移动Ad Hoc网络中分簇组网技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术以及移动电话、PDA (Personal Digital Assistant)、笔记本电脑等无线通信设备的不断发展,人类社会已经逐渐进入了泛在通信的新时代。在众多的通信解决方案中,基于分簇结构的移动Ad Hoc网络因其不依赖固定基础设施即可在移动场景中实现动态组网与数据传输的特点在近些年引起了学术界和工业界越来越多的关注。与传统的平面结构相比,分簇结构能够显著地改善资源的利用率、降低路由复杂度、增强网络稳定性。但由于分簇结构的建立与维护不可避免地会依赖于额外的状态信息与控制信息的交互,所以当网络的拓扑结构变化较快并且涉及较多动态节点时,网络中传输的分簇信息则可能出现显著的增长,从而占用大量系统资源,甚至造成网络的瘫痪。因此,如何为移动AdHoc网络设计高效、可靠的分簇组网方案,并进行准确、有效的性能分析就成为推进分簇组网技术继续向前发展的关键。
     本文首先从分簇组网方案的设计出发,提出了一套基于移动性预测的分簇组网方案(Mobility Prediction Based Clustering, MPBC)以尽可能减少节点的随机移动性对网络拓扑结构所可能产生的影响。与现有面向移动性感知的分簇组网方案相比,MPBC方案采用了基于多普勒频移的相对移动性预测算法获得所需的移动性信息。由于新的预测算法不依赖于外部系统、且无需传输额外的控制信息,MPBC方案体现出了更好的环境适应性。此外,在MPBC方案中,预测得到的移动性信息不仅用于簇头的初步选取、网络结构的初始化,也被用于在分簇保持阶段对网络结构做出适时的调整以尽可能进一步提升簇结构的稳定性。通过理论分析和仿真实验可知:在相同条件下,MPBC方案在链路状态变化率、逻辑链路持续时间、簇头生存时间等一系列稳定性性能指标方面都比现有典型分簇组网方案表现得更为出色。
     由于分簇组网工作中的信息交互基本都以广播方式完成,因此广播传输的性能会直接影响到分簇组网工作的有效进行。基于这样的考虑,本文在完成分簇方案的设计之后,进而对广播传输的可靠性进行了理论分析。为了准确地描述广播传输过程,本文用Markov链对随机退避计数器的状态变化、节点传输队列中剩余数据包数目的变化分别进行了重新建模,以修正现有文献中所存在的问题与不足。在此基础上,通过模型分析得到的节点平均传输概率被用于推导一般性二维平面场景下移动Ad Hoc网络中基于距离的丢包率、平均丢包率以及平均队列时延这三个可靠性性能指标的闭合表达式。与现有研究成果相比,本文考虑了隐藏终端以及相邻节点选择相同的退避时间对广播传输所产生的影响。此外,本文也对衰落信道在传输可靠性方面所可能产生的负面效应进行了讨论。
     最后,本文研究了分簇结构对移动Ad Hoc网络容量性能带来的影响以提高分簇组网的有效性。基于描述网络中通信干扰的协议模型(Protocol Model)和由收发节点形成的排斥区域(Exclusive Region),本文首先得到了分簇结构的移动Ad Hoc网络中由簇结构和孤立节点决定的两个理论容量上界,并在此基础上对临界网络面积进行了求解。此后,本文还对不同场景中网络容量下界的可达性进行了分析。研究结果表明,在分簇结构下,移动Ad Hoc网络的网络容量会因网络面积的变化而表现出不同的特征;而临界网络面积这一参量也对“大规模”网络这一概念做出了更为明确地解释。
With the recent developments in wireless communication technologies and evolutions in low cost wireless devices such as mobile phones, PDAs, and laptops etc., the human society is entering a ubiquitous communicating era. Among the various possible solutions, cluster-based Mobile Ad Hoc Networks (MANETs) is a proven one for deploying a network without any fixed infrastructure in a mobile scenario. Compared with the traditional flat-structured counterpart, the cluster-based network structure can dramatically improve the channel efficiency, reduce the routing complexity, and enhance the network stability. However, to initialize or maintain a cluster structure in a dynami-cally changing scenario often requires explicit message exchanges between mobile node pairs. When the underlying network topology changes quickly and involves many mo-bile nodes, the clustering-related information exchange increases drastically, which may even block the data transmissions. Therefore, the design of efficient, reliable cluster-ing scheme, and the accurate performance analysis for MANETs are vital for the further development of cluster-based networking technologies.
