磷酸钒锂及其与磷酸铁锂复合材料制备和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对能源危机和环境污染的挑战,世界各国都对发展用于电动汽车的动力锂离子电池正极材料给予了极高的重视。已研发的正极材料中,磷酸铁锂电池由于环境友好、安全性好、循环寿命长等优点而成为动力电池的希望。但是磷酸铁锂也存在大电流充放电性能差和低温放电容量低等问题,为此本文对Li_3V_2(PO_4)_3材料和xLiFePO_4-yLi_3V_2(PO_4)_3复合材料的制备和电化学性能进行研究,并在实验室研究的基础上,开展中试和规模化制备Li_3V_2(PO_4)_3材料的工艺研究。
     对Li_3V_2(PO_4)_3材料进行了Cu离子和Mg离子掺杂改性的研究。XRD结构精修结果表明,通过对结构中Li-O键的改变,Cu掺杂改性改变了Li_3V_2(PO_4)_3材料的放电行为,在4.05V出现了一个新的放电平台,这对研究提高Li_3V_2(PO_4)_3材料在3.0~4.8V范围的循环性能,提供了一个新的窗口。与未掺杂的磷酸钒锂相比,Mg离子掺杂使Li_3V_2(PO_4)_3材料的晶胞缩小,但是却使结构中Li1和Li2离子的Li-O键的键长变长,使结构对锂离子的束缚减弱,更有利于锂离子的可逆嵌入脱出;XANES研究表明,Mg掺杂改善了Li_3V_2(PO_4)_3材料中VO6八面体的对称性。在3.0~4.3V的范围进行10C倍率充放电测试,Li_3(V_(0.9)Mg_(0.1))_2(PO_4)3材料的放电比容量达到100mAh/g,高于未掺杂改性的Li_3V_2(PO_4)_3材料,使Li_3V_2(PO_4)_3材料更适合动力电池领域的应用。
     对碳热还原法制备7LiFePO_4-Li_3V_2(PO_4)_3复合材料的烧结温度与合成时间进行了优化实验,优化的合成工艺为在770℃烧结12h。在完成合成工艺优化以后,对7LiFePO_4-Li_3V_2(PO_4)_3复合材料的物理性质进行了研究。XRD研究结果表明,复合材料中LiFePO_4和Li_3V_2(PO_4)_3材料的晶胞体积均有收缩。XANES研究表明,复合材料中的LiFePO_4材料中Fe离子的价态略有升高,Li_3V_2(PO_4)_3材料中V离子的价态略有降低,而且VO6八面体的对称性得到提高,结构稳定性得到改善,表明复合材料中发生了Fe对Li_3V_2(PO_4)_3材料中V的取代,和V对LiFePO_4材料中Fe的取代。复合材料具有更好的大电流充放电性能,在1500mA/g电流密度下进行充放电时,其放电比容量为89mAh/g,显著高于单纯的LiFePO_4材料的70mAh/g,而且过电势也有明显的减少。进而对7LiFePO_4-Li_3V_2(PO_4)_3复合材料进行了Mg掺杂改性研究,改性后的复合材料比没有掺杂改性的复合材料放电比容量更高,不同扫描速度下进行的循环伏安测试表明,Mg掺杂提高了复合材料中LiFePO_4材料的Li离子扩散系数。
     对Li_3V_2(PO_4)_3材料和7LiFePO_4-Li_3V_2(PO_4)_3复合材料进行了低温放电行为研究。Mg掺杂改性可以显著提高Li_3V_2(PO_4)_3和7LiFePO_4-Li_3V_2(PO_4)_3复合材料在低温下的放电容量。Mg掺杂7LiFePO_4-Li_3V_2(PO_4)_3复合材料在-30℃条件下的放电比容量达到89mAh/g,比LiFePO_4材料的放电比容量50mAh/g高出39mAh/g,比未掺杂改性复合材料的72mAh/g高出17mAh/g。通过对称电池的研究,发现Mg掺杂改性可以有效的降低Li_3V_2(PO_4)_3材料和7LiFePO_4-Li_3V_2(PO_4)_3复合材料在低温条件下的电荷传递电阻Rct,提高交换电流密度,进而改善材料的电化学反应活性。
     对Li_3V_2(PO_4)_3/C材料进行了中试和规模化制备工艺的研究。首先发现尽管采用水作为球磨介质会改变Li_3V_2(PO_4)_3/C材料合成的反应历程,但仍然可以合成出纯相的Li_3V_2(PO_4)_3/C材料。为了解决中试研究得到的产品颗粒粗大且呈现空心球形、电化学性能不理想的问题,对合成Li_3V_2(PO_4)_3/C材料的原料进行两次球磨处理后,使合成的Li_3V_2(PO_4)_3/C材料呈现出多孔的实心球结构,更有利于电解液的浸润和振实密度的提升,从而提高了材料的电化学性能。在中试研究的基础上开展Li_3V_2(PO_4)_3/C材料规模化制备研究,合成出了具有良好性能的Li_3V_2(PO_4)_3/C材料,在10C倍率充放电条件下,材料的放电容量达到了79mAh/g。良好的电化学性能表明,规模化制备获得了具有应用价值的Li_3V_2(PO_4)_3/C材料。
To face the challenge of energy crisis and environmental pollution, differentcountries all over the world have paid great attention to the development of positivematerials of power lithium ion battery for electric vehicles. In current status,LiFePO_4material is the new hope for power battery, because of its good safety andlong cycle life, and it is friendly to environment. But its rate performance andlow-temperature performance are poor. Therefore the charge and dischargeperformance at high current density and low temperature of Li_3V_2(PO_4)_3materialand xLiFePO_4-yLi_3V_2(PO_4)_3composite material was studied. Moreover, based onthe study in laboratory, the key technology of pilot scale test and scale production ofLi_3V_2(PO_4)_3material were studied.
