基于退役锂动力电池容量、内阻和荷电状态的建模与参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:从电动汽车上退役下来的锂离子动力电池(简称退役电池)仍具有高达80%的剩余容量,研究剩余容量的再利用技术对间接降低锂动力电池成本与缓解环境污染问题有着重要的意义。为了最大限度发挥退役电池的价值,对其进行分选以及对具有利用价值的电池进行剩余寿命等方面的研究非常必要,这也是目前退役电池梯级利用及回收领域的热点课题之一。本文采用电化学检测-计算机模拟联合技术研究了电池在不同温度、放电倍率和放电深度下的电化学行为;针对电池的剩余寿命,劣化失效程度和荷电状态进行分析和估计,建立了电池寿命预测模型、劣化失效的普适模型和荷电状态估计模型,为确保退役电池安全、可靠地运行并保持在最佳工作状态提供了理论指导。通过对上述内容的深入研究,获得了以下四个方面的研究结果:
     (1)采用现代物理测试技术和电化学检测手段对退役电池进行了安全性能检测,并结合外观/容量分选法、电压/内阻分选法及特征曲线法对退役的18650型磷酸铁锂动力电池进行了分选。本论文分选出了外观无破损特征,容量在1.1~1.0Ah,内阻在12~12.6mΩ,开路电压在3.2998-3.3002V,以及大倍率放电时,放电曲线一致性较好的退役电池作为研究对象。
     (2)采用电化学检测-计算机模拟联合技术建立了退役电池的寿命预测模型,并提出了一种退役电池的寿命匹配检测方法。电化学检测结果表明:影响退役电池循环寿命的主要因素为循环次数(N),环境温度(T),放电倍率(C)和放电深度(DOD)。退役电池的放电容量随着循环次数的增加逐渐降低,环境温度越高,放电倍率越大,放电深度越深,退役电池的放电容量衰减越快。当循环时间足够长时,放电深度对退役电池寿命的衰减影响不大。计算机模拟结果表明:退役电池的放电容量衰减速率随循环次数,环境温度,放电倍率和放电深度的变化规律符合幂函数模型:
     以此为标准模型,采用匹配检测技术可利用较少的容量保持率与循环次数的数据对,准确地预测出任意一颗同规格退役电池当前所处的工况,以及在该工况时退役电池的剩余寿命。
     (3)采用内阻-交流阻抗联合检测技术建立了退役电池的劣化失效模型。结果表明:内阻可用来表征退役电池的劣化失效程度。随着内阻的增加,退役电池劣化程度加剧。欧姆内阻和极化内阻的变化与环境温度、放电倍率和放电深度有关。环境温度的升高,放电深度的加深以及放电倍率的增大均会导致内阻加快增长。三种因素对欧姆内阻和极化内阻影响的重要程度为:放电深度<放电倍率<环境温度。欧姆内阻与极化内阻之和与循环次数的关系符合幂函数模型:
     (4)采用交流阻抗测定法、SOC-OCV曲线法和脉冲放电法相结合的方法建立了退役电池荷电状态估计模型。交流阻抗测试结果表明:对退役电池进行全荷电态建模时,应同时考虑欧姆内阻和极化内阻对退役电池荷电状态的影响。而对退役电池进行区间段建模时,主要考虑极化内阻对荷电状态的影响。SOC-OCV测试结果表明:退役电池的SOC-OCV特性不受环境温度,放电倍率,储存时间及电池充放电状态的影响,退役电池的OCV随着SOC的递增而单调递增,随着SOC的递减而单调递减。等荷电态多步脉冲放电法测试结果表明:通过所建立退役电池的等效电路模型,可确定退役电池OCV关于SOC的模型,从而估算SOC值。
Abstract:Lithium-ion power batteries retired from electric vehicles (or retired batteries for short) still possess high residual capacities as high as80%of the designed capacities. It is of great significance to reuse retired batteries in a suitable way which could reduce the energy cost, relieve the environmental pollution and make waste profitable. In order to make the best use of the residual capacity of the retired batteries, it is necessary to classify the retired batteries, as well as predict the cycle life, estimate the deterioration degree and calculate the state of charge (SOC) of the selected batteries. This is also one of the attractive and hot topics in the field of the recycle and gradient utilization of the retired batteries. In this thesis, the electrochemical test-computer simulation technology were employed to investigate the electrochemical behavior of the retired batteries in different temperature, discharge rate and the depth of discharge (DOD). Then the general models for the life prediction and the deterioration degree estimation of the retired batteries were established. In addition, the SOC estimation model of the retired batteries was developed to ensure the batteries in good working order. Through the in-depth study of the above contents, four main conclusions were obtained as follows:
     (1) The modern physical and electrochemical test methods were used to examine the safety of the retired batteries. A classification method based on the appearance-capacity selecting method, the voltage-resistance selecting method and the discharge curve selecting method was introduced to select the required retired batteries. Results showed that the batteries with integrated pack, the capacity of1.1~1.0Ah, the resistance of12~12.6mΩ, the open circuit voltage of3.2998~3.3002V, and the good repeatability of discharge curves at large discharging rates would be considered and reused.