     In this dissertation, a Mobility Prediction Based Clustering (MPBC) scheme is firstly proposed to alleviate the effect of random mobility on network topology. Compared with other existing mobility-aware clustering schemes, MPBC adopts a Doppler shift based relative mobility prediction scheme, which works independently from the external system and without extra data interactions, to obtain the required mobility information. Besides its function for initial cluster head selection, the mobility-related information are farther used in the cluster maintaining stage of MPBC. By theoretical analysis and simulation experiments, MPBC outperforms other clustering schemes significantly in association with link status change rate, logic link lifetime, cluster head lifetime, and other stability performance metrics.
     Due to that most of the control message exchanges for clustering are carried out by broadcast, the broadcast transmission's reliability plays a key role in clustering schemes' implementation. To accurately illustrate the broadcast progress, this work models the ran-dom backoff counter's state transition and the changing pattern of the number of packets waiting in a node's transmission queue as two Markov chains, respectively. Afterwards, by using the transmission probability derived from the two new Markov models, three different reliability metrics, namely Distance-based Packet Loss Rate (d-PLR), Average Packet Loss Rate (APLR), and Average Queueing Delay (AQD) are analyzed. The deriva-tions for the closed-form of these metrics combine with the features of Poisson Point Process, and take into account both the impact of concurrent transmissions caused by identical backoff interval selection and that of hidden nodes caused by limited sensing range on an observed transmitter. Moreover, a short discussion for the effect of fading channel on broadcast reliability is also given after the part of simulation evaluations.
     Finally, this work studies the capacity bounds of the clustered MANETs. By making use of the concepts and features of Exclusive Region and Protocol Model, the two theo-retical upper bounds of network capacity induced by clustering and orphan nodes in the network are achieved first. After calculating the critical network area, two constructive lower bounds for network capacity are also obtained. The main result is that the clus-tered network capacity switches behavior at a critical network size, which depends on the cluster size and the density of clusters within the network. Moreover, the clustering parameters of the network allow us to define the meaning of a large network by certain bounds.
引文
[1]Cox D. Wireless personal communications:What is it? [J]. Personal Communications, IEEE Journal on,1995,2(2):20-35.
    [2]Chen D, Garg S, Trivedi K S. Network survivability performance evaluation:A quantitative approach with applications in wireless ad-hoc networks [C]. Proceedings of the 5th ACM international workshop on Modeling analysis and Simulation of Wireless and Mobile systems (MSWiM 02'), ACM International Conference on,2002.61-68.
    [3]Sterbenz J P, Krishnan R, Hain R R, et al. Survivable mobile wireless networks:Issues, Chal-lenges, and Research directions [C]. Proceedings of the 1st ACM workshop on Wireless secu-rity, ACM International Conference on,2002.31-40.
    [4]Jubin J, Tornow J. The DARPA packet radio network protocols [J]. Proceedings of the IEEE, IEEE Journal on,1987,75(1):21-32.
    [5]Binder R. ALOHAnet Protocols [R]. ALOHA System Technical Report, College of Engineer-ing, University of Hawaii,1974.
    [6]Beyer D A. Accomplishments of the DARPA SURAN program [C]. Proceedings of Military Communications Conference (MTLCOM 90'), IEEE International Conference on,1990.855-862.
    [7]Leiner B, Ruther R, Sastry A. Goals and challenges of the DARPA GloMo program [J]. Per-sonal Communications, IEEE Journal on,1996,3(6):34-43.
    [8]Freebersyser J A, Leiner B. A DoD perspective on mobile ad hoc networks [M]. Ad hoc networking. Boston, MA, USA:Addison-Wesley Longman Publishing Co., Inc.,2001:29-51.