     The Cu-doping effects and Mg-doping effects on Li_3V_2(PO_4)_3material werestudied. XRD refinement study indicated that Cu doping changed the dischargebehavior of Li_3V_2(PO_4)_3material with the emergence of a new voltage plateau at4.05V via changing the bond length of Li-O. It opens a new window to find the wayto enhance the cycle performance of Li_3V_2(PO_4)_3material in the range of3.0–4.8V.Mg doping decreased the cell volume of Li_3V_2(PO_4)_3material, and lengthens theLi-O bond of Li1and Li2ion in the structure, which decreases the constraint of Liion in the structure, and is beneficial to the reversible intercalation/deintercalationof lithium ion. X-ray absorption near edge structure study revealed that Mg dopingimproved the symmetry of VO6octahedron. At10C rate, the discharge capacity ofLi_3(V_(0.9)Mg_(0.1))_2(PO_4)3material reaches100mAh/g in the range of3.0-4.3V, which ishigher than the undoped Li_3V_2(PO_4)_3material. This indicates that the Mg dopingexerts the significant positive effect on the electrochemical performance ofLi_3V_2(PO_4)_3material, and makes the Li_3V_2(PO_4)_3material more suitable to thepractical application in the power battery field.
     The calcination temperature and time for carbothermal synthesis of7LiFePO_4-Li_3V_2(PO_4)_3composite material were optimized. The optimized synthesistemperature is770℃, and the optimized synthesis time is12h. After the synthesistechnique was optimized, the physical properties of7LiFePO_4-Li_3V_2(PO_4)_3 composite material was studied. The XRD study indicates that the cell volumes ofLiFePO_4and Li_3V_2(PO_4)_3in the composite are decreased. The XANES studyreveals that the valence state of Fe ion in LiFePO_4material is slightly increased,while the valence state of V ion in Li_3V_2(PO_4)_3material is slightly decreased. Inaddition, the symmetry of VO6octahedron is enhanced, and the stability of thestructure is improved. It reveals that in the composite, Fe substituts V inLi_3V_2(PO_4)_3material, V substituts Fe in the LiFePO_4material. The study onelectrochemical properties of the7LiFePO_4-Li_3V_2(PO_4)_3composite material revealsthat the charge and discharge performance of the composite at high current densitiesis much better than that of LiFePO_4material. When charged and discharged at thecurrent density of1500mA/g, the discharge capacity of the composite was89mAh/g, which is much higher than that of original LiFePO_4material (70mAh/g),and the over potential of the composite was lower than that of original LiFePO_4material. The study on Mg doping of7LiFePO_4-Li_3V_2(PO_4)_3composite materialindicates that the electrochemical performance of the composite is enhanced. Thecharge and discharge test indicates that the discharge capacity of Mg-dopedcomposite material is higher than the undoped composite. The cyclicvoltammograms at different scan rates reveals that Mg doping increases thelithium-ion diffusion coefficient of the LiFePO_4in the composite.
     The low-temperature study of Li_3V_2(PO_4)_3material and7LiFePO_4-Li_3V_2(PO_4)_3composite material reveals that the main reason for the decrease of the dischargecapacity of Li_3V_2(PO_4)_3material at low temperatures is the increase of the chargetransfer resistance. Mg doping can significantly increase the discharge capacity ofLi_3V_2(PO_4)_3material and7LiFePO_4-Li_3V_2(PO_4)_3composite material at lowtemperatures. At-30℃, the discharge capacity of Mg-doped7LiFePO_4-Li_3V_2(PO_4)_3composite material is89mAh/g, which is39mAh/g higher than that of originalLiFePO_4material (50mAh/g), and17mAh/g higher than that of the undopedcomposite (72mAh/g). Based on the symmetry cell study, it is found that Mgdoping can decrease the charge transfer resistance Rctof Li_3V_2(PO_4)_3material and7LiFePO_4-Li_3V_2(PO_4)_3composite material, enhance the exchange current density,and improve the electrochemical reactivity.
     In this paper, key technology of the pilot scale test and scale production ofLi_3V_2(PO_4)_3/C material was studied. Using water as the ball-milling medium changed the reaction process of the synthesis of Li_3V_2(PO_4)_3/C material. However,pure Li_3V_2(PO_4)_3/C material was still obtained. The particles of the obtainedproduct in pilot scale test were hollow spheres with large size, and theelectrochemical performance was poor. To circumvent the hollow-sphere particleproblem, a twice ball-milling procedure was employed. The particles of theobtained Li_3V_2(PO_4)_3/C material were porous solid spheres,which were good forthe infiltration of the electrolyte and the increase of tap density. Thus, theelectrochemical performance of the material was enhanced. Based on the pilot scaletest, an industrial scale production study of Li_3V_2(PO_4)_3/C material was carried out,and the electrochemical performance of the as-prepared material was excellent. At10C charge and discharge rate, the discharge capacity of the material is79mAh/g.The excellent performance indicates that a well prepared Li_3V_2(PO_4)_3/C materialwith application potential is achieved in the scale production.
引文
[1] Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries. Chemistryof Materials[J].2010,22:587–603.
    [2] Ellis B L, Lee K T, Nazar L F. Positive Electrode Materials for Li-ion andLi-batteries[J]. Chemistry of Materials.2010,22:691–714.
    [3] Scrosati B, Garche J. Lithium Batteries: Status, Prospects and Future[J].Journal of Power Sources.2010,195:2419–2430.
