不同土地利用和起源农田土壤有机碳及其组分含量变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业土壤碳库是陆地生态系统碳库中最为活跃的部分,受到来自于人类的强烈影响而发生显著变化。农业土壤碳库储量及其固碳能力作为评估近期温室气体减排潜力重要依据之一,得到《京都协议书》认可,农业土壤碳库的增加对于稳定农田生产力和应对气候变化具有双赢的积极作用。关于中国地理区域农田土壤有机碳储量及其固碳潜力已有不少研究,土地利用例如稻田和旱地对农田土壤有机碳的变化以及土壤固碳潜力的研究也有较多报道,但是对于特定区域来说,农田土壤有机碳随不同土地利用和不同土壤起源的变化及其对土壤固碳容量的影响与机制研究相对较少。本文通过对期刊网已发表土壤研究学术论文中样本有机质(碳)含量资料统计,分析1980年以来近30年中国农田土壤有机碳变化情况;并以长江中游江汉平原和鄱阳湖平原不同土地利用方式和不同土壤起源农田土壤为研究对象,通过实地密集采样,结合第二次全国土壤普查资料,研究了区域农田当前土壤有机碳水平及第二次土壤普查以来的变化,不同利用方式和不同起源下农田土壤总有机碳和组分含量的变化,有机碳的团聚体内分布和稳定性,探讨了影响有机碳含量的主要土壤因素、当前农田土壤有机碳饱和容量和未来固碳潜力,主要研究结果如下:
     (1)中国农田表土有机碳含量变化趋势
     本文的研究支持了1985年以来中国农田表土SOC总体上呈现积累,且水田高于旱地,东部高于北部,而东北仍处于损失中的认识。近30年来,水田、旱地土壤SOC含量均呈现先下降后持续上升趋势;水田SOC含量以2003~2009年时间段最高,旱地以1985年前时间段最高,说明旱地土壤SOC水平相比1985年前仍表现为亏缺,是影响我国农田土壤SOC水平较低的主要原因。
     (2)江汉平原和鄱阳湖平原农田土壤有机碳含量及其随土地利用和土壤起源的变化
     通过实地密集采样,以江汉平原和鄱阳湖平原农田表土为研究对象,对比研究了不同利用方式和土壤起源下农田表土SOC含量差异,并就第二次土壤普查以来近30年的农田SOC变化和不同利用方式和土壤起源下农田表土的碳饱和容量和未来固碳潜力进行了探讨。结果表明:研究区域近30年来,农田表土平均SOC含量相比第二次土壤普查时期有所提高。水田、旱地相比第二次土壤普查时期均有不同程度的提高,其中,江汉平原旱地相对提高比例较大。说明在近30年以来该区域农田整体表现为碳库增加,碳汇效应显著。另外,本研究区域水稻土尚有相当比例(江汉平原为16.27%,鄱阳湖平原为5.71%)SOC含量低于水田缺乏标准线,表明其尚具有显著固碳潜力。
     不同起源稻田表土有机碳饱和容量在江汉平原和鄱阳湖平原湿地起源区较大,分别达到了26.83g kg-1和26.79g kg-1,江汉平原和鄱阳湖平原红壤起源区较低,仅为23.41g kg-1和20.96g kg-1。旱地农田表土有机碳饱和水平相比水田均明显下降,旱地中江汉平原红壤饱和有机碳含量最高,为19.48g kg-1;其次为鄱阳湖平原和江汉平原湿地起源旱地,江西红壤旱地最低,为14.19g kg-1。本研究中,不同利用方式和土壤起源下,固碳潜力差异显著,整体表现为水田固碳潜力要明显高于旱地,江汉平原湿地起源水田和旱地固碳潜力均最大,分别为8.49g kg-1和5.93g kg-1;江西红壤水田和旱地均最低,分别为5.31g kg-1和4.00g kg-1。
     (3)江汉平原和鄱阳湖平原不同土地利用和土壤起源下C、N剖面分布及其碳密度的变化
     对江汉平原湿地起源稻田、棉田和未垦殖湿地三种利用方式及江汉平原湿地起源稻田、红壤稻田和鄱阳湖平原湿地起源稻田、红壤稻田等四种不同土壤起源稻田典型剖面0~100cm土体9个土层中SOC含量的剖面分布及有机碳密度进行了比较研究。结果表明:不同利用方式下,SOC含量产生明显的剖面分布差异。稻田各土层SOC含量较湿地和棉田高,随剖面加深有机碳含量呈下降趋势,棉田下降迅速并很快趋于稳定,稻田和湿地呈现波动式下降;SOC与全氮极显著相关,但自然生态系统中碳与氮的相关性略低于农田生态系统(湿地R2=0.9043,棉田R2=0.9903,稻田R2=0.9646,P<0.001)。不同起源稻田SOC含量以湿地起源区为高,红壤稻田较低。随剖面加深红壤稻田下降迅速并很快趋于稳定,湿地起源稻田呈波动式下降。
     不同利用下有机碳密度无论0-20cm还是0~100cm全剖面均以稻田最高,而不同起源稻田中碳密度在0-20cm和0~100cm全剖面均以江西湿地起源稻田最高,湖北湿地起源稻田次之,红壤稻田较低。不同利用方式和起源下,0-20cm有机碳密度占0~100cm全剖面的比例为27.72%~50.86%,由此可知,通过表层土壤来估算全剖面碳密度时,由于剖面样点的数量较少会带来很大的不确定性。
     (4)江汉平原湿地及其开垦农田不同利用下有机碳组分含量变化
     以江汉平原湿地起源土壤为例,研究了稻田、棉田、桔园和湿地等不同利用方式下表土SOC组分变化及在团聚体内的分布和稳定性。结果表明:不同利用方式下表土SOC含量分异显著,稻田显著高于其它利用方式。不同利用方式下稳定键合态组分及其比例的差异明显大于其他物理性分离组分的变化,特别是稻田下化学结合稳定有机碳组分及其比例升高显著。旱地利用降低了SOC的团聚体物理保护,而水田稻作条件下促进了SOC的团聚体物理保护作用。因此,化学键合稳定和团聚体物理保护的差异是水田和旱地土壤SOC保存水平差异较大的原因。
     江汉平原湿地开垦为农田后,没有引起SOC的损失;而在水田稻作条件下还显著地提高了原有自然湿地SOC含量,表明长江中游地区砂质湿地起源土壤开垦为稻田是相对较好的保持土壤有机碳库的土地利用途径。
     (5)江汉平原不同土地利用和起源下农田土壤有机碳组分变化
     通过实地密集采样,以江汉平原腹地湖北荆州地区农田表土为研究对象,研究了不同利用方式和起源下农田表土sOc组分变化及其稳定性,并就有机-无机化学结合方式进行了探讨。结果表明:不同利用方式和不同土壤起源下均会影响SOC水平,相比之下不同的农业利用方式对于农田SOC水平影响更大。稳定性有机碳组分占总有机碳比例,表现为水田显著高于旱地,红壤农田显著高于湿地起源农田。不同利用方式和起源下影响SOc水平的稳定机制不同,粘粒保护机制在碱性的湿地起源土壤中具有显著作用,而水淹条件下,sOc的化学结合稳定显得与游离氧化铁的保护也有关,红壤起源水田土壤中由于游离氧化铁的大量存在,这种保护作用具有显著的贡献。可见,粘粒含量并非是影响稻田土壤固碳的唯一土壤因素,游离氧化铁的存在对稻田土壤中SOC的化学稳定发挥着有重要的作用。