    [9]IEEE 802.11 Standard Familiy [S]. http://www.ieee802.org/11/.
    [10]MANET Work Group [OL]. http://www.ietf.cnri.reston.va.us/html.charters/manet-charter. html.
    [11]Akyildiz I, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks [J]. Communi-cations Magazine, IEEE Journal on,2002,40(8):102-114.
    [12]Bruno R, Conti M, Gregori E. Mesh networks:Commodity multihop ad hoc networks [J]. Communications Magazine, IEEE Journal on,2005,43(3):123-131.
    [13]Hartenstein H, Laberteaux K. A tutorial survey on vehicular ad hoc networks [J]. Communi-cations Magazine, IEEE Journal on,2008,46(6):164-171.
    [14]Baker D, Ephremides A. The Architectural organization of a mobile radio network via a dis-tributed algorithm [J]. Communications, IEEE Transactions on,1981,29(11):1694-1701.
    [15]Yu J, Chong P. A survey of clustering schemes for mobile ad hoc networks [J]. Communica-tions Surveys & Tutorials, IEEE Journal on,2005,7(1):32-48.
    [16]Lin C, Gerla M. Adaptive clustering for mobile wireless networks [J]. Selected Areas in Communications, IEEE Journal on,1997,15(7):1265-1275.
    [17]Gerla M, Tsai J T C. Multicluster, mobile, multimedia radio network [J]. Wireless Networks, 1995, 1(3):255-265.
    [18]Das B, Bharghavan V. Routing in ad-hoc networks using minimum connected dominating sets [C]. Proceedings of Communications (ICC 97'), IEEE International Conference on,1997. 376-380.
    [19]Alzoubi K M, Wan P, Frieder O. Distributed heuristics for connected dominating sets in wire-less ad hoc networks [J]. Journal of Communications and Networks,2002,4(1):22-29.
    [20]Wu J, Li H. On calculating connected dominating set for efficient routing in ad hoc wireless net-works [C] Proceedings of the 3rd international workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, ACM International Conference on,1999.7-14.
    [21]Chen Y P, Liestman A L. Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks [C]. Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 02'), ACM International Conference on,2002.165-172.
    [22]Amis A D, Prakash R. Load-balancing clusters in wireless ad hoc networks [C]. Proceedings of 3rd IEEE Symposium on Application-Specific Systems and Software Engineering Technology, IEEE International Conference on,2000.25-32.
    [23]Wu J, Dai F, Gao M, et al. On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks [J]. Communications and Networks, IEEE/KICS Journal on,2002,4(1):59-70.
    [24]Chiang C, Wu H K, Liu W, et al. Routing in clustered multihop, mobile wireless networks with fading channel [C]. Proceedings of Sensor, Mesh and Ad Hoc Communications and Networks (SECON 97'), IEEE International Conference on,1997.49-54.
    [25]Yu J Y, Chong P H J.3hBAC (3-hop between adjacent cluster heads):a novel non-overlapping clustering algorithm for mobile ad hoc networks [C]. Proceedings of Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 03'), IEEE International Conference on,2003.318-321.
    [26]Ohta T, Inoue S, Kakuda Y. An adaptive multihop clustering scheme for highly mobile ad hoc networks [C]. Proceedings of The Sixth International Symposium on Autonomous Decentral-ized Systems,2003.293-300.
    [27]Basu P, Khan N, Little T D. A mobility based metric for clustering in mobile ad hoc networks [C]. Proceedings of International Workshop on Wireless Networks and Mobile Computing (WNMC 01'),2001.413-418.
    [28]McDonald B, Znati T F. Design and performance of a distributed dynamic clustering algorithm for ad-hoc networks [C]. Proceedings of the 34th Annual Simulation Symposium (SS 01'), IEEE International Conference on,2001.27-35.
    [29]Chatterjee M, Das S, Turgut D. An on-demand weighted clustering algorithm (WCA) for ad hoc networks [C]. Proceedings of Global Communications (GLOBECOM 00'), IEEE Interna-tional Conference on,2000.1697-1701.