    [4] Zhang W J. Structure and Performance of LiFePO4Cathode Materials: AReview[J]. Journal of Power Sources.2011,196:2962–2970.
    [5] Kang B, Ceder G. Battery Materials for Ultrafast Charging and Discharging[J].Nature.2009,458:190–193.
    [6] Huang H, Yin S H, Kerr T, et al. Nanostructured Composites: A High CapacityFast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries[J].Advance Materials.2002,14:1525–1528.
    [7] Huang H, Faulkner T, Barker J, et al. Lithium Metal Phosphates, Power andAutomotive Applications[J]. Journal of Power Sources.2009,189:748–751.
    [8] Yang M R, K e W H, Wu S H. Improving Electrochemical Properties ofLithium Iron Phosphate by Addition of Vanadium[J]. Journal of Power Sources.2007165:646–650.
    [9] Wang L N, Li Z C, Xu H J, et al. Studies of Li3V2(PO4)3Additives for theLiFePO4-based Li Ion Batteries[J]. Journal of Physical Chemistry C.2008,112:308–312.
    [10] Zheng J C, Li X H, Wang Z X, et al. Characteristics of xLiFePO4·yLi3V2(PO4)3Electrodes for Lithium Batteries[J]. Ionics.2009,15:753–759.
    [11] Zheng J C, Li X H, Wang Z X, et al. Novel Synthesis of LiFePO4-Li3V2(PO4)3Composite Cathode Material by Aqueous Precipitation and Lithiation. Journalof Power Sources[J].2010,195:2935–2938.
    [12] Xiang J Y, Tu J P, Zhang L, et al. Improved Electrochemical Performances of9LiFePO4·Li3V2(PO4)/C Composite Prepared by a Simple Solid-stateMethod[J]. Journal Power Sources.2010,195:8331–8335.
    [13] Fan J. On the Discharge Capability and Its Limiting Factors of Commercial18650Li-ion Cell at Low Temperatures[J]. Journal of Power Sources.2003,117:170–178.
    [14] Mateyshina Y G, Uvarov N F. Electrochemical Behavior ofLi3xM’xV2yM”y(PO4)3(M’=K, M”=Sc, Mg+Ti)/C Composite CathodeMaterial for Lithium-ion Batteries[J]. Journal of Power Sources.2011,196:1494–1497.
    [15] Whittingham M S. Electrical Energy Storage and Intercalation Chemistry[J].Science.1976,192:1126–1127.
    [16] Tarascon J M, Armand M. Issues and Challenges Facing RechargeableLithium Batteries[J]. Nature.2001,414:359–367.
    [17]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:化学工业出版社,2002,8–10.
    [18] Winter M, Ralph J B. What Are Batteries, Fuel Cells, and Supercapacitors?[J].Chemical Review.2004,104:4245–4270.
    [19]周宗子,朱刚.磷酸铁锂材料及其动力电池产业化现状及前景[J].船电技术,2007,27:257–260.
    [20] Eriksson T, Gustafsson T, Thomas J O. Surface Structure of LiMn2O4Electrodes[J]. Electrochemical and Solid-State Letters.2002,5: A35–A38.
    [21] Bellitto C, Dimarco M G, Branford W R, et al. Cation Distribution inGa-doped Li1.02Mn2O4[J]. Solid State Ionics.2001,140:77–81.
    [22] Takahashi Y, Kijima N, Akimoto J. Crystal Growth and Structural Propertiesof the Spinel-type Li1+xMn2xO4(x=0.10,0.14)[J]. Solid State Ionics.2006,177:691–695.
    [23] Pasquier A D, Blyr, Courjal A P, et al. Mechanism for Limited55℃StoragePerformance of Li1.05Mn1.95O4Electrodes[J]. Journal of The ElectrochemicalSociety.1999,146:428–436.
    [24] Ohzuku T, Makimura Y. Layered Lithium Insertion Material ofLi[Ni1/3Co1/3Mn1/3]O2for Lithium-ion Batteries[J]. Chemistry Letters.2001,7:642–643.
    [25] Koyama Y, Tanaka I, Adachi H, et al. Crystal and Electronic Structures ofSuperstructural Li1-x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1)[J]. Journal of PowerSources,2003,119-121:644–648.
    [26] Koyama Y, Yabuuchi N, Tanaka I, Adachi, Ohzuku H T. Solid-state Chemistryand Electrochemistry of LiCo1/3Ni1/3Mn1/3O2for Advanced Lithium-ionBatteries: I. First-Principles Calculation on the Crystal and ElectronicStructures[J]. Journal of the Electrochemical Society.2004,151:A1545–A1551.
    [27] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines asPositive-Electrode Materials for Rechargeable Lithium Batteries[J]. Journal ofthe Electrochemical Society.1997,144:1188–1194.
    [28] Andersson A S, Kalska B, Haggstrom L, et al. Lithium Extraction/Insertion inLiFePO4: an X-ray Diffraction and Mossbauer Spectroscopy Study[J]. SolidState Ionics.2000,130:41–52.
    [29] Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of Natural andSynthetic Triphylite[J]. Journal of Power Sources.2001,97-98:503–507.
    [30] Ravet N, Herstedt M, Stjerndahl M, et al. Surface Chemistry of Carbon-treatedLiFePO4Particles for Li-ion Battery Cathodes Studied by PES[J].Electrochemical and Solid-State Letters.2003,6: A202–A206.
    [31] Chung S Y, Blocking J T, Chiang Y M. Electronically ConductivePhospho-olivines as Lithium Storage Electrodes[J]. Journal of NatureMaterials.2002,2:123–128.
