. 喷灌技术,1994,(2):53-54
    [125]朱兴业,袁寿其,李红等.对PSF30型全射流喷头的分析[J].节水灌溉,2005,(6):17-19
    [126]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998
    [127]Li J S,Kawano H.Simulating water-drop movement from noncircular sprinkler nozzles[J].Journal of Irrigation and Drainage Engineering,1995,121(2):152-158
    [128]Hathoot H M,Abo-Ghobar H M,A1-Amoud A I,et al.Analysis and design of sprinkler irrigation laterals[J].Journal of Irrigation and Drainage Engineering,1994,120(3):534-549
    [129]Tarjuelo M B,Jose M,Valiente G M,et al.Working conditions of sprinkler to optimize application of water[J].Journal of Irrigation and Drainage Engineering,1992,118(6):895-913
    [130]Hendawi M,Molle B,Folton C,et al.Measurement accuracy analysis of sprinkler irrigation rainfall in relation to collector shape[J].Journal of Irrigation and Drainage Engineering,2005,131(5):477-483
    [131]Li Jiusheng.Study on relationship between irrigation uniformity and deep-seated leakage[J].Rural Water and Hydropower,1993,(1):1-4
    [132]柴春岭,杨路华,脱云飞等.可调式微喷头出水口流道形式对喷洒水性能影响的试验研究[J].农业工程学报,2005,21(3):17-20
    [133]Versteeg H K,Mallasekera W.An introduction to computational fluid dynamics[M].The Finite Volume Method.New York,Wiley,1995
    [134]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [135]王福军.计算流体动力学分析——CFD软件应用原理与应用[M].北京:清华大学出版社,2004
    [136]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [137]Yakhot V,Orzag S A.Renormalization group analysis of turbulence:basic theory[J].Scient Coumput,1986,(1):3-11
    [138]余常昭.紊动射流[M].北京:高等教育出版社,1993
    [139]John D,Anderson J R.Computational Fluid Dynamics:The Basics with Applications[M].McGraw-Hill 出版公司,北京:清华大学出版社,2004
    [140]Ginevsky A S,Vlasov Y V,Karavosov R K.Acoustic control of turbulentjets[M].New York:Springer,2004
    [141]Luo Zherrbing,Xia Zhixun.Numerical simulation of synthetic jet flow field and parameter analysis of actuator[J].Journal of Propulsion Technology,2004,6(3):199-205
    [142]Jiang Xiong,Chert Zuobing,Zhang yulun.Numerical simulation of a hovering rotor flow field using a dual-time method[J].Acta Aerodynamica Sinica,1998,9(3):288-296
    [143]Chang Huaixin,Liu Yingzhong,Miao Guoping.Numerical simulation of three-dimensional viscous flow with free surface about a ship[J].Journal of Ship Mechanics,2003,6(3):33-39
    [144]Mateos L.A Simulation study of comparison of the evaluation procedures for three irrigation methods[J].Irrigation Science,2006,(25):75-83
    [145]赵一鹏,余少志.复杂几何形状喷管内外三维流场的数值模拟[J].推进技术,2000,6(3):30-33
    [146]袁寿其,朱兴业,李红等.全射流喷头内部流场计算流体动力学数值模拟[J].农业机械学报,2005,36(10):46-49
    [147]李永欣,李光永,邱象玉等.迷宫滴头水力特性的计算流体动力学模拟[J].农业工程学报,2005,21(3).12-16
    [148]William M J,James P B.LEPA-low energy precision application[J].Irrigation Journal,1991,(4):18-24
    [149]John R E,Gerald B.Venturing into precision agriculture[J].Irrigation Journal,2000,(3):15-17
    [150]刘爱民,封志明,徐丽明.精准农业技术体系[J].农业机械学报,2000,31(3):124-125
    [151]王克林,李文祥.精确农业发展与农业生态工程创新[J].农业工程学报,2000,16(1):5-8
    [152]陈勇,郑加强,周宏平等.精确农业管理系统可变量技术研究现状与发展[J].农业机械学报,2003,34(6):156-159
    [153]陈羽白,张杰,赖荣光等.喷灌量与喷灌形状的精确控制方法及技术[J].农业机械学报,2004,35(2):84-87
    [154]于显威,李柏.关于精确灌溉的研究[J].水土保持应用技术,2006,(6):23-24
    [155]孟秦倩.非圆形喷洒域喷头的可实现性研究[D].杨凌:西北农林科技大学,1999
    [156]刘俊萍.变量喷洒喷头理论及流场数值模拟与试验研究[D].镇江:江苏大学,2008
    [157]孟秦倩,王健,蔡江碧.非圆形喷洒域喷头的可实现性研究[J].西北农林科技大学学报,2003,(4):145-148.