     (2) The battery life prediction model and match detection method were built, according to the electrochemical testing-computer simulation technology. Electrochemical testing results showed that the number of cycles (N), environmental temperature (T), discharge rate (C) and DOD were the main factors that influence the battery cycle life. With the increase of N, T, C or DOD, the capacity fading of the battery speeded up. When the cycle time was long enough, the influence of DOD could be neglected. Computer simulation analysis indicated that power function model was appropriate to describe the capacity loss for all conditions: Where, cn is the constant.
     According to power function model, the working condition and the residual life of any batteries could be successfully predicted with a few electrochemical testing data.
     (3) The battery degradation model was set up by combining the internal resistance measurement with the alternating-current (ac) impedance test method. The results showed that the battery internal resistance can be used to characterize the degree of the battery degradation. With the increase of the internal resistance, the batteries deteriorated seriously. The ohmic resistance and polarization resistance enhanced with the increase of T, C or DOD. T was the most important factor that affected the ohmic resistance and polarization resistance of the retired batteries. C is less important than T, and the least is DOD. The resistance model about the sum of the ohmic resistance and polarization resistance can be expressed by power function model: Where, a, b, c are the constants.
     (4) Ac impedance measurement, SOC-OCV curve and pulse discharge method were combined and employed to build the SOC estimation model. Ac impedance measurement results showed that both the ohmic resistance and the polarization resistance should be considered when modeling at the full state of charge. While only the polarization resistance should be concerned when modeling at the range of SOC=20~80%. SOC-OCV test results demonstrated that SOC-OCV characteristic of the batteries has nothing to do with T, C, storage time and the charge/discharge status. The value of OCV ascended monotonically with the increasing of SOC, and declined with the decreasing of SOC. multistep pulse discharge test results indicated that the OCV-SOC model could be determined by equivalent circuit model so as to estimate the value of SOC.
引文
[1]Amir S, Soroush Z, Marzieh S. Solar energy application on environmental protection[J]. International Journal of Science and Engineering Investigations, 2012,1(8):21-24.
    [2]Mariada G C. EU energy and climate change strategy[J]. Energy,2012,40:19-22.
    [3]Cao J and Ali E. A new battery/ultra capacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles[J]. IEEE Transaction on Power Electronics,2012,27(1):122-132.
    [4]Aguero J R, Chongfuangprinya P, Shao S N, et al. Integration of electric vehicles in the electric power system[J]. Proceedings of the IEEE,2011,99(1):168-183
    [5]Aguero J R, Chongfuangprinya P, Shao S N, et al. Integration of plug-in electric vehicles and distributed energy resources on power distribution systems [J]. Electric Vehicle Conference,2012 IEEE International,2012:1-7.
    [6]Lu L G, Han X B, Li J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226: 272-288.
    [7]He H W, Xiong R, Guo H Q, et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles [J]. Energy Conversion and Management,2012,64:113-121.
    [8]Kirti R, Callie W B, Gabrielle G, ea al. A future perspective on lithium-ion battery waste flows from electric vehicles [J]. Resources, Conservation and Recycling, 2014,83:63-76.
    [9]David B. R. Electric vehicles and the electric grid:A review of modeling approaches, impacts, and renewable energy integration[J]. Renewable and Sustainable Energy Reviews,2013 19:247-254.
    [10]Robert C G, Wang L F, Mansoor A. The impact of plug-in hybrid electric vehicles on distribution networks:A review and outlook[J]. Renewable and Sustainable Energy Reviews,2014,15:544-553.
    [11]Henrik L, Willett K. Integration of renewable energy into the transport and electricity sectors through V2G[J]. Energy Policy,2008,36:3578-3587.
    [12]Pistoia G. Lithium-ion batteries:Advances and applications[M]. Poland:The Boulevard Langford Lane, Kid lington, Oxford,2014.
    [13]Mohadese R D, Mehran J, Mehdi G, et al. Synthesis and electrochemical properties of rhombohedral LiFePO4/C microcrystals via a hydrothermal route for lithium ion batteries[J]. International Journal of Electrochemical Science, 2014,9:3199-3208.