Organic carbon pool of agricultural soil is the most activist part of the pool in land ecosystem. It is significantly changed in the serious effect of human activity. The storage of organic carbon pool of agricultural soil and the capacity of carbon sequestration are one of the bases that are used to evaluate recent potentiality of greenhouses gases emission reduction. It has been admitted by Kyoto Protocol, and increase in organic carbon pool of agricultural soil is double-win between stabilized productivity of agriculture soil and the response of climate change. A lot of studies on the storage and potentiality of agricultural soil organic carbon (SOC) sequestration in geography region as well as land utilization such as studies on changes of soil organic carbon (SOC) and potentiality of soil carbon sequestration. However, for some special region, studies of the changes of SOC under different land utilization and parent materials and the effect mechanisms on the capacity of C sequestration are relative rare.
     In this study, the articles on Chinese Academic Journal Web about the contents of soil organic matter/carbon (SOM/SOC) were collected and analyzed. The changes of SOC in agriculture soils since1980were analyzed. In addition, soil samples were collected in Jianghan plain, the middle reaches of Yangtze River, and Poyang Lake plain and the materials of the second general survey of soil in China were analyzed at the same time. The content of SOC in regional agricultural soil and the changes since the second general survey of soil in China were studied. While, the changes of contents of total organic carbon (TOC) and the fractions of agricultural soils under different soil utilization and parent materials were also researched. In addition, the distribution and stability of SOC in particle size fractions (PSFs) were studied too. Influences on the contents of SOC in soils and recent saturated capacity of SOC of agricultural soils, and potentiality of carbon sequestration in the future were discussed in this study. The main contents were as follows:
     (1) Trends of changes of the contents of SOC in agricultural topsoil, China
     The study supported the realization that the contents of SOC increased in agricultural topsoil since1985, and it is higher in paddy field than in dry farmland, and it is higher in eastern than in northern, but lost in northeast. In recent30years, the contents of SOC of paddy field and dry farmland decreased and then increased. The highest contents of SOC of paddy field were in2003to2009years, but it was highest before1985in dry farmland. It showed that the contents of SOC of dry farmland were lost compared to that before1985. It was the main problem that the lower contents of SOC of agricultural soil.