    [158]Zhu H P,Sorensen R B,Butts C L,et al.A pressure regulating system for variable irrigation flow controls[J].Applied Engineering in Agriculture,2002,18(5):533-540
    [159]King B A,Wall R W.Digital power line cartier control system for optimum operation of variable speed pumping plants with center pivots[J].Transactions of the ASAE,1997,17(2):10-14
    [160]King B A,Wall R W.Distributed instrumentation for optimum control of variable speed electric pumping plants with center pivots[J].Transactions of the ASAE,2000,16(1):45-50
    [161]King B A,Wall R W,Kincaid D C,et al.Field testing of a variable rate sprinkler and control system for site-specific water and nutrient application[J].Transactions of the ASAE,2005,21(5):847-853
    [162]王改兰,黄学芳,王东峰等.时域反射仪及其在节水农业研究中的应用[J].山西大学学报, 1997,22(1):87-90
    [163]曹成茂,夏萍,朱张青.无线数据传输在节水灌溉自动控制中的应用[J].农业工程学报,2005,21(4):127-130
    [164]Fraisse C W,Duke H R,Heermann D F.Laboratory evaluation of variable water application with pulse irrigation[J].Transactions of the ASAE,1995,38(5):1363-1369
    [165]Sadler E J,Evans R G,Stone K C,et al.Opportunities for conservation with precision irrigation[J].Joumal of Soil and Water Conservation,2005,60(6):371-379
    [166]Thompson A L,Martin D L,Norman J M,et al.Testing of a water loss distribution model for moving sprinkler systems[J].Transactions of the ASAE,1997,40(1):81-88
    [167]赖荣光,洪添胜,陈羽白等.喷灌的精确控制方法及技术[J].农业机械学报,2004,35(3):86-90
    [168]刘根深.GPS节水灌溉系统的研究[J].农业工程学报,2000,16(2):24-27
    [169]江明,陈其工,晏行芳等.基于模糊控制的精确灌溉系统[J].农业工程学报,2005,21(10):17-20
    [170]Dukes N D,Perry C.Uniformity testing of variable-rate center pivot irrigation control systems[J].Precision Agriculture,2006,7(3):205-218
    [171]Merriam J L,Styles S W,Freeman B J.Flexible irrigation systems:concept,design,and application[J].Journal of Irrigation and Drainage Engineering,2007,133(1):2-11
    [172]Camp C R,Sadler E J,Evans D E.Variable-rate,digitally controlled metering device[J].Transactions of the ASAE,2000,16(1):39-44
    [173]陈大雕,林中卉.喷灌技术[M].北京:科学出版社,1992
    [174]周世峰.喷灌工程学[M].北京:北京工业大学出版社,2004
    [175]赵竞成,任晓力.喷灌工程技术[M].北京:中国水利水电出版社,2003
    [176]Donald.Apparatus for watering areas of land[P].United Stated Patent Office:US1637413,1927-08-02
    [177]James T,La M.Sprinkler Device[P].United Stated Patent Office:US2582158,1952-01-08
    [178]Edwin J.Dual Speed Sprinkler[P].United Stated Patent Office:US3261552,1966-07-19
    [179]Ohayon S.Automatic Adjustable Sprinkler for Precision Irrigation[P].United Stated Patent Office:US6079637,2000-06-27