    [32] Saidi M Y, Barker J, Huang H, et al. Performance Characteristics of LithiumVanadium Phosphate as a Cathode Material for Lithium-ion Batteries[J].Journal of Power Sources.2003,119–121:266–272.
    [33] Tang A P, Wang X Y, Liu Z M. Electrochemical Behavior of Li3V2(PO4)3/CComposite Cathode Material for Lithium-ion Batteries[J]. Materials Letters.2008,62:1646–1648.
    [34] Wu F, Wang F, Wu C, et al. Rate Performance of Li3V2(PO4)3/C CathodeMaterial and Its Li+Ion Intercalation Behavior[J]. Journal of Alloys andCompounds.2012,513:236–241.
    [35] Rui X H, Ding N, Liu J, et al. Analysis of the Chemical Diffusion Coefficientof Lithium Ions in Li3V2(PO4)3Cathode Material[J]. Electrochimica Acta.2010,55:2384–2390.
    [36] Tang A P, Wang X Y, Xu G R, et al. Determination of the Chemical DiffusionCoefficient of Lithium in Li3V2(PO4)3[J]. Materials Letters.2009,63:1439–1441.
    [37] Burba C M, Frech R. Vibrational Spectroscopic Studies of Monoclinic andRhombohedral Li3V2(PO4)3[J]. Solid State Ionics.2007,177:3445–3454.
    [38] Lee S H, Park S S. Atomistic Simulation Study of Monoclinic Li3V2(PO4)3as aCathode Material for Lithium Ion Battery: Structure, Defect Chemistry,Lithium Ion Transport Pathway, and Dynamics[J]. The Journal of PhysicalChemistry C.2012,116:2519025197.
    [39] Pivko M, Arcon I, Bele M, et al. A3V2(PO4)3(A=Na or Li) Probed by in SituX-ray Absorption Spectroscopy[J]. Journal of Power Sources.2012,216:145151.
    [40] Bacewicz R, Wasiucionek M, Twarog A, et al. A XANES Study of the ValenceState of Vanadium in Lithium Vanadate Phosphate Glasses[J]. Journal ofMaterials Science.2005,40:4267–4270.
    [41] Patoux S, Wurm C, Morcrette M, et al. A Comparative Structural andElectrochemical Study of Li3Fe2(PO4)3and Li3V2(PO4)3[J]. Journal of PowerSources.2003,119–121:278–284.
    [42] Rui X H, Jin Y, Feng X Y, et al. A Comparative Study on the Low-temperaturePerformance of LiFePO4and Li3V2(PO4)3Cathodes for Lithium-ionBatteries[J]. Journal of Power Sources.2011,196:2109–2114.
    [43] Morgan D, Ceder G, Saidi M Y, et al. Experimental and Computational Studyof the Structure and Electrochemical Properties of Monoclinic LixM2(PO4)3Compounds[J]. Journal of Power Sources.2003,119–121:755–759.
    [44] YinS C, Strobel P S, Grondey H, et al. Li2.5V2(PO4)3: A Room-TemperatureAnalogue to the Fast-Ion Conducting High-Temperature γ-Phase ofLi3V2(PO4)3[J]. Chemistry of Materials.2004,16:1456–1465.
    [45] Yin S C, Grondey H, Strobel P, et al. Electrochemical Property: StructureRelationships in Monoclinic Li3-yV2(PO4)3[J]. Journal of the AmericanChemical Society.2003,125:10402–10411.
    [46] Yin S C, Grondey H, Strobel P, et al. Charge Ordering in Lithium VanadiumPhosphates: Electrode Materials for Lithium-Ion Batteries[J]. Journal of theAmerican Chemical Society.2003,125:326–327.
    [47] Rui X H, Yesibolati N, Li S R, et al. Determination of the Chemical DiffusionCoefficient of Li+in Intercalation-type Li3V2(PO4)3Anode Material[J]. SolidState Ionics.2011,187:58–63.
    [48] Rui X H, Yesibolati N, Chen C H. Li3V2(PO4)3/C Composite as anIntercalation-type Anode Material for Lithium-ion Batteries[J]. Journal ofPower Sources.2011,196:2279–2282.
    [49] Saidi M Y, Barker J, Huang H, et al. Electrochemical Properties of LithiumVanadium Phosphate as a Cathode Materials for Lithium-Ion batteries[J].Electrochemical and Solid-State Letters.2002,5(7): A149–A151.
    [50] Fu P, Zhao Y M, Dong Y Z, et al. Synthesis of Li3V2(PO4)3with HighPerformance by Optimized Solid-state Synthesis Routine[J]. Journal of PowerSources.2006,162:651–657.
    [51] Barker J, Saidi M Y, Swoyer J L. A Carbothermal Reduction Method for thePreparation of Electroactive Materials for Lithium Ion Applications[J]. Journalof the Electrochemical Society.2003,150: A684–A688.
    [52] Zhua X J, Liu Y X, Geng L M, et al. Synthesis and Characteristics ofLi3V2(PO4)3as Cathode Materials for Lithium-ion Batteries[J]. Solid StateIonics.2008,179:1679–1682.
    [53] Fu P, Zhao Y M, Dong Y Z, et al. Low Temperature Solid-state SynthesisRoutine and Mechanism for Li3V2(PO4)3Using LiF as Lithium Precursor[J].Electrochimica Acta.2006,52:1003–1008.
    [54] Wang L J, Zhou X C, Guo Y L. Synthesis and Performance of Carbon-coatedLi3V2(PO4)3Cathode Materials by a Low Temperature Solid-state Reaction[J].Journal of Power Sources.2010,195:2844–2850.