    [30]Ni M, Zhong Z, Wu H, et al. An energy efficient clustering scheme for mobile ad hoc networks [C]. Proceedings of Vehicular Technology (VTC 10'-Spring), IEEE International Conference on,2010.1-5.
    [31]Venkateswaran A, Sarangan V, Gautam N, et al. Impact of mobility prediction on the temporal stability of MANET clustering algorithms [C]. Proceedings of International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 05'), ACM International Conference on,2005.144-151.
    [32]Chatterjee M, Sas S, Turgut D. An on-demand weighted clustering algorithm (WCA) for ad hoc networks [C]. Proceedings of Global Communications (GLOBECOM 10'), IEEE International Conference on,2010.1697-1701.
    [33]Yu Q, Zhang N, Meng W, et al. A Novel stability weighted clustering algorithm for multi-hop packet radio virtual cellular network [C]. Proceedings Wireless Communications and Networking (WCNC 10'), IEEE International Conference on,2010.1-6.
    [34]Zhang Y, Ng J M. A distributed group mobility adaptive clustering algorithm for mobile ad hoc networks [C]. Proceedings of Communications (ICC 08'), IEEE International Conference on,2008.3161-3165.
    [35]Tolba F, Magoni D, Lorenz P. Connectivity, energy and mobility driven clustering algorithm for mobile ad hoc networks [C]. Proceedings of Global Communications (GLOBECOM 07'), IEEE International Conference on,2007.2786-2790.
    [36]Tenhunen J, Typpo V, Jurvansuu M. Stability-based multi-hop clustering protocol [C]. Pro-ceedings of Personal, Indoor and Mobile Radio Communications (PIMRC 05'), IEEE Interna-tional Conference on,2005.958-962.
    [37]Su W, Lee S, Gerla M. Mobility prediction in wireless networks [C]. Proceedings of Military Communications Conference (MTLCOM 00'), IEEE International Conference on,2000.491-495.
    [38]Sakhaee E, Jamalipour A. Stable clustering and communications in pseudolinear highly mobile ad hoc networks [J]. Vehicular Technology, IEEE Transactions on,2008,57(6):3769-3777.
    [39]Leng S, Zhang Y, Chen H H, et al. A novel k-hop compound metric based clustering scheme for ad hoc wireless networks [J]. Wireless Communication, IEEE Transactions on,2009,8(1):367-375.
    [40]Kawai Y, Sasase I. A stable clustering scheme by prediction of the staying time in a cluster for mobile ad hoc networks [C]. Proceedings of Asia-Pacific Conference on Communications (APCC 08'),2008.1-5.
    [41]Sakhaee E, Jamalipour A. A new stable clustering scheme for pseudo-linear highly mobile ad hoc networks [C]. Proceedings of Global Communications (GLOBECOM 07'), IEEE Interna-tional Conference on,2007.1169-1173.
    [42]Hong X, Gerla M, Pei G, et al. A group mobility model for ad hoc wireless networks [C]. Proceedings of the 2nd ACM international workshop on Modeling, Analysis and Simulation of Wireless and Mobile systems (MSWiM 99'),1999,53-60.
    [43]Liang B, Haas Z J. Predictive distance-based mobility management for multidimensional PCS networks [J]. Networking, IEEE/ACM Transactions on,2003,11(5):718-732.
    [44]Sanchez M, Manzoni P. ANEJOS:a Java based simulator for ad hoc networks [J]. Future Generation Computer Systems,2001,17(5):573-583.
    [45]Johnson D B, Maltz D A. Dynamic source routing in ad hoc wireless networks [C]. Proceedings of Mobile Computing,1996.292-301.
    [46]Ni M, Zhong Z, Zhao D. MPBC:A mobility prediction-based clustering scheme for ad hoc networks [J]. Vehicular Technology, IEEE Transactions on,2011,60(9):4549-4559.
    [47]Ni M, Zhong Z, Wu H, et al. A new stable clustering scheme for highly mobile ad hoc net-works [C]. Proceedings of Wireless Communications and Networking (WCNC 10'), IEEE International Conference on,2010.1-6.