     (2) Contents of SOC and its changes under different land use and soil origin of croplands in Jianghan plain and Poyang Lake plain
     The contents of SOC of agricultural topsoil under different land use and soil origin, a case study of agricultural topsoil in Jianghan plain and Poyang Lake plain, was studied through closely sampling. The saturated capacity of C in agricultural topsoil and potentiality of C sequestration in the future were also discussed according to the changes of SOC since the second general survey of soil in China and under different land use and soil origin of croplands. The results showed that contents of SOC of agricultural topsoil increased than the second general survey of soil in China for recent30years in the study regions. Increase in SOC was founded in paddy soils and dry farmland in different level, while, increase in Jianghan region was higher than other regions relatively. It showed that C pool increased and C accumulation effect was significant. In addition, a serious percentage of content of SOC in the region was lower than the lack standard curve of paddy soil, such as16.27%in Jianghan plain and5.71%in Poyang Lake plain. It showed there was significant patentability of C sequestration in these regions. The saturated capacity of SOC under different soil origin was higher originated from Jianghan plain wetland and Poyang Lake plain wetland which was26.83g kg-1and26.79g kg-1, respectively. However, it was lower in Jianghan Plain and red soil region of Poyang Lake plain which was23.41g kg-1and20.96g kg-1, respectively. The saturated capacity level of topsoil of dry farmland decreased significantly compared to paddy soil. In addition, the highest saturated SOC, existing in red soil in Jianghan plain, then was in farmland originated from Poyang Lake plain and Jianghan plain wetland, but the lowest farmland originated from red soil was14.19g kg-1. In this study, C sequestration under different soil origin was significant and indicated that the potentiality of C sequestration was significant higher in paddy soil than in dry farmland. The highest potentiality of C sequestration was8.49g kg-1and5.93g kg-1in paddy soil and dry farmland originated from Jianghan plain wetland, but the lowest was5.31g kg-1and4.00g kg-1in paddy soil and dry farmland derived from red soil.
     (3) Distribution of soil C and N in profile and changes of C density under different land use and soil origin in Jianghan plain and Poyang Lake plain
     The study on contents of SOC of nine soil layers in0~100cm profile paddy soil, cotton field soil and wetland and soils derived from wetland in Jianghan plain, red paddy soil, reclaimed lake paddy soil and red paddy soil. The results showed that there was significantly difference of SOC in profile distribution under various land use. It was higher in paddy soils than in wetland and cotton field soils, and it decreased with the deep of soil layer. The content of SOC decreased quickly in cotton field soils and trended to be stable soon, but it unsteadily decreased. There was a very significant correlation between SOC and total nitrogen (TN). However, the correlation between C and N was lower in nature ecosystem than in agriculture ecosystem (for wetland R2=0.9043, cotton field soil R2=0.9903, paddy soil R2=0.9646, P<0.001). The contents of SOC were higher in reclaimed lake in Jiangxi and wetland derivation in Hubei, the lowest was red paddy soil. The content of SOC in profile decreased quickly and trended to be stable soon in red paddy soil. It decreased unsteadily in paddy soil originated from wetland. The highest density of SOC was in paddy soil not only in0-20cm but also in0-100cm. However, the highest density of SOC was in paddy soil originated from Jiangxi wetland in different soil origination both in0-20cm and in0~100cm, then was originated from Hubei wetland and the lowest was paddy soil originated from red soil. Compared to C density in0-100cm, the percentage of C density in0~20cm was from27.72%to50.86%. Thus, non-determinacy was higher when the C density was evaluated through topsoil.
     (4) Changes of content of SOC under different land use in Jianghan plain wetland and cultivated farmland
     The changes of SOC and distribution in PSFs under paddy soil, cotton field, orange field and wetland which was derived from wetland of Jianghan plain were studied. The results showed that the contents of SOC of paddy soils in topsoil were significantly higher than in other soils. Stable fractions of SOC and its ratio were higher than other physical fractions, especially chemical binding stable fractions of SOC and its ratio of paddy sols. The physical protection of SOC was decreased in dry farmland utilization, but the protection of SOC by PSFs was promoted in paddy soils. Thus, chemical binding stabilization and physical protection of SOC maybe the main problem of significant difference of SOC between paddy field and dry farmland.