    [14]Liu G M, Lu L G, Li J Q, et al. Thermal modeling of a LiFePO4/graphite battery and research on the influence of battery temperature rise on EV driving range estimation[J]. Vehicle Power and Propulsion Conference,2013 IEEE,2013:1-5.
    [15]Liao J Y, Xiao X C, Higgins D, et al. Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries [J]. Electrochimica Acta,2013,108:104-111.
    [16]Sun L, Wang J P, Jiang K L, et al. Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries[J]. Journal of Power Sources,2014,248:265-272.
    [17]Luo S, Wang K, Wang J P, et al. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries [J]. Advanced Materials,2012,24, 2294-2298.
    [18]Qian X, Cheng X, Wang Z Y, et al. The preparation of LiCoO2 nanoplates via a hydrothermal process and the investigation of their electrochemical behavior at high rates[J]. Nanotechnology,2009,20:1-7.
    [19]Masashi O, Hosono E, Jedeok K, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. The Journal of American Chemical Society, 2007,129,7444-7452.
    [20]Mohan P, Kalaignan G P. Electrochemical performance of La2O3-coated layered LiNiO2 cathode materials for rechargeable lithium-ion batteries[J]. Ionics,2013, 19:895-902.
    [21]Mun Y S, Young J H, Seung H C, et al. Effects of ratios of Li2Mn03 and Li(Ni1/3Mn1/3Co1/3)O2 phases on the properties of composite cathode powders in spray pyrolysis[J]. Electrochimica Acta,2013,103:110-118.
    [22]Yu H J and Zhou H S. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. Journal of Physical Chemistry Letters,2013,4 (8): 1268-1280.
    [23]Wu W W, Wang K T, Li Y N, et al. Nanocrystalline LiMn2O4 preparation and kinetics of thermal process of precursor[J]. Journal of Thermal Analysis Calorimetry,2013,112:1391-1399.
    [24]Tang M X, Yuan A, Zhao H B, et al. High-performance LiMn2O4 with enwrapped segmented carbon nanotubes as cathode material for energy storage[J]. Journal of Power Sources,2013,235:5-13.
    [25]Liu J, Thomas E C, Song X Y. Nanoporous spherical LiFePO4 for high performance cathodes[J]. Energy & Environmental Science,2011,4,885-888.
    [26]Wang Y Q He P and Zhou H S. Olivine LiFePO4:development and future[J]. Energy & Environmental Science,2011,4:805-817.
    [27]Sun C W, Shreyas R, Goodenough J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. The Journal of American Chemistry Society,2011,133:2132-2135.
    [28]Chew S Y, Ng S H, Wang J Z, et al. Flexible free-standing carbon nanotube films for model lithium-ion batteries[J]. Carbon,2009,47:2976-2983.
    [29]Charlesde L C, Li W Z. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources,2012,208:74-85.
    [30]Fan X Y, Ke F S, Wei G Z, et al. Sn-Co alloy anode using porous Cu as current collector for lithium ion battery[J]. Journal of Alloys and Compounds,2009,476: 70-73.
    [31]Lee S H, Mathews M, Toghiani H, et al. Fabrication of carbon-encapsulated mono-and bimetallic (Sn and Sn/Sb alloy) nanorods:Potential lithium-ion battery anode materials[J]. Chemistry Materials,2009,21:2306-2314.
    [32]Ni S B, Yang X L and Li T. Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery[J]. Journal of Materials Chemistry,2012,22:2395-2397.
    [33]Lai C, Cao X L, Yuan X C, et al. Enhanced reversible capacity of Li4TisO12-coated TiO2 nanocomposites as lithium-ion battery anodes[J]. Solid State Ionics,2013,249-250:151-157.
    [34]Kang E, Jung Y S, Kim G H, et al. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Advanced Functional Materials,2011,21:4349-4357.
    [35]Liu B, Zhang X B, Shioyama H, et al. Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated CO3O4 nanoparticles as an electrode material for lithium ion battery[J]. Journal of Power Sources,2010,195: 857-861.
    [36]Park J C, Kim J, Kwon H, et al. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials[J]. Advanced Materials,2009,21:803-807.
    [37]Dubarry M, Svoboda V, Hwu R, et al. Capacity and power fading mechanism identification from a commercial cell evaluation[J]. Journal of Power Sources, 2007,165(2):566-572.
    [38]Paul S, Diegelmann C, Kabza H, et al. Analysis of ageing inhomogeneities in lithium-ion battery systems[J]. Journal of Power Sources,2013,239:642-650.