    [55] Wang J X, Wa Z X, Li X H, et al. Comparative Investigations of LiVPO4F/Cand Li3V2(PO4)3/C Synthesized in Similar Soft Chemical Route[J]. Journal ofSolid State Electrochemistry.2013,17:1–8.
    [56] Huang B, Fan X P, Zheng X D, et al. Synthesis and Rate Performance ofLithium Vanadium Phosphate as Cathode Material for Li-ion Batteries[J].Journal of Alloys and Compounds.2011,509:4765–4768.
    [57] Nagamine K, Honma T, Komatsu T. A Fast Synthesis of Li3V2(PO4)3Crystalsvia Glass-ceramic Processing and Their Battery Performance[J]. Journal ofPower Sources.2011,196:9618–9624.
    [58] Zhou X C, Liu Y M, Guo Y L. One-step Synthesis of Li3V2(PO4)3PositiveMaterial with High Performance for Lithium-ion Batteries[J]. Solid StateCommunications.2008,146:261–264.
    [59] Wang L, Jiang X Q, Li X, et al. Rapid Preparation and ElectrochemicalBehavior of Carbon-coated Li3V2(PO4)3from Wet Coordination[J].Electrochimica Acta.2010,55:5057–5062.
    [60] Mao W F, Yan J, Xie H, et al. A Novel Synthesis of Li3V2(PO4)3/CNanocomposite with Excellent High-rate Capacity and Cyclability[J].Materials Research Bulletin.2012,47:4527–4530.
    [61] Zhang L L, Peng G, Liang G, et al. Controllable Synthesis of SphericalLi3V2(PO4)3/C Cathode Material and Its Electrochemical Performance[J].Electrochimica Acta.2013,90:433–439.
    [62] Wang L, Li X, Jiang X Q, et al. Wet Coordination Method to PrepareCarbon-coated Li3V2(PO4)3Cathode Material for Lithium Ion Batteries[J].Solid State Sciences.2010,12:1248–1252.
    [63] Li Y Z, Zhou Z, Ren M M, et al. Electrochemical Performance ofNanocrystalline Li3V2(PO4)3/Carbon Composite Material Synthesized by aNovel Sol–gel Method[J]. Electrochimica Acta.2006,51:6498–6502.
    [64] Li Y Z, Zhou Z, Ren M M, et al. Improved Electrochemical Li InsertionPerformances of Li3V2(PO4)3/Carbon Composite Materials Prepared by aSol–gel Route[J]. Materials Letters.2007,61:4562–4564.
    [65] Chen Q Q, Wang J M, Tang Z, et al. Electrochemical Performance of theCarbon Coated Li3V2(PO4)3Cathode Material Synthesized by a Sol–gelMethod[J]. Electrochimica Acta.2007,52:5251–5257.
    [66] Zhu X J, Liu Y X, Geng L M, et al. Synthesis and Performance of LithiumVanadium Phosphate as Cathode Materials for Lithium Ion Batteries by aSol–gel Method[J]. Journal of Power Sources.2008,184:578–582.
    [67] Fu P, Zhao Y M, An X N, et al. Structure and Electrochemical Properties ofNanocarbon-coated Li3V2(PO4)3Prepared by Sol–gel Method[J].Electrochimica Acta.2007,52:5281–5285.
    [68] Li Y Z, Zhou Z, Gao X P, et al. A Promising Sol–gel Route Based on CitricAcid to Synthesize Li3V2(PO4)3/Carbon Composite Material for Lithium IonBatteries[J]. Electrochimica Acta.2007,52:4922–4926.
    [69] Qiao Y Q, Tu J P, Xiang J Y, et al. Effects of Synthetic Route on Structure andElectrochemical Performance of Li3V2(PO4)3/C Cathode Materials[J].Electrochimica Acta.2011,56:4139–4145.
    [70] Rui X H, Li C, Liu J, et al. The Li3V2(PO4)3/C Composites with High-rateCapability Prepared by a Maltose-based Sol–gel Route[J]. Electrochimica Acta.2010,55:6761–6767.
    [71] Yuan W, Yan J, Tang Z Y, et al. Synthesis of Li3V2(PO4)3Cathode Material viaa Fast Sol–gel Method Based on Spontaneous Chemical Reactions[J]. Journalof Power Sources.2012,201:301–306.
    [72] Yan J, Yuan W, Xie H, et al. Novel Self-catalyzed Sol–gel Synthesis ofHigh-rate Cathode Li3V2(PO4)3/C for Lithium Ion Batteries[J]. MaterialsLetters.2012,71:1–3.
    [73] Pan A Q, Choi D W, Zhang J G, et al. High-rate Cathodes Based onLi3V2(PO4)3Nanobelts Prepared via Surfactant-assisted Fabrication[J]. Journalof Power Sources.2011,196:3646–3649.
    [74] Yuan W, Yan J, Tang Z Y, et al. Synthesis of High Performance Li3V2(PO4)3/CCathode Material by Ultrasonic-assisted Sol–gel Method[J]. Ionics.2012,18:329–335.
    [75] Tang A P, Wang X Y, Yang S Y. A Novel Method to Synthesize Li3V2(PO4)3/CComposite and Its Electrochemical Li Intercalation Performances[J]. MaterialsLetters.2008,62:3676–3678.
    [76] Zhang X P, Guo H J, Li X H, et al. High Tap-density Li3V2(PO4)3/C CompositeMaterial Synthesized by Sol Spray-drying and Post-calcining Method[J].Electrochimica Acta.2012,64:65–70.
    [77] Chang C X, Xiang J F, Shi X X, Hydrothermal Synthesis of Carbon-coatedLithium Vanadium Phosphate[J]. Electrochimica Acta.2008,54:623–627.