     When Jianghan plain wetland was cultivated, SOC did not lost quickly, but SOC was increased in natural wetland under paddy field environment. It showed that it was a good way for land use to keep SOC pool well by cultivating sandy parent material wetland as paddy field in the middle and lower reaches of Yangtze River.
     (5) Changes of fractions of SOC and distribution in Jianghan plain
     The study on fractions and stability of SOC in agricultural topsoil under different land use and soil origin and discussed the organic-mineral chemical complex manner in Jingzhou, Jianghan plain. The result showed that the contents of SOC would be affected by different land use and soil origin, and for comparison, the agriculture utilization affected the agricultural SOC more significantly. The ratio of stable fractions to total organic carbon (TOC) was higher in paddy field than in dry farmland, and it was significant higher in farmland originated from red soil than farmland originated from wetland. The clay protection was significant taken into effect in alkaline wetland origination soils. However, the chemical combining stabilization of SOC related to free iron oxide protection. There were a lot of free iron oxide in paddy field originated from red soil, and it made significant contribution to C protection. Thus, clay contents was not the only factors to affect C sequestration in paddy soils, free iron oxide take an important effect on C chemical stabilization in paddy field.
引文
Andrews J A, Matamala R, Westover K M, et al. Temperature effects on the diversity of soil hete-rotrophs and the 13C of soil-respired CO2 [J]. Soil Biology and Biochemistry,2000,32:699-706.
    Arrouays D, Saby N, Walter C, et al. Relationships between particle-size distribution and organic carbon in French arable top-soils [J]. Soil Use and Management,2006,22:48-55.
    Baath E, Arnebant K. Growth rate and response of bacterial communities to pH in limed and ash reacted forest soils [J]. Soil Biology and Biochemistry,1994,26:995-1001.
    Batjes N H. Carbon and nitrogen in the soils of the world [J]. European Journal of Soil Science,1996, 47:151-163.
    Bridgham S D, Megoniga J P, Keller J K, et al.The carbon balance of North American Wetlands [J]. Wet-lands,2006,26:899-916.
    Bunnell F L, Tait D E N, Flanagan P W. Microbial respiration and substrate weight loss.II.A model of influences of chemical composition [J]. Soil Biology and Biochemistry,1977,9:41-47.
    Chefetz B, Tarchitzheskyy J, Deshmukh A P, et al. Structural characterization of soil organic matter and humic acids in particlesize fractions of an agricultural soil [J]. Soil Science Society of America Journal,2002,66:129-141.
    Christensen B T. Physical fractionation of soil and organic matter in primary particle size and density separates [J]. Advances in Soil Sciences,1992,20:2-90.
    Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover [J]. European Journal of Soil Science,2001,52:345-353.
    Dalal R C, Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queens land.I.V.Loss of organic carbon from different density fractions [J]. Australian Journal of Soil Research,1986,24:301-309.
    Davidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously tilled soils [J]. Biogeochemistry,1993,20:161-164.
    Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J].Global Change Biology, 1998,4:217-227.
    Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature,2006,440:165-173.
    Dou F, Wright A L, Hons F M. Depth distribution of soil organic C and N after long-term soybean cropping in Texas [J]. Soil and Tillage Research,2007,94:530-536.
    Eswarran H. Organic carbon in soils of the world [J]. Soil Science Society of America Journal,1993,57: 192-194.
    Elliott E T Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils Soil [J]. Soil Science Society of America Journal,1986,50:627-633.
    Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature [J].Soil Biology and Bi-ochemistry,2001,33:155-165.
    FAO. Soil carbon sequestration for improved land management [R].Rome, Italy:World Soil Resources Reports, Food and Agriculture Organization,2001.
    Gale W J,Cambardella C A. Carbon dynamics of surface residue and root derived organic matter under simulated no tillage [J]. Soil Science Society of America Journal,2000,64:190-195.
    Gerzabek M H,Haberhauer G. Soil organic matter pools and 13C natural abundance in particle-size fractions of a long-term agricultural field experiment receiving organic amendments [J]. Soil Science Society of America Journal.2001,65:352-358.
    Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilization,grazing and cultivation [J]. Soil Biology and Biochemistry, 2003,35:1231-1243.
    Gregorich, E.G, Kchanowsik, R.G, Carbon mineralization in soil size fraction after various amounts of aggregate disruption [J].Soil Science,1989,40:649-659.
    Guo L P, Lin E. Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils:A review of work in China [J].Chemosphere-Glob Change Science,2001,3:413-418.
    Hassink J. Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in Dutch grassland soils [J]. Soil Biology and Biochemistry,1994,26:1573-1581.