    [39]Kassem M, Delacourt C. Postmortem analysis of calendar-aged graphite/LiFePO4 cells [J]. Journal of Power Sources,2013,235:159-171.
    [40]He Y, Liu X, Zhang C, et al. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries[J]. Applied Energy,2013,101:808-814.
    [41]Zhang D, Haran B S, Durairajan A, et al. Studies on capacity fade of lithium-ion batteries[J]. Journal of Power Sources,2000,91(2):122-129.
    [42]Ramadass P, Haran B, White R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures:Part II. Capacity fade analysis[J]. Journal of power sources,2002,112(2):614-620.
    [43]Ramadass P, Haran B, White R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures:Part I. Cycling performance [J]. Journal of power sources,2002,112(2):606-613.
    [44]Sikha G, Ramadass P, Haran B S, et al. Comparison of the capacity fade of Sony US 18650 cells charged with different protocols[J]. Journal of power sources, 2003,122(1):67-76.
    [45]Ning G, Haran B, Popov B N. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. Journal of Power Sources,2003,117(1):160-169.
    [46]Wright R B, Christophersen J P, Motloch C G, et al. Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries[J]. Journal of power sources,2003,119:865-869.
    [47]Osaka T, Nakade S, Rajamaki M, et al. Influence of capacity fading on commercial lithium-ion battery impedance[J]. Journal of power sources,2003, 119:929-933.
    [48]Christophersen J P, Chinh D H, Gary L H, et al. Advanced technology development program for lithium-ion batteries:Gen 2 GDR performance evaluation report[M]. Washington:US Department of Energy,2006.
    [49]Broussely M, Herreyre S, Biensan P, et al. Aging mechanism in Li ion cells and calendar life predictions[J]. Journal of Power Sources,2001,97/98:13-21.
    [50]Spotnitz R. Simulation of capacity fade in lithium-ion batteries[J]. Journal of Power Sources,2003,113:72-80.
    [51]Liaw B Y, Rudolph G J, Ganesan J, et al. Modeling capacity fade in lithium-ion cells[J]. Journal of Power Sources,2005,140:157-161.
    [52]Abraham D P, Liu J, Chen C H, et al. Diagnosis of power fade mechanisms in high-power lithium-ion cells[J]. Journal of Power Sources,2003,119:511-516.
    [53]Belt J R, Ho C D, Motloch C G, et al. A capacity and power fade study of Li-ion cells during life cycle testing[J]. Journal of Power Sources,2003,123(2): 241-246.
    [54]Bloom I, Jones S A, Battaglia V S, et al. Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells [J]. Journal of Power Sources,2003,124(2):538-550.
    [55]Wright R B, Motloch C G, Belt J R, et al. Calendar-and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries [J]. Journal of Power Sources,2002,110:445-470.
    [56]Thomas E V, Case H L, Doughty D H, et al. Accelerated power degradation of Li-ion cells[J]. Journal of Power Sources,2003,124:254-260.
    [57]Bloom I, Scott A J, Vincent S B, et al. Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells [J]. Journal of Power Sources,2003,124:538-550.
    [58]Belt J R, Ho C D, Miller T J, et al. The effect of temperature on capacity and power in cycled lithium ion batteries [J]. Journal of power sources,2005,142(1): 354-360.
    [59]Kumaresan K, Guo Q, Ramadass P, et al. Cycle life performance of lithium-ion pouch celis[J]. Journal of Power Sources,2006,158(1):679-688.
    [60]Zhang Q, White R E. Calendar life study of Li-ion pouch cells[J]. Journal of Power Sources,2007,173(2):990-997.
    [61]Randy B W, Chester G M, Cycle-life studies of advanced technology development program gen 1 lithium ion batteries [M]. Washington:US Department of Energy,2001.
    [62]Christopherson J P, Bloom I, Edward V T, et al. Advanced technology development program for lithium-ion batteries:Gen 2 performance evaluation final report[M]. Washington:US Department of Energy,2006.
    [63]Zhang Q, White R E. Capacity fade analysis of a lithium ion cell[J]. Journal of Power Sources,2008,179(2):793-798.
    [64]Dubarry M, Liaw B Y. Identify capacity fading mechanism in a commercial LiFePO4 cell[J]. Journal of Power Sources,2009,194(1):541-549.
    [65]Schmidt A P, Bitzer M, Imre A W, et al. Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries[J]. Journal of Power Sources,2010,195(22):7634-7638.
    [66]Kassem M, Bernard J, Revel R, et al. Calendar aging of a graphite/LiFePO4 cell[J]. Journal of Power Sources,2012,208:296-305.