    [180]冯浩,汪有科,吴普特等.非圆形喷洒域喷头[P].中国,01265799,2001-10-30
    [181]韩文霆,冯浩,吴普特等.非圆形喷洒域的摇臂式喷头[P].中国,03218590,2003-3-10
    [182]王云中.喷洒面为多种形状的摇臂式喷头[P].中国,98232884.2,1999
    [183]刘俊萍,袁寿其,李红等.全射流喷头实现非圆形喷洒域的可行性分析[J].排灌机械,2007,25(5):36-38
    [184]韩文霆,吴普特,冯浩等.非圆形喷洒域变量施水精确灌溉喷头综述[J].农业机械学报, 2004,35(5):220-224
    [185]韩文霆,吴普特,冯浩等.变量喷头实现均匀喷灌的研究[J].农业工程学报,2005,21(10):13-16
    [186]袁寿其,陈池,郑铭.无过载离心泵叶轮内三维不可压缩湍流场计算[J].机械工程学报,2000,36(5):31-34
    [187]何有世,袁寿其,郭小梅等.带分流叶片的离心泵内三维不可压缩湍流场的数值模拟[J].机械工程学报,2004,40(11):153-157
    [188]李新宏.部分流泵整机非定常流动数值计算及研究[D].西安交通大学,2003
    [189]武林鹏,张向东.节水灌溉系统变频控制的节能研究与应用[J].农业工程学报,2002,18(4):22-25
    [190]张斌.PLC和变频调速技术在恒压供水系统中的应用[J].电力学报,2006,21(4):465-466,469
    [191]李冶勤,袁聆钊,李国元等.变频调速技术在微喷灌中的应用[J].节水灌溉,2005,(1):21-23
    [192]汤跃,尚亚波,吴徐等.变频调速恒压与变压供水的能耗分析[J].排灌机械,2007,25(1):45-49
    [193]刘宜,李会暖,刘晓阳等.变频调速技术在水泵调节控制系统中的应用[J].排灌机械,2006,24(4):44-46,53
    [194]李素玲,刘军营.变频技术在供水系统中的节能分析及应用[J].山东理工大学学报,2003,17(4):58-61
    [195]曹文田.变频调速最佳节能供水系统[J].电力电子技术,1997,(2):51-52
    [196]李治勤,樊贵盛,郎旭东.变频调速技术在低压管道输水灌溉中的应用[J].农业工程学报,2003,19(3):89-92
    [197]李海富.节水灌溉园区变频控制系统设计[J].农业机械学报,2003,34(9):109-112
    [198]林平.变频控制系统集成模块及其控制芯片技术的研究[D].杭州:浙江大学,2003
    [199]张振国.变频装置在农业节水灌溉中的应用[D].山西:太原理工大学,2003
    [200]谢守勇,李锡文,杨叔子等.基于PLC的模糊控制灌溉系统的研制[J].农业工程学报,2007,23(6):208-210
    [201]王芳琴.单片机控制的节水灌溉系统的研究[D].武汉:华中农业大学,2005
    [202]杨青杰.基于模糊控制的PLC施肥灌溉控制技术的研究[D].北京:中国农业大学,2004
    [203]马峻.精确灌溉与施肥自动化控制系统的研究[D].山西:山西农业大学,2005
    [204]陈巧莉.智能化设施农业节水灌溉控制系统研究[D].南京:南京理工大学,2004
    [205]赖荣光.基于微机的喷灌形状和喷灌量的精确控制系统[D].广州:华南农业大学,2003
    [206]Qin Shuren,Chen Zhikui,Xu Mingtao,et al.Sampling principle and technology in wavelet analysis for signals[J].Chinese Journal of Mechanical Engineering.1998,11(4):257-263
    [207]美国NI公司.虚拟仪器——仪器技术的重大革命.1997
    [208]秦树人,张思复,汤保平等.集成测试技术与虚拟式仪器[J].中国机械工程,1999,10(1):77-80
    [209]Qin Shuren.Integrated testing technology and virtual instrument[J].Proceedings of lst ISIST,Aug,1998:66-71
    [210]鲍一丹,汪开英,何勇等.基于虚拟仪器的精确灌溉信息系统的研究[J].农业工程学报,2005,21(4):7-10
    [211]Li J S,Kawano H,Yoder R E.Effects of double-rectangnlar-slot design on impact sprinkler nozzle performance[J].Transactions of the ASAE,1995,38(5):1435-1441
    [212]Seginer I,Kantz D,Bemuth R D.Indoor measurement of single-radius sprinkler patterns[J].Agricultural Water Management,1992,(19):341-359
    [213]雷应海,朱旦生.多喷头组合喷洒均匀度的矩陈叠加计算法[J].甘肃水利水电技术,1993,6(2):17-20
    [214]李久生.灌水均匀度与深层渗漏量关系的研究[J].农田水利与小水电,1993,(1):1-4
    [215]黄修桥,廖永诚,刘新民.有风条件下喷灌系统组合均匀度的计算理论与方法研究[J].灌溉排水,1995,14(1):12-18
    [216]王文元,杨路华.微喷头布置形式对喷洒均匀度的影响[J].灌溉排水,1994,13(2):9-12
    [217]朱旦生,刘佳莉.用傅里叶变换表示喷灌组合均匀度[J].水利学报,1998,29(10):27-31