    Haynes R J, Beare H. Aggregation and organic matters torage in mesothermal, humid soils [M]//Carter M R,Stewart B A.Structure and Organic Matter Storage in Agriculture Soils. Advances in Soil Science. BocaRaton, CRC Lewis Publishers,1996:213-262.
    Houghton R A.Releases of Carbon to the Atmosphere from Degradation of Forests in Tropical Asia [J]. Canadian Journal of Forest Research,1991,21:132-142.
    Hu S, Chapin III F S, Firestone M K, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 [J]. Nature,2001,409:188-191.
    Huang X X, Gao M, Wei C F, et al. Tillage effects on organic carbon in apurple paddy soil [J]. Pedosphere,2006,16:660-667
    Huang Y, SunW J. Tendency of SOC change in cropland soils of China over the last 20 years [J]. Chinese Science Bulletin,2006,51:1785-1803.
    IPCC.Climate Change 1995:Impact,Adaptations and Mitigation of Climate Change:Scientific Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge,UK and New York, USA:Cambridge University Press,1996.
    IPCC.Climate Change:Mitigation of climate change.Working group III Contribution to the fourth assessment report of the IPCC [M].Cambridge,UK:Cambridge University Press,2007.
    Janzen H H. Carbon cycling in earth systems-a soil science perspective [J]. Agriculture Ecosystems and Environment,2004,104:399-417.
    Janzen H H. The soil carbon dilemma:Shall we hoard it or use it? [JJ.Soil Biology and Biochemistry, 2006,38:419-424.
    Jastrow J D. Soil aggregate formation and the accrual of particulate andmineral associated organic-matter [J]. Soil Sciences Society of American Journa,1996,60:801-807.
    Jastrow J.D,Miller R.M.Contributions of interacting biological mechanisms to soil aggregate stabili-zation in restored prairie [J]. Soil Biology and Biochemistry,1998,30:905-916.
    Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming [J]. Nature,1991,351:304-306.
    Johns M M, Skogley E O. Soil organic matter testing and labile carbon identification by carbon aceous resin capsules [J]. Soil Science Society of America Journal,1994,58:751-758.
    Johnson D W.Effects of Forest Management on Soil Carbon Storage [J]. Water,Air and Soil Pollu-tion,1992,64:83-120.
    Julie D, Jastrow J E, Amonette V L,et al. Mechanisms controlling soil carbon turn over and their poten-tial application for enhancing carbon sequestration [J]. Climatic Change,2007,80:5-23.
    Kandeler E,Palli S.Stemmer M.Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem [J].Soil Biology and Biochemistry,1999,31:1253-1264.
    Keith H, Jacobsen K L, Raison R J. Effects of soil phosphorus availability,Temperature and moisture on soil respiration in Eucalyptus pauciflora forest [J].Plant and Soil,1997,190:127-141.
    Kogel-Knabner I, Chenu C, Kandeler E,et al. Biological and physicochemical processes and control of soil organic matter stabilization and turn over [J]. European Journal of Soil Science,2006,57:425.
    Lal R.World soils and the greenhouse effect [J].Global Change News Letter,1999a,37:4-5.
    Lal R. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect [J]. Progress in Environmental Science,1999b,1:307-326.
    Lal R.Soil Carbon Dynamics in Cropland and Rangeland fJ].Environmental Pollution,2002a,116:353 -362.
    Lal R. Soil C sequestration in China through agricultural intensification and restoration of degraded and decertified soils [J]. Land Degradation and Development,2002b,13:469-478.
    Lal R. Soil carbon sequestration tomitigate climate change [J].Geoderma,2004a,123:1-22.
    Lal R. Soil carbon sequestration impactson global climate change and food security [J]. Science,2004b, 304:1623-1627.
    Lars K, Anette N, Martin H, et al. Preliminary estimates of contemporary organic carbon stocks in Denmark using multiple datasets and four scaling-up methods [J]. Agriculture Ecosystems and Environment,2003,96:19-28.
    Lee S Y. Primary productivity and particulate organic matter flow in an estuarine mangrove wetland in Hong Kong [J]. Marine Biology,1990,106:453-463.
    Lessa A S N, Anderson D W, Chatson B. Cultivation effects on the nature of organic matter in soils and water extracts using CP/MAS 13C NMR spectroscopy [J]. Plant and Soil,1996,184:207-217.
    Liang B C, Mackenzie A F, Schnitzer M, et al. Managenment-induced change in labile soil organic matter under continuous corn in eastern Canadian soils [J]. Biology and Fertility of Soils,1998, 26:88-94.
    Lindert P H, Lu J, Wu W. Trends in the soil chemistry of South China since the 1930s [J]. Soil Science, 1996,161:329-342.