    [67]Ramadass P, Haran B, White R, et al. Mathematical modeling of the capacity fade of Li-ion cells[J]. Journal of Power Sources,2003,123:230-240.
    [68]Ning G, Ralph E W, Branko N P. A generalized cycle lire model of rechargeable Li-ion batteries[J]. Electroehimica Acta,2006,51:2012-2022.
    [69]Smith K, Wang C Y. Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles [J]. Journal of Power Sources,2006, 161:628-639.
    [70]Vazquez A J, Fowler M, Mao X, et al. Modeling of combined capacity fade with thermal effects for a cycled LixC6-LiyMn2O4 cell[J]. Journal of Power Sources, 2012,215:28-35.
    [71]Bodenes L, Naturel R, Martinez H, et al. Lithium secondary batteries working at very high temperature:Capacity fade and understanding of aging mechanisms[J]. Journal of Power Sources,2013,236:265-275.
    [72]Andre D, Appel C, Soczka G T, et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources,2013, 224:20-27.
    [73]Joglekar M M, Ramakrishnan N. Cyclic capacity fade plots for aging studies of Li-ion cells[J]. Journal of Power Sources,2013,230:143-147.
    [74]黎火林,苏金然.锂离子电池循环寿命预计模型的研究[J].电源技术,2008,32: 242-246.
    [75]许参,李杰,王超.一种锂离子蓄电池寿命的预测模型[J].应用科学学报,2006,24(4): 368-371.
    [76]Kanisbka L. Battery-driven system design:A new frontier in low power design. Procaspdac 2002[C]. Bangalore, India,2002:261-267.
    [77]徐玮,魏学哲,沈丹.电池管理系统中电压电流检测不同步对电池内阻辨识影响的分析[J].汽车工程,2009,31(3):228-233.
    [78]He Y, Liu W, Koch B J. Battery algorithm verification and development using hardware-in-the-loop testing[J]. Journal of Power Sources,2010,195(9): 2969-2974.
    [79]魏学哲,徐玮,沈丹.锂动力电池内阻辨识及其在寿命估计中的应用[J].电源技术,2009,33(3):217-220.
    [80]Takeno K, Ichimura M, Takano K, et al. Quick testing of batteries in lithium-ion battery packs with impedance-measuring technology [J]. Journal of Power Sources,2004,128(1):67-75.
    [81]Gallagher K G, Nelson P A, Dees D W. Simplified calculation of the area specific impedance for battery design[J]. Journal of Power Sources,2011,196(4): 2289-2297.
    [82]Rodrigues S, Munichandraiah N, Shuklaa K. AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery [J]. Journal of Solid State Electrochemistry,1999,3(6):397-405.
    [83]Liaw B Y, Jungst R G, Nagasubramanian G, et al. Modeling capacity fade in lithium-ion cells. Journal of Power Sources,2005,140(1):157-161.
    [84]Dae K K, Heon C S. Investigation on cell impedance for high-power lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2007,11:1405-1410.
    [85]Abu S S, Doerffel D. Rapid test and non-linear model characterisation of solid-state lithium-ion batteries[J]. Journal of Power Sources,2004,130(1): 266-274.
    [86]Aizpurua F M, Hamelet S, Masquelier C, et al. High temperature electrochemical performance of nanosized LiFePO4[J]. Journal of Power Sources,2010,195(1): 6897-6901.
    [87]Aurbacha D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC) as an additive toelectrolyte solutions for Li-ion batteries. Electrochimica Acta,2002,47:1423-1439.
    [88]Kathryn S, Joongpyo S, Azucena S, et al. The development of low cost LiFePO4-based high power lithium-ion batteries[J]. Journal of Power Sources, 2005,146:33-38
    [89]Jin H F, Liu Z, Teng Y M, et al. A comparison study of capacity degradation mechanism of LiFePO4-based lithium ion cells[J]. Journal of Power Sources, 2009,189:445-448.
    [90]尹立辉,满田田.电化学阻抗谱在锂动力电池负极研究中的应用[J].天津农学院学报:2008,15(1):16-18.
    [91]Wang D Y, Wu X D, Wang Z X, et al. Cracking causing cyclic instability of LiFePO4 cathode material[J]. Journal of Power Sources,2005,140:125-128.
    [92]Masaya T, Tobishima S I, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics,2002, 148:283-289.
    [93]Aurbach D, Markovsky B, Salitra G, et al. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J]. Journal of Power Sources,2007,165:491-499.
    [94]Li J, Murphy E, Winnick J, et al. Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling[J]. Journal of Power Sources, 2001,102(1):294-301.