    [78] Sun C W, Rajasekhara S, Dong Y Z, et al. Hydrothermal Synthesis andElectrochemical Properties of Li3V2(PO4)3/C-Based Composites forLithium-ion Batteries[J]. Appllied Materials and Interfaces.2011,3:3772–3776.
    [79] Teng F, Hu Z H, Ma X H, et al. Hydrothermal Synthesis of Plate-likeCarbon-coated Li3V2(PO4)3and Its Low Temperature Performance for HighPower Lithium Ion Batteries[J]. Electrochimica Acta.2013,91:43–49.
    [80] Yao J H, Jia Z T, Zhang P J, et al. Microwave Assisted Sol–gel Synthesis ofChlorine Doped Lithium Vanadium Phosphate[J]. Ceramics International,2013,39:2165–2170.
    [81] Yang G, Liu H D, Ji H M, et al. Microwave Solid-state Synthesis andElectrochemical Properties of Carbon-free Li3V2(PO4)3as Cathode Materialsfor Lithium Batteries[J]. Electrochimica Acta.2010,55:2951–2957.
    [82] Wang C, Liu H M, Yang W S, et al. An Integrated Core–shell StructuredLi3V2(PO4)3@C Cathode Material of LIBs Prepared by a MomentaryFreeze-drying Method[J]. Journal of Materials Chemistry,2012,22:5281–5285.
    [83] Qiao Y Q, Wang X L, Mai Y J, et al. Freeze-drying Synthesis of Li3V2(PO4)3/CCathode Material for Lithium-ion Batteries[J]. Journal of Alloys andCompounds.2012,536:132–137.
    [84] Chang C X, Xiang J F, Shi X X, et al. Rheological Phase Reaction Synthesisand Electrochemical Performance of Li3V2(PO4)3/Carbon Cathode for LithiumIon Batteries[J]. Electrochimica Acta.200853:2232–2237.
    [85] Ko Y N, Koo H Y, Kim J H, et al. Characteristics of Li3V2(PO4)3/C PowdersPrepared by Ultrasonic Spray Pyrolysis[J]. Journal of Power Sources.2011,196:6682–6687.
    [86] Kuang Q, Zhao Y M. Two-step Carbon Coating of Lithium VanadiumPhosphate as High-rate Cathode for Lithium-ion Batteries[J]. Journal of PowerSources.2012,216:33–35.
    [87] Tang A P, Wang X Y, Yang S Y, et al. Synthesis and Electrochemical Propertiesof Monoclinic Li3V2(PO4)3/C Composite Cathode Material Prepared from aSucrose-containing Precursor[J]. Journal of Applied Electrochemistry.2008,38:1453–1457.
    [88] Qiao Y Q, Wang X L, Xiang J Y, et al. Electrochemical Performance ofLi3V2(PO4)3/C Cathode Materials Using Stearic Acid as a Carbon Source[J].Electrochimica Acta.2011,56:2269–2275.
    [89] Huang J S, Yang L, Liu K Y. Organic Phosphoric Sources for Syntheses ofLi3V2(PO4)3/C via Improved Rheological Phase Reaction[J]. Materials Letters.2012,66:196–198.
    [90] Li Y J, Hong L, Sun J Q, et al. Electrochemical Performance of Li3V2(PO4)3/CPrepared with a Novel Carbon Source, EDTA[J]. Electrochimica Acta.2012,85:110–115.
    [91] Mao W F, Yan J, Xie H, et al. The Interval High Rate Discharge Behavior ofLi3V2(PO4)3/C Cathode Based on in Situ Polymerization Method[J].Electrochimica Acta.2013,88:429–435.
    [92] Wang J W, Liu J, Yang G L, et al. Electrochemical Performance ofLi3V2(PO4)3/C Cathode Material Using a Novel Carbon Source[J].Electrochimica Acta.2009,54:6451–6454.
    [93] Wang J W, Zhang X F, Liu J, et al. Long-term Cyclability and High-rateCapability of Li3V2(PO4)3/C Cathode Material Using PVA as Carbon Source[J].Electrochimica Acta.2010,55:6879–6884.
    [94] Qiao Y Q, Wang X L, Zhou Y, et al. Electrochemical Performance ofCarbon-coated Li3V2(PO4)3Cathode Materials Derived fromPolystyrene-based Carbon-thermal Reduction Synthesis[J]. ElectrochimicaActa.2010,56:510–516.
    [95] Zhang Y, Lv Y, Wang L Z, et al. Synthesis and Electrochemical Properties ofLi3V2(PO4)3/MWCNTs Composite[J]. Synthetic Metals.2011,161:2170–2173.
    [96] Wu K L. Preparation and Characterization of Li3V2(PO4)3/MWCNTs CathodeMaterial for Lithium-ion Batteries[J]. Ionics.2012,18:55–58.
    [97] Qiao Y Q, Tu J P, Mai Y J, et al. Enhanced Electrochemical Performances ofMulti-walled Carbon Nanotubes Modified Li3V2(PO4)3/C Cathode Material forLithium-ion Batteries[J]. Journal of Alloys and Compounds.2011,509:7181–7185.
    [98] Jiang Y, Xu W W, Chen D D, et al. Graphene Modified Li3V2(PO4)3as aHigh-performance Cathode Material for Lithium Ion Batteries[J].Electrochimica Acta.2012,85:377–383.
    [99] Zhang L, Wang S Q, Cai D D, et al. Li3V2(PO4)3/graphene Composite withImproved Cycling Performance as Cathode Material for Lithium-ionBatteries[J]. Electrochimica Acta.2013,91:108–113.