    Li Z, Zhao Q G Organic carbon concentration and distribution in soils under different land uses in tropical and subtropical China [J]. Plant and Soil,2001,231:175-185.
    Lu F, Wang X, Han B,etal. Soil carbon sequestrations by nitrogen fertilizer application, straw return and notillage in China's cropland [J]. Global Change Biology,2009,15:281-305.
    Magid J, Jaegaard C,Gorissen A,et al. Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter.but retard the decomposition of added 14C 2 labelled plant material [J]. Soil Biology and Biochemistry.1999,31:595-602.
    Mathes K, Schricfer T. Soil respiration during secondary succession:influence of temperature and moisture [J].1985,17:205-211
    Mensah F, Schoenau J J, Malhi S S. Soil carbon changes in cultivated and excavated land converted to grasses in east-central Saskachewan [J]. Biogeochemistry,2003,63:85-92.
    Mikutta R, Kleber M, Margarets T et al. Stabilization of soil organic matter:association with minerals or chemical recalcitrance [J]. Biogeochemistry,2006,66:25-56.
    Mitsch W J, James G Gosselink. Wetlands [M].Van Nostrand Reinhold Company Inc.,2000.1-43.
    Nadelhoffer K J, Emmett B A, Gundersen P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration intemperate forests [J]. Nature,1998,398:145-148.
    Nelson S D, Farmer W J, Letey J, et al. Stability and mobility of napropamide complexed with dissolved organic matter in soil columns [J]. Journal of Environmental Quality,2000,29:1856-1862.
    Ogutu Z A. An inverstigation of the influence of human disturbance on selected soil nutrients in Narok District, Kenya [J]. Environmental Monitoring and Assessment,1999,58:39-60.
    Osher L J, Matson P A, Amundson R. Effect of land use change on soil carbon in Hawaii [J]. Biogeochemistry,2003,65:213-232.
    Pan G X. Study on carbon reservoir in soils of China [J]. Bulletin of Science and Technology,1999,15: 330-332.
    Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils [J]. Global Change Biology,2003,10:79-92.
    Pan G X, Li L Q, Zhang Q, et al. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration [J]. Journal of Environmental Sciences,2005,17:1-7.
    Pan G X, Xu X W, Pete Smith, et al. An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring [J]. Agriculture, Ecosystem and Environment,2010,136:" 133-138.
    Paul E A, Collins H P, Leavitt S W. Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance [J]. Geoderma,2001,104:239-256.
    Puget P,Chenu C,Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J]. European Journal of Soil Science,2000,51:595-605.
    Robles M D, Burke I C. Soil organic matter recovery on conservation reserve program fields in southeastern Wyoming [J]. Soil Science Society of America Journal,1998,62:725-730.
    Schulten H R. Leinweber P. New insights into organic mineral particles:composition.properties and models of molecular structure [J]. Biologyand Fertility of Soils.2000,30:399-432.
    Six J,Elliott E.T,Paustian K,et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Science Society of America Journal,1998,62:1367-1377.
    Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture [J]. Soil Biology and Biochemistry,2000,32:2 099-2103.
    Smith P. Carbon sequestration in croplands:the potential in Europe and the global context [J]. Europe Agronomy,2004,20:229-236.
    Solomon D, Lehmann J, Kinyangi J, et al. Long-term impacts of anthropogenic perturbations on dyna-mics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems [J]. Global Change Biology,2007,13:511-530.
    Song G H, Li L Q, Pan G X, et al. Topsoil organic carbon storage of China and its loss by cultivation [J]. Biogeochemistry,2005,74:47-62.
    Spaccini R, Piccolo A, Haberhauer G, et al. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra [J]. European Journal of Soil Science,2000,51:583-594.
    Spaccini R, Zena A, Igwe C A,et al. Carbohydrates in water-stable aggregates and particle size fractions of forested and cultivated soils in two contrasting tropical ecosystems [J]. Biogeochemistry,2001, 53:1-22.
    Staben M L, Bezdicek D F, Smith J L, et al. Assessment of soil quality in conservation reserve program and wheat-fallow soils [J]. Soil Science Society of America Journal,1997,61:124-130.
    Stemmer, M., Gerzabek, M.H., Kandeler, E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication [J]. Soil Biology and Biochemistry,1998,30:9-17.
    Tan Z X, Lal R, Smeck N E, et al. Relationships between surface soil organic carbon pool and site variables [J]. Geoderma,2004,121:187-195.
    Tang H J, Qiu J J, Van Ranst E, et al. Estimations of soil organic carbon storage in cropland of China based on DNDC model [J]. Geoderma,2006,13:200-206.