    [48]Andrews J, Ganti R, Haenggi M, et al. A primer on spatial modeling and analysis in wireless networks [J]. Communications Magazine, IEEE,2010,48(11):156-163.
    [49]Goldsmith A. Wireless Communications [M]. Cambridge, UK:Cambridge University Press, 2005.
    [50]Baddeley A. Spatial Point Processes and Their Applications [M]. Heidelberg:Springer Verlag, 2007.
    [51]Zhao M, Wang W. Analyzing topology dynamics in ad hoc networks using a smooth mobil-ity model [C]. Proceedings Wireless Communications and Networking (WCNC 07'), IEEE International Conference on,3279-3284.
    [52]Ghosh B. Random distances within a rectangle and between two rectangles [J]. Bulletin of Calcutta Mathematical Society,1951,43:17-24.
    [53]The Comprehensive R Archive Network [OL]. http://www.cran.r-project.org.
    [54]Wirelss Network Simulator in Matlab [OL]. http://wireless-matlab.sourceforge.net/.
    [55]Zhao M, Wang W. A novel semi-markov smooth mobility model for mobile ad hoc networks [C]. Proceedings of Global Communications (GLOBECOM 06'), IEEE International Confer-ence on,2006.1-5.
    [56]Hsu W J, Spyropoulos T, Psounis K, et al. Modeling spatial and temporal dependencies of user mobility in wireless mobile networks [J]. Networking, IEEE/ACM Transactions on,2009, 17(5):1564-1577.
    [57]Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function [J]. Selected Areas in Communications, IEEE Journal on,2000,18(3):535-547.
    [58]Zhai H, Kwon Y, Fang Y. Performance analysis of IEEE 802.11 MAC protocols in wireless LANs [J]. Wireless Communications and Mobile Computing,2004,4(8):917-931.
    [59]Rachedi A, Benslimane A. Impacts and solutions of control packets vulnerabilities with IEEE 802.11 MAC [J]. Wireless Communications and Mobile Computing,2009,9(4):469-488.
    [60]Ng P C, Liew S C. Throughput analysis of IEEE 802.11 multi-hop ad hoc networks [J]. Networking, IEEE/ACM Transactions on,2007,15(2):309-322.
    [61]Hui J, Devetsikiotis M. A unified model for the performance analysis of IEEE 802.11e EDCA [J]. Communications, IEEE Transactions on,2005,53(9):1498-1510.
    [62]Kim T, Lim J T. Throughput analysis considering coupling effect in IEEE 802.11 networks with hidden stations [J]. Communications Letters, IEEE,2009,13(3):175-177.
    [63]Torrent-Moreno M, Jiang D, Hartenstein H. Broadcast reception rates and effects of priority ac-cess in 802.11-based vehicular ad-hoc networks [C]. Proceedings of the 1 st ACM international workshop on Vehicular Ad Hoc Networks (VANET 04'),2004.10-18.
    [64]Torrent-Moreno M, Corroy S, Schmidt-Eisenlohr F, et al. IEEE 802.11-based one-hop broad-cast communications:understanding transmission success and failure under different radio propagation environments [C]. Proceedings of the 9th ACM international symposium on Mod-eling Analysis and Simulation of Wireless and Mobile Systems (MSWiM 06'),2006.68-77.
    [65]Xu Q, Mak T, Ko J, et al. Vehicle-to-vehicle safety messaging in DSRC [C]. Proceedings of the 1st ACM international workshop on Vehicular Ad Hoc Networks (VANET 04'),2004. 19-28.
    [66]Sibecas S, Corral C, Emami S, et al. On the suitability of 802.11a/RA for high-mobility DSRC [C]. Proceedings of Vehicular Technology (VTC 02'-Spring), IEEE International Conference on,2002.229-234.
    [67]Ma X, Chen X. Saturation performance of IEEE 802.11 broadcast networks [J]. Communica-tions Letters, IEEE,2007,11(8):686-688.
    [68]Ma X, Chen X, Refai H. Unsaturated Performance of IEEE 802.11 Broadcast Service in Vehicle-to-Vehicle Networks [C]. Proceedings of Vehicular Technology (VTC 07'-Fall), IEEE International Conference on,2007.1957-1961.