    [100]Zhu J F, Yang R S, Wu K L. Synthesis of Li3V2(PO4)3/reduced GrapheneOxide Cathode Material with High-rate Capability[J]. Ionics.2013,19:577–580.
    [101]Wang L J, Liu H B, Tang Z Y, et al. Li3V2(PO4)3/C Cathode Material Preparedvia a Sol–gel Method Based on Composite Chelating Reagents[J]. Journal ofPower Sources.2012,204:197–199.
    [102]Hao W J, Zhan H H, Yu J. Construction of Carbon Coating andMulti-dimensional Networks for Li3V2(PO4)3Nanoparticles by PolyvinylAlcohol and Graphene Sheets[J]. Materials Letters.2012,83:121–123.
    [103]Zhang L L, Li Y, Peng G, et al. High-performance Li3V2(PO4)3/C CathodeMaterials Prepared via a Sol–gel Route with Double Carbon Sources[J].Journal of Alloys and Compounds.2012,513:414–419.
    [104]Rui X H, Li C, Chen C H. Synthesis and Characterization of Carbon-coatedLi3V2(PO4)3Cathode Materials with Different Carbon Sources[J].Electrochimica Acta.2009,54:3374–3380.
    [105]Zhou X C, Liu Y M, Guo Y L. Effect of Reduction Agent on the Performanceof Li3V2(PO4)3Positive Material by One-step Solid-state Reaction[J].Electrochimica Acta.2009,54:2253–2258.
    [106]Zhong S K, Liu L T, Jing J Q, et al. Preparation and ElectrochemicalProperties of Y-doped Li3V2(PO4)3Cathode Materials for Lithium Batteries[J].Journal of Rare Earths.2009,27:134–137.
    [107]Ai D J, Liu K Y, Lu Z G, et al. Aluminothermal Synthesis and Characterizationof Li3V2-xAlx(PO4)3Cathode Materials for Lithium Ion Batteries[J].Electrochimica Acta.2011,56:2823–2827.
    [108]Huang J S, Yang L, Liu K Y, et al. Synthesis and Characterization ofLi3V(22x/3)Mgx(PO4)3/C Cathode Material for Lithium-ion Batteries[J]. Journalof Power Sources.2010,195:5013–5018.
    [109]Dong Y Z, Zhao Y M, Duan H, et al. The Effect of Doping Mg2+on theStructure and Electrochemical Properties of Li3V2(PO4)3Cathode Materialsfor Lithium-ion Batteries[J]. Journal of Electroanalytical Chemistry.2011,660:14–21.
    [110]Bini M, Ferrari S, Capsoni D, et al. Mn Influence on the ElectrochemicalBehaviour of Li3V2(PO4)3Cathode Material[J]. Electrochimica Acta.2011,56:2648–2655.
    [111]Zhai J, Zhao M S, Wang D D. Effect of Mn-doping on Performance ofLi3V2(PO4)3/C Cathode Material for Lithium Ion Batteries[J]. Transactions ofNonferrous Metals Society of China.2011,21:523–528.
    [112]Chen Y H, Zhao Y M, An X N, et al. Preparation and ElectrochemicalPerformance Studies on Cr-doped Li3V2(PO4)3as Cathode Materials forLithium-ion Batteries[J]. Electrochimica Acta.2009,54:5844–5850.
    [113]Yang S Y, Zhang S, Fu B L, et al. Effects of Cr Doping on the ElectrochemicalPerformance of Li3V2(PO4)3Cathode Material for Lithium Ion Batteries[J].Journal of Solid State Electrochemistry.2011,15:2633–2638.
    [114]Kuang Q, Zhao Y M, Liang Z Y. Synthesis and Electrochemical Properties ofNa-doped Li3V2(PO4)3Cathode Materials for Li-ion Batteries[J]. Journal ofPower Sources.2011,196:10169–10175.
    [115]Chen Q Q, Qiao X C, Wang Y B, et al. Electrochemical Performance ofComposite Cathode Materials for Lithium Ion Batteries[J]. Journal of PowerSources.2012,201:267–273.
    [116]Ren M M, Zhou Z, Li Y Z, et al. Preparation and Electrochemical Studies ofFe-doped Li3V2(PO4)3Cathode Materials for Lithium-ion Batteries[J]. Journalof Power Sources.2006,162:1357–1362.
    [117]Jiang B Q, Hu S F, Wang M W, et al. Synthesis and ElectrochemicalPerformance of La-doped Li3V2-xLax(PO4)3Cathode Materials for LithiumBatteries[J]. Rare Metals.2011,30:115–119.
    [118]Yan J, Yuan W, Tang Z Y, et al. Synthesis and Electrochemical Performance ofLi3V2(PO4)3-xClx/C Cathode Materials for Lithium-ion Batteries[J]. Journal ofPower Sources.2012,209:251–256.
    [119]Kuang Q, Zhao Y M, An X N, et al. Synthesis and Electrochemical Propertiesof Co-doped Li3V2(PO4)3Cathode Materials for Lithium-ion Batteries[J].Electrochimica Acta.2010,55:1575–1581.
    [120]Xia Y, Zhang W K, Huang H, et al. Synthesis and Electrochemical Propertiesof Nb-doped Li3V2(PO4)3/C Cathode Materials for Lithium-ion Batteries[J].Materials Science and Engineering.2011, B176:633–639.
    [121]Yao J H, Wei S S, Zhang P J, et al. Synthesis and Properties ofLi3V2-xCex(PO4)3Cathode Materials for Li-ion Batteries[J]. Journal of Alloysand Compounds.2012,532:49–54.