    Tisdall J.M. Oades J.M. Organic matter and water-stable aggregates in soils [J]. Journal Soil Science, 1982,33:141-163.
    Vanlauwe B,Nwoke O C,Sanginga N,et al. Evaluation of methods for measuring microbial biomass C and N and relationships between microbial biomass and soil organic matter particle size classes in West African soils [J]. Soil Biology and Biochemistry,1999,31:1071-1082.
    Wander M M, Traina S J, Stinner B R, et al. The effects of organic and conventional management on biologically active soil organic matter fraction [J]. American Journal of Soil Science Society,1994, 58:1130-1139.
    Watson J R, Parsons J W. Studies of soil organo-mineral fractions I:Isolation by ultrasonic dispersion [J]. Soil Science,1974,25:29-34.
    Watson R T,Noble I R.Carbon and the science-policy nexus:the Kyoto challenge[C]//Steffen W,Jager J.Carson D,Bredshaw C,eds.Challenges of a Changing Earth.Proceedings of the Global Change Open Science ConferenccBerlin:Springer,2001:57-64.
    West T O, Gregg M. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agri-culture:comparing tillage practices in the United States [J]. Agriculture Ecosystems and Environ-ment,2002,91:217-232.
    West T O, Gregg M, Anthony W K, et al. Carbon management response curves:Estimates of temporal soil carbon dynamics [J]. Environmental Management,2003,33:507-518.
    Whalen J K,Bottomley P J,MyroId D D.Carbon and nitrogen mine ralization from light and heavy-fraction additions to soil [J].Soil Biology and Biochemistry,2000,32:1345-1352.
    Wu H B, Guo Z T, Peng C H. Land use induced changes of organic carbon storage in soils of China [J]. Global Change Biology,2003a,9:305-315.
    Wu H B, Guo Z T, Peng C H. Distribution and storage of soil organic carbon in China [J]. Global Biogeochemical Cycles,2003b,17:1048-1058.
    Xie Z B, Zhu J P, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s [J]. Global Change Biology,2007,13:1989-2007.
    Yan D Z, Wang D J, Yang L Z. Long-term effect of chemical fertilizer,straw,and manure on labile organic matter fractions in a paddy soil [J]. Biology and Fertility of Soil,2007,44:93-101.
    Yan H M, Cao M K, Liu J Y, et al. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China [J]. Agriculture Ecosystems and Environment,2007, 121:325-335.
    Zhou P, Song G H, Pan G X, et al. Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China [J]. Geoderma,2009,153:52-60.
    Zhou T, Shi P, Wang S. Impacts of climate change and human activities on soil carbon storage in China [J].Acta Geographica Sinica,2003,58:727-734.
    Zogg G P, Zak D R, Ringeelberg D B, et al. Compositional and functional shifts in microbial communities due to soil warming [J]. Soil Science Society of America Journal,1997,61:475-481.
    安静,邓波,韩建国,等.土壤有机碳稳定性研究进展[J].草原与草坪,2009,(2):82-87.
    白俊超.我国农村土地制度改革研究[D].陕西杨凌:西北农林科技大学,2007.
    车玉萍,林心雄.潮土中有机物质的分解与腐殖质积累[J].核农学报,1995,9(2):95-101.
    迟传德,许信旺,吴新民,等.安徽省升金湖湿地土壤有机碳储存及分布[J].地球与环境,2006,34(3):59-64.
    陈安磊,王凯荣,谢小立,等.不同施肥模式下稻田土壤微生物生物量磷对土壤有机碳和磷素变化的响应[J].应用生态学报,2007,18(12):2733-2738.
    陈泮勤.中国陆地生态系统碳收支与增汇对策[M].北京:科学出版社,2008,1:1-156.
    陈桂秋,黄道友,苏以荣,等.红壤丘陵区土地不同利用方式对土壤有机质的影响[J].农业环境科学学报,2005,24(2):256-260.
    陈义,吴春艳,水建国,等.长期施用有机肥对水稻土CO2释放与固定的影响[J].中国农业科学, 2005,38(12):2468-2473.
    程琨,潘根兴,田有国,等.中国农田表土有机碳含量变化特征-基于国家耕地土壤监测数据[J].农业环境科学学报,2009,28(12):2476-2481.
    程琨,潘根兴,李恋卿,等.中国稻作与旱作生产的气象减产风险评价[J].农业环境科学学报,2011,30(9):1764-1771.
    程先富,史学正,于东升,等.江西兴国县农田土壤固碳潜力20a变化研究[J].应用与环境生物学报,2007,13(1):37-40.
    邓万刚,吴蔚东,陈明智,等.土地利用方式及母质对土壤有机碳的影响[J].生态环境,2008,17(3):1130-1134.