    [69]Ma X, Zhang J, Wu T. Reconsider broadcast packet reception rates in one-dimensional MANETs [C]. Proceedings of Global Communications (GLOBECOM 10'), IEEE Interna-tional Conference on,2010.1-6.
    [70]Ma X, Chen X. Delay and broadcast receptionrates of highway safety applications in vehicular ad hoc networks [C]. Proceedings of Mobile Networking for Vehicular Environments,2007. 85-90.
    [71]Ma X, Zhang J, Wu T. Reliability analysis of one-hop safety-critical broadcast services in VANETs [J]. Vehicular Technology, IEEE Transactions on,2011,60(8):3933-3946.
    [72]Oliveira R, Bernardo L, Pinto P. Performance analysis of the IEEE 802.11 distributed coor-dination function with unicast and broadcast traffic [C]. Proceedings of Personal, Indoor and Mobile Radio Communications (PIMRC 06'), IEEE International Conference on,2006.1-5.
    [73]Oliveira R, Bernardo L, Pinto P. Modelling delay on IEEE 802.11 MAC protocol for unicast and broadcast nonsaturated traffic [C]. Proceedings of Wireless Communications and Net-working (WCNC 07'), IEEE International Conference on,2007.463-467.
    [74]Choi J M, So J, Ko Y B. Numerical analysis of IEEE 802.11 broadcast scheme in multi-hop wireless ad hoc networks [C]. Proceedings of Information Networking:convergence in broadband and mobile networking,2005.1-10.
    [75]Ma X, Refai H. Analytical model for broadcast packet reception rates in two-dimensional manets [C]. Proceedings of Communications (ICC 11'), IEEE International Conference on, 2011.1-5.
    [76]Xu K, Gerla M, Bae S. How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks [C]. Proceedings of Global Communications (GLOBECOM 02'), IEEE International Conference on,2002.72-76.
    [77]Xu C, Liu K, Liu G, et al. Accurate queuing analysis of IEEE 802.11 MAC layer [C]. Pro-ceedings of Global Communications (GLOBECOM 08'), IEEE International Conference on, 2008.1-5.
    [78]Network Simulator [OL]. http://www.isi.edu/nsnam/ns/.
    [79]Wang J C P, Abolhasan M, Franklin D R, et al. Non-saturated throughput analysis of IEEE 802.11 broadcast transmissions in ad hoc wireless LANs [C]. Proceedings of Communication (ICC 09'), IEEE International Conference on,2009.1-5.
    [80]Kouyoumjian R, Pathak P. A uniform geometrical theory of diffraction for an edge in a per-fectly conducting surface [J]. Proceedings of IEEE,1974,62(8):1448-1461.
    [81]Walfisch J, Bertoni H L. A theoretical model of UHF propagation in urban environments [J]. Antennas and Propagation, IEEE Transactions on,1988,36(12):1788-1796.
    [82]Andrews J, Shakkottai S, Heath R, et al. Rethinking information theory for mobile ad hoc networks [J]. Communications Magazine, IEEE,2008,46(12):94-101.
    [83]Kleinrock J. Optimum transmission radii for packet radio networks or why six is a magic number [C]. Proceedings of National Telecommunications Conference,1978.72-76.
    [84]Takagi H, Kleinrock L. Optimal transmission ranges for randomly distributed packet radio terminals [J]. Communications, IEEE Transactions on,1984,32(3):246-257.
    [85]Subbarao M, Hughes B. Optimal transmission ranges and code rates for frequency-hop packet radio networks [J]. Communications, IEEE Transactions on,2000,48(4):670-678.
    [86]Nardelli P, Cardieri P. Aggregate information efficiency and packet delay in wireless ad hoc networks [C]. Proceedings of Wireless Communications and Networking (WCNC 08'), IEEE International Conference,2008.1391-1396.
    [87]Nardelli P, Cardieri P. Aggregate information efficiency in wireless ad hoc networks with out-age constraints [C]. Proceedings of Signal Processing Advances in Wireless Communications (SPAWC 08'), IEEE International Conference,2008.256-260.