    [95]Dubarry M, Liaw B Y. Development of a universal modeling tool for rechargeable lithium batteries. Journal of Power Sources,2007,174(2): 856-860.
    [96]Andre D, Meiler M, Steiner K, et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy Ⅱ:Modelling[J]. Journal of Power Sources,2011,196(12):5349-5356.
    [97]Asakura K, Shimomura M, Shodai T. Study of life evaluation methods for Li-ion batteries for backup applications [J]. Journal of power sources,2003,119: 902-905.
    [98]Christophersen J P, Hunt G L, Ho C D, et al. Pulse resistance effects due to charging or discharging of high-power lithium-ion cells:A path dependence study[J]. Journal of Power Sources,2007,173(2):998-1005.
    [99]吕东生,李伟善,刘煦,等.锂离子嵌脱的交流阻抗谱[J].电池,2003,33(5):326-327.
    [100]徐睿.锂离子劣化程度与阻抗模型相关性研究[D].哈尔滨:哈尔滨理工大学,2010.
    [101]古艳磊.锂离子电池阻抗模型的研究[D].哈尔滨:哈尔滨理工大学,2008.
    [102]赵强宝.基于模糊神经网络的蓄电池恶化程度预测[J].电源技术,2006,30(12):1009-1012.
    [103]高飞,唐致远.锂动力电池不同充电深度阻抗谱分析[J].第十三次全国电 化学会议论文摘要集(上集),2005,33(8):100-102.
    [104]Eddahech A, Briat O, Bertrand N, et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks [J]. International Journal of Electrical Power & Energy Systems,2012, 42(1):487-494.
    [105]Yann L B, Nagasubramanian G, Jungst R G, et al. Modeling of lithium ion cells-A simple equivalent-circuit model approach[J]. Solid State Ionics,2004, 175(1):835-839.
    [106]Hu X, Li S, Peng H. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources,2012,198:359-367.
    [107]Ramadass P, Haran B, White R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures:Part I. Cycling performance[J]. Journal of Power Sources,2002,112(2):606-613.
    [108]Martin W, Wolfgang A, Bernd E, et al. Studies on the anode/electrolyte interface in lithium ion batteries[J]. Monatshefte fur Chemie,2001,22(4):473-486.
    [109]Johnson V H. Battery performance models in ADVISOR[J]. Journal of Power Sources,2002,110(2):321-329.
    [110]Brown S, Ogawa K, Kumeuchi Y, et al. Cycle life evaluation of 3 Ah LixMn2O4-based lithium-ion secondary cells for low-earth-orbit satellites:I. Full cell results[J]. Journal of Power Sources,2008,185(2):1444-1453.
    [111]Nelson P, Bloom I, Amine K, et al. Design modeling of lithium-ion battery performance[J]. Journal of Power Sources,2002,110(2):437-444.
    [112]Yang C R, Song J Y, Wang Y Y, et al. Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries [J]. Journal of Applied Electrochemistry,2000,30 (5):29-34.
    [113]Sikha G, Ramadass P, Haran B S, et al. Comparison of the capacity fade of Sony US 18650 cells charged with different protocols[J]. Journal of Power Sources,2003,122(1):67-76.
    [114]Andre D, Meiler M, Steiner K, et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy I. Experimental investigation[J]. Journal of Power Sources,2011,196(12):5334-5341.
    [115]Osaka T, Momma T, Mukoyama D, et al. Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery[J]. Journal of Power Sources,2012,205:483-486.
    [116]Andre D, Appel C, Soczka G T, et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources, 2013,224:20-27.
    [117]方小斌.锂离子电池在线监测系统的研究与设计[D].哈尔滨:哈尔滨理工大学,2008.
    [118]黎林.纯电动汽车用锂电池管理系统的研究[J].北京:北京交通大学,2009.
    [119]刘清虎.纯电动汽车整车能量建模与仿真分析[D].长沙:湖南大学机械与汽车工程学院,2003.
    [120]寇晓静.电池运行状态监控模块的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [121]Meyer M, Komsiyska L, Lenz B, et al. Study of the local SOC distribution in a lithium-ion battery by physical and electrochemical modeling and simulation[J]. Applied Mathematical Modeling,2013,37(4):2016-2027.
    [122]Piller S, Perrin M, Jossen A. Methods for state-of-charge determination and their applications[J]. Journal of Power Sources,2001,96(1):113-120.
    [123]焦慧敏.电动汽车动力电池剩余电量的预测方法及其实现[D].长沙:湖南大学,2006.
    [124]陈洪图.纯电动大巴磷酸铁锂动力电池监测与SOC估计[D].哈尔滨:哈尔滨理工大学,2010.