    [122]Zhang Y, Huo Q Y, Lv Y, et al. Effects of Nickel-doped Lithium VanadiumPhosphate on the Performance of Lithium-ion Batteries[J]. Journal of Alloysand Compounds.2012,542:187–191.
    [123]Liu H P, Bi S F, Wen G W, et al. Synthesis and Electrochemical Performanceof Sn-doped Li3V2(PO4)3/C Cathode Material for Lithium Ion Battery byMicrowave Solid-state Technique[J]. Journal of Alloys and Compounds.2012,543:99–104.
    [124]Zhang S, Wu S Q, Deng C, et al. Synthesis and Characterization of Ti–Mn andTi–Fe Codoped Li3V2(PO4)3as Cathode Material for Lithium Ion Batteries[J].Journal of Power Sources.2012,218:56–64.
    [125]Zhang B, Zheng J C, Yang Z H. Structural Properties of Composite CathodeMaterial LiFePO4–Li3V2(PO4)3[J]. Ionics.201117:859–862.
    [126]Zhang L L, Liang G, Ignatov A, et al. Effect of Vanadium Incorporation onElectrochemical Performance of LiFePO4for Lithium-Ion Batteries[J]. TheJournal of Physcial Chemistry C.2011,115:13520–13527.
    [127]Li X, Cheruvally G, Kim J K, et al. Polymer Electrolytes Based on anElectrospan Poly (Vinylidene Fluoride-co-hexafluoropropylene)[J]. Journal ofPower Sources.2007,167:491–498.
    [128]Zhang S S, Xu K, Jow T R. The Low Temperature Performance of Li-ionBatteries[J]. Journal of Power Sources.2003,115:137–140
    [129]Zhang S S, Xu K, Jow T R. An Improved Electrolyte for the LiFePO4CathodeWorking in a wide Temperature Range[J]. Journal of Power Sources.2006,159:702–707.
    [130]Lin H P, Chua D, Salomon M, et al. Low-Temperature Behavior of Li-IonCells[J]. Electrochemical and Solid-State Letters.20014-6: A71–A73.
    [131]Smart M C, Ratnakumar B V, Chin K B, et al. Lithium-Ion ElectrolytesContaining Ester Cosolvents for Improved Low Temperature Performance[J].Journal of the Electrochemical Society.2010,157: A1361–A1374.
    [132]McBreen J, LeevH S, Yang X Q, et al. New Approaches to the Design ofPolymer and Liquid Electrolytes for Lithium Batteries[J]. Journal of PowerSources.2000,89:163–167.
    [133]Zhang S S, Xu K, Jow T R. Electrochemical Impedance Study on the LowTemperature of Li-ion batteries[J]. Electrochimica Acta.2004,49:1057–1061.
    [134]Jansen A N, Dees D W, Abraham D P, et al. Low-temperature Study ofLithium-ion Cells Using a LiySn Micro-reference Electrode[J]. Journal ofPower Sources,2007,174:373–379.
    [135]Tatsumi K, Conard J, Nakahara M, et al. Low Temperature7Li-NMRInvestigations on Lithium Inserted into Carbon Anodes for RechargeableLithium-ion Cells[J]. Journal of Power Sources.1999,81–82:397–400.
    [136]Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based RechargeableBatteries[J]. Chemical Review.2004,104:4303–4417.
    [137]金明钢,赵新兵,沈垚,等.低温锂离子电池研究进展[J].电源技术.2007,31:930–933.
    [138]谢晓华,陈立宝,解晶莹.锂离子蓄电池低温性能研究进展[J].电源技术.2007,31:576–577.
    [139]Shin H C, Nam K W, Chang W Y, et al. Comparative Studies on C-coated andUncoated LiFePO4Cycling at Various Rates and Temperatures UsingSynchrotron Based in Situ X-ray Diffraction[J]. Electrochimica Acta.2011,56:1182–1189.
    [140]Li C F, Hua N, Wang C Y, et al. Effect of Mn2+-doping in LiFePO4and theLow Temperature Electrochemical Performances[J]. Journal of Alloys andCompounds.2011,509:1897–1900.
    [141]谷亦杰,孙先富,李兆龙,等.10Ah LiFePO4锂离子电池高低温性能研究[J].电池工业.2009,14:223–226.
    [142]杨春巍,张若昕,胡信国,等. LiFePO4锂离子电池低温性能研究进展[J].电池工业.2009,14:125–128
    [143]Huang C K, Sakamoto J S, Wolfenstine J, et al. The Limits ofLow-temperature Performance of Li-ion Cells[J]. Journal of theElectrochemical Society.2000,147:2893–2896.
    [144]Plichta E J, Hendrickson M R, Thompson G A, et al. Development of LowTemperature Li-ion Electrolytes for NASA and DOD Applications[J]. Journalof Power Sources.2001,94:160–162.
    [145]Suresh P, Shukla A K, Munichandraiah N. Temperature Dependence Studies ofA.C. Impedance of Lithium-ion Cells[J]. Journal of Applied Electrochemistry.2002,32:267–273.
    [146]Omenya F, Chernova N A, Upreti S, et al. Can Vanadium Be Substituted intoLiFePO4?[J]. Chemistry of Materials.2011,23:4733–4740.
    [147]Kim C W, Park J S, Lee K S. Effect of Fe2P on the Electron Conductivity andElectrochemical Performance of LiFePO4Synthesized by Mechanical AlloyingUsing Fe3+Raw Material[J]. Journal of Power Sources.2006,163:144–150.
    [148]Xu Y B, Lu Y J, Yan L, et al. Synthesis and Effect of Forming Fe2P Phase onthe Physics and Electrochemical Properties of LiFePO4/C Materials[J]. Journalof Power Sources.2006,160:570–576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700