    [218]韩文霆,吴普特,杨青等.喷灌水量分布均匀性评价指标比较及研究进展[J].农业工程学报,2005,21(9):172-177
    [219]Han Wenting,Fen Hao,Wu Pute,et al.Evaluation of sprinkler irrigation uniformity by double interpolation using cubic splines[J].2007 ASABE Annual International Meeting.2007,7P
    [220]邓鲁华,郝培业.六方(四方)形摇臂式喷头喷洒效果分析(三)[J].节水灌溉,2003,(4):11-14
    [221]李小平,罗金耀.单喷头水量分布的三角形组合均匀度叠加计算[J].水利学报,2005,36(2):238-242
    [222]James B.Pressure regulators:tools for the DU conscious designer[J].Irrigation Journal,2000,(4):26-28
    [223]Richard G A.Three-dimensional views of sprinkler selection,spacing and orientation[J].Transactions of the ASAE,1984,27(2):737-743
    [224]Melissa C B,Michael D D,Grady L M.Analysis of residential irrigation distribution uniformity[J].Journal of Irrigation and Drainage Engineering,2005,131(4):336-341
    [225]Warrick A W,Hart W E,Yitayew M.Calculation of distribution and efficiency for nonuniform irrigation[J].Journal of Irrigation and Drainage Engineering,1989,115(4): 674-686
    [226]郄志红,陈继建,吴鑫淼等.喷灌水量分布的遗传神经网络模拟与组合均匀度计算[J].灌溉排水学报,2003,22(3):61-63
    [227]雷应海,朱旦生.喷洒均匀度与实际均匀度[J].甘肃水利水电技术,1994,7(2):31-32
    [228]Playan E,Zapata N,Faci J M,et al.Assessing sprinkler irrigation uniformity using a ballistic simulation model[J].Agricultural Water Management,2006,(84):89-100
    [229]Stirzaker R J,Hutchinson P A.Irrigation controlled by a wetting front detector field evaluation under sprinkler irrigation[J].Australian Journal of Soil Research,2005,43(8):935-943
    [230]Vories E D,von Bernuth R D,Miekelson R H.Simulating sprinkler performance in wind[J].Journal of Irrigation and Drainage Engineering,1987,113(1):119-130
    [231]袁寿其,朱兴业,李红等.基于MATLAB全射流喷头组合喷灌计算模拟[J].排灌机械,2008,26(01):47-52
    [232]Perrens S J.Numerical analysis of sprinkler irrigation uniformity within the root zone[J].National Conference Publication-Institution of Engineers,Australia,1984,84(6):228-232
    [233]Solomon K.Variability of sprinlder coefficient of uniformity test results[J].Transactions of the ASAE,1979,22(5):1078-1080,1086
    [234]Perry C D,Dukes M D,Harrison K A.Effects of variable-rate sprinkler cycling on irrigation uniformity[C J].ASAE Annual International Meeting,2004:879-889
    [235]Mateos L.Assessing whole-field uniformity of stationary sprinkler irrigation systems[J].Irrigation Science,1998,(18):73-81
    [236]云希兰,孟宪丽.喷灌系统工作压力与组合均匀度测试研究[J].内蒙古水利,2000,(2):9-12
    [237]李红,任志远,谢福祺等.全射流喷头的磨损试验[J].农业机械学报,2006,37(12):105-108
    [238]朱兴业,袁寿其,李红等.全射流喷头产业化开发中的问题及其改进[J].排灌机械,2006,24(6):24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700