    [125]吴池.AH计量法在MATLAB环境下对锂离子电池8oc的估算[D].天津大学,2007.
    [126]周红丽.电动汽车动力电池剩余容量预测及性能分析仿真[D].长沙:湖南大学,2007.
    [127]朱剑超.插电式混合动力车电池的试验和充电方法[D].上海:上海交通大学,2011.
    [128]熊英.18650锂离子电池大电流放电性能的研究[D].长沙:湖南大学,2007.
    [129]He Y, Liu X, Zhang C, et al. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries[J]. Applied Energy,2013,101: 808-814.
    [130]管道安.18650S锂离子电池动力性能的研究[D].天津:天津大学,2005.
    [131]Kashif A, Johansson T, Svensson C, et al. Influence of interface state charges on RF performance of LDMOS transistor[J]. Solid State Electronics,2008, 52(7):1099-1105.
    [132]Pop V, Bergveld H J, Notten P, et al. Accuracy analysis of the state-of-charge and remaining run-time determination for lithium-ion batteries[J]. Measurement, 2009,42(8):1131-1138.
    [133]Zhu C, Li X, Song L, et al. Development of a theoretically based thermal model for lithium ion battery pack[J]. Journal of Power Sources,2013,223:155-164.
    [134]万奖奖.礴酸铁锂电池组SOC动态估算策峭及其均衡技术的研究[D].上海交通大学,2011.
    [135]Ji Y, Wang C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta,2013,107:664-674.
    [136]Xiong R, He H, Sun F, et al. Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles[J]. Journal of Power Sources,2013,229:159-169.
    [137]黄贤广,张彩萍.电动车辆锂离子电池电路模型适用性研究[J].电源技术,2012,35(11):1354-1357.
    [138]Zhang J, Xia C. State-of-charge estimation of valve regulated lead acid battery based on multi-state Unscented Kalman Filter [J]. International Journal of Electrical Power & Energy Systems,2011,33(3):472-476.
    [139]刘浩.基于EKF的电动汽车用锂离子电池SOC估算方法研究[D].北京:北京交通大学,2010.
    [140]Shen Y. Adaptive online state-of-charge determination based on neuro-controller and neural network[J]. Energy Conversion and Management, 2010,51(5):1093-1098.
    [141]Hametner C, Jakubek S. State of charge estimation for Lithium Ion cells: Design of experiments, nonlinear identification and fuzzy observer design[J]. Journal of Power Sources,2013,238:413-421.
    [142]曹宏庆,康立山.锂离子电池放电寿命的演化自适应建模[J].计算机与应用化学,1998,15(1):19-22.
    [143]Alvarez Anton J C, Garcia Nieto P J, De Cos Juez F J, et al. Battery state-of-charge estimator using the SVM technique[J]. Applied Mathematical Modelling,2013,37(9):6244-6253.
    [144]吴东兴,关道诤,齐国光.高精度预测SOC的混合电动车电池管理系统的研究[J].高技术通讯,2006,16(4):391-394.
    [145]Chang W N. Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA[J]. International Journal of Electrical Power & Energy Systems,2013,53: 603-611.
    [146]Salkind A J. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology [J]. Journal of Power Sources,1999,80 (1-2): 293-300.
    [147]Domenico D D, Stefanopoulou A, Fiengo G. Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended kalman filter[J]. Journal of Dynamic Systems Measurement and Control-Transaction of the ASME,2010,132:6.
    [148]陈金干.基于模型的动力电池参数估计研究[D].上海:同济大学,2009.
    [149]Li J,Klee B J, Guenther C, et al. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles[J]. Journal of Power Sources,2013,230:244-250.
    [150]Takei K, Kumai K, Kobayashi Y, et al. Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test[J]. Journal of Power Sources,2001,97-98:697-701
    [151]郑文.模型数据的拟合[J].重庆职业技术学院学报:自然科学版,2012,14(4):45-47.
    [152]Aneiros E, Lobo D, Alberto L, et al. A proposed mathematical model for discharge curves of Li-Ion batteries [J]. New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE),2013 International Conference on,2013:1-6
    [153]Harold C. Interpolation and curve fitting[M]. Numerical approximation methods, USA:Springer New York Dordrecht Heidelberg London,2011:1-29.
    [154]沈世德,徐辛伯.最小二乘圆弧法在圆图象分析中的应用[J].机械设计与制造,2009,10:46-47.
    [155]陆宁.离散数据的连续函数拟合问题[J].西北建筑工程学院学报:自然科学版,2007,12(4):34-35.