    [88]Nardelli P, Abreu G, Cardieri P. Multi-hop aggregate information efficiency in wireless ad hoc networks [C]. Proceedings of Communications (ICC 09'),IEEE International Conference, 2009.1-6.
    [89]Weber S, Yang X, Andrews J, et al. Transmission capacity of wireless ad hoc networks with outage constraints [J]. Information Theory, IEEE Transactions on,2005,51(12):4091-4102.
    [90]Weber S, Andrews J, Yang X, et al. Transmission capacity of wireless ad hoc networks with successive interference cancellation [J]. Information Theory, IEEE Transactions on,2007, 53(8):2799-2814.
    [91]Gupta P, Kumar P. The capacity of wireless networks [J]. Information Theory, IEEE Transac-tions on,2000,46(2):388-404.
    [92]Xie L L, Kumar P. A network information theory for wireless communication:scaling laws and optimal operation [J]. Information Theory, IEEE Transactions on,2004,50(5):748-767.
    [93]Xie L L, Kumar P. On the path-loss attenuation regime for positive cost and linear scaling of transport capacity in wireless networks [J]. Information Theory, IEEE Transactions on,2006, 52(6):2313-2328.
    [94]Spyropoulos A, Raghavendra C. Asympotic capacity bounds for ad-hoc networks revisited:the directional and smart antenna cases [C]. Proceedings of Global Telecommunications (GLOBE-COM 03'), IEEE International Conference on,2003.1216-1220.
    [95]Grossglauser M, Tse D. Mobility increases the capacity of ad hoc wireless networks [J]. Net-working, IEEE/ACM Transactions on,2002,10(4):477-486.
    [96]El Gamal A, Mammen J, Prabhakar B, et al. Optimal throughput-delay scaling in wireless networks-part I:the fluid model [J]. Information Theory, IEEE Transactions on,2006, 52(6):2568-2592.
    [97]Herdtner J, Chong E. Throughput-storage tradeoff in ad hoc networks [C]. Proceedings of Computer Communications (INFOCOM 05'), IEEE International Conference on,2005.2536-2542.
    [98]Neely M, Modiano E. Capacity and delay tradeoffs for ad hoc mobile networks [J]. Information Theory, IEEE Transactions on,2005,51(6):1917-1937.
    [99]Perevalov E, Blum R, Safi D. On the capacity of ad hoc networks with clustering [C]. Pro-ceedings of Wireless Communications and Networking (WCNC 05'), IEEE International Con-ference on,2005.632-637.
    [100]Perevalov E, Blum R, Safi D. Capacity of clustered ad hoc networks:how large is "Large"? [J]. Communications, IEEE Transactions on,2006,54(9):1672-1681.
    [101]Alfano G, Garetto M, Leonardi E, et al. Capacity scaling of wireless networks with inho-mogeneous node density:lower bounds [J]. Networking, IEEE/ACM Transactions on,2010, 18(5):1624-1636.
    [102]Agarwal A, Kumar P R. Improved capacity bounds for wireless networks [J]. Wireless Com-munications and Mobile Computing,2004,4(3):251-261.
    [103]Wan P J, Yi C W, Yao F, et al. Asymptotic critical transmission radius for greedy forward routing in wireless ad hoc networks [C]. Proceedings of the 7th ACM international symposium on Mobile Ad Hoc Networking and Computing,2006.25-36.
    [104]Wan P J, Yi C W, Wang L. Asymptotic critical transmission radius for k-connectivity in wire-less ad hoc networks [J]. Information Theory, IEEE Transactions on,2010,56(6):2867-2874.
    [105]Yi C W, Wan P J, Wang L, et al. Sharp thresholds for relative neighborhood graphs in wireless ad hoc networks [J]. Wireless Communication, IEEE Transactions on,2010,9(2):614-623.
    [106]Chartrand G, Zhang P. A First Course in Graph Theory [M]. Dover Publications,2012.
    [107]Safi D M. System performance analysis of ad hoc wireless networks [D]. Lehigh University, May,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700