    [156]Cao H Q, Yu J X, Kang L S, et al. Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms [J]. Computers and Chemistry,2001,25:251-259.
    [157]Eom S W, Kim M K, Kim I J, et al. Life prediction and reliability assessment of lithium secondary batteries[J]. Journal of Power Sources,2007,174:954-958.
    [158]张晖,吴伯荣,朱磊,等.MH/Ni动力电池的分选及性能[J].电池,2004,34(2) : 99-101.
    [159]范美强,廖维林,吴伯荣,等MH/Ni蓄电池组一致性及分选技术[J].电源 技术,2005,29(6):361-364.
    [160]王震坡,孙逢春,林程,等.不一致性对动力电池组使用寿命影响的分析[J].北京理工大学学报,2006,26(7):577-580.
    [161]武云丽,李革臣,陈松林,等.BP神经网络在电池分选中的应用[J].哈尔滨理工大学学报,2001,6(5):10-13.
    [162]多智华,李革臣,张殿龙,等.一种快速实现波形识别的电池分类算法[J].哈尔滨理工大学学报,2001,6(4):52-56.
    [163]Rudolph G J, Ganesan N, Herbert L C, et al. Accelerated calendar and pulse life analysis of lithium-ion cells [J]. Journal of Power Sources,2003,119-121: 870-873.
    [164]Bloom I, Cole B W, Sohn J J, et al. An Accelerated calendar and cycle Life study of Li-ion cells[J]. Journal of Power Sources,2001,101:238-247.
    [165]高飞,李建玲,赵淑红,等.锂动力电池寿命预测研究进展[J].电子元件与材料,2009,26(6):79-83.
    [166]孟祥峰,孙逢春,林程等.锂动力电池寿命预测方法研究[J].电源技术,2009,33(11):955-959.
    [167]Kohei H, Ko T, Tatsuo H. Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis[J]. Journal of Power Sources,2011,196: 10141-10147.
    [168]Bor Y L, Peter R, Rudolph G J, et al. Correlation of arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells[J]. Journal of Power Sources,2003,119-121:874-886.
    [169]Matthieu D, Nicolas V, Bor Y L. From single cell model to battery pack simulation for Li-ion batteries[J]. Journal of Power Sources,2009,186: 500-507.
    [170]Madeleine E, Jochen B G, Jan V, et al. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data[J]. Journal of Power Sources,2012,215:248-257.
    [171]Li Z, Lu L G, Ouyang M G, et al. Modeling the capacity degradation of LiFePO4/graphite batteries based on stress coupling analysis [J]. Journal of Power Sources,2011,196:9757-9766.
    [172]Madeleine E, Jochen B G, Jan V, et al. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data[J]. Journal of Power Sources,2011,215:248-257.
    [173]Wang J, Liu P, Jocelyn H G, et al. Cycle-life Model for Graphite-LiFePO4 Cells[J]. Journal of Power Sources,2011,196:3942-3948.
    [174]Harunaa H, Itoh S, Horiba T, et al. Large-format lithium-ion batteries for electric power storage[J]. Journal of Power Sources,2011,196:7002-7005.
    [175]Remmlinger J, Michael B, Markus M, et al. State of health monitoring of lithium-ion batteries in electric vehicles by on-board resistance estimation[J]. Journal of Power Sources,2011,196:75357-5363.
    [176]戴海峰,魏学哲,孙泽昌.基于等效电路的内阻自适应锂离子电池模型[J].同济大学学报:自然科学版,2010,38(1):98-102.
    [177]魏学哲,孙泽昌,田佳卿.锂离子电池参数辨识与状态估计[J].同济大学学报:自然科学版,2008,36(2):231-235.
    [178]Gregory L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2. Modeling and identification[J]. Journal of Power Sources,2004,134:262-276.
    [179]Gregory L P. Extended kalman filtering for battery management systems of LiPB-based HEV battery packs Part 3. State and parameter estimation[J]. Journal of Power Sources,2006,161:1369-1384.
    [180]Gregory L P. Sigma-point kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2:Simultaneous state and parameter estimation[J]. Journal of Power Sources,2004,134:277-292.
    [181]Sungwoo C, Hyeonseok J, Chonghun H, et al. State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model[J]. Computers and Chemical Engineering,2012,4:1-9.
    [182]Michael A. R, Dirk U S. Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries[J]. Journal of Power Sources,2011,196:331-336.
    [183]Matthieu D, Vojtech S, Ruey H, et al. Capacity loss in rechargeable lithium cells during cycle during cycle life testing:The importance of determining state of charge[J]. Journal of Power Sources,2007,174:1121-1125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700