    杜慧平,展争艳,李小刚.高寒灌丛与珠芽蓼草地土壤有机碳的稳定性[J].甘肃农业大学学报,2007,42(3):91-96.
    方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算[J].中国科学([D辑:地球科学),2007,37(6):804-812.
    傅积平.土壤结合态腐殖质分组测定[J].土壤通报,1983,(2):36-37.
    傅清,赵小敏,袁芳.江西省农田耕层土壤有机碳量分析[J].土壤通报,2010,41(4):835-838.
    龚子同.中国土壤系统分类:理论、方法、实践[M].北京:科学出版社,1999,109-194.
    国家统计局国民经济综合统计司.中国统计年鉴[M].北京:中国统计出版社,2006.
    郭荣发,杨杰文.成土母质和种植制度对土壤pH和交换性铝的影响[J].生态学报,2004,24(5):984-990.
    韩冰,王效科,欧阳志云,等.中国东北地区农田生态系统中碳库的分布格局及其变化[J].土壤学报,2004,35(4):401-407.
    韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,12(4):6-11.
    韩冰,王效科,逯非,等.中国农田土壤生态系统固碳现状和潜力[J].生态学报,2008,28(2):612-619.
    韩晓日,苏俊峰,谢芳,等.长期施肥对棕壤有机碳及各组分的影响[J].土壤通报,2008,39(4):730-733.
    侯翠翠,宋长春,李英臣,等.不同水分条件下小叶章湿地表土有机碳及活性有机碳组分季节动态[J].环境科学,2011,32(1):290-297.
    侯鹏程,徐向东,潘根兴.不同土地利用方式对农田表土有机碳库的影响-以太湖地区吴江市为例[J].南京农业大学学报,2007,30(2):68-72.
    湖北省荆州地区土壤普查办公室编.湖北省第二次土壤普查资料·荆州地区土壤志(内部资料)[M].1995.
    胡国成,章明奎.氧化铁对土粒强胶结作用的矿物学证据[J].土壤通报,2002,33(1):25-27.
    胡荣桂,陈家和.不同母质的砖红壤的磷组分研究[J].海南大学学报(自然科学版),1998,16(2):133-136.
    黄欠如,胡锋,袁颖红,等.长期施肥对红壤性水稻土团聚体特征的影响[J].土壤,2007,39(4):608-613.
    黄山,刘武仁,殷明,等.东北地区玉米田长期免耕土壤碳氮及微生物活性的剖面分布特征[J].玉米科学,2009,17(3):103-106.
    黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-714.
    黄耀,孙文娟.近20年来我国耕地土壤有机碳含量的变化趋势[J].科学通报,2006,51(7):753-763.
    江晓东,迟淑筠,宁堂原,等.少免耕模式对土壤呼吸的影响[J].水土保持学报,2009,23(2):253-256.
    姜小三,潘剑君,李学林.江苏表层土壤有机碳密度和储量估算和空间分布分析[J].土壤通报,2005,36(4):501-503.
    姜岩,窦森.土壤施用有机物料后重组有机质变化规律的探讨Ⅰ.对有机无机复合及腐殖质结合形、态的影响[J].土壤学报,1987,24(2):97-104.
    姜勇,梁文举,闻大中.免耕对农田土壤生物学特性的影响[J].土壤通报,2004,35(3):347-351.
    姜勇,张玉革,梁文举,等.潮棕壤不同利用方式有机碳剖面分布及碳储量[J].中国农业科学,2005,38(3):544-550.
    金峰,杨浩,蔡祖聪.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-528.
    李长生.土壤碳库量之减少:中国农业之隐患-中美农业生态系统碳循环比较研究[J].第四纪研究,2000,20(4):345-350.
    李典友,潘根兴.长江中下游地区湿地开垦及土壤有机碳含量变化[J].湿地科学,2009,7(2):187-190.
    李辉信袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(6):912-917.
    李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学,2003,33(1):72-80.
    李恋卿,潘根兴,龚伟,等.太湖地区几种水稻土的有机碳储存及其分布特性[J].科技通报,2000a,16(6):421-426.
    李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤团聚体及其有机碳的变化[J].土壤通报,2000b,31(5):193-195.
    李恋卿.几种农业土壤中团聚体颗粒间物质分异及其环境意义[D].南京:南京农业大学,2001.
    李平儒,任卫东,李志军,等.长期施肥管理对(?)土全碳和易氧化有机碳的影响[J].西北农业学报,2010,19(12):194-201.
    李庆逵.中国水稻土[M].北京:科学出版社,1992.1-20.
    李世朋,汪景宽,王开勇,等.我国土壤中有机矿质复合体地带性分布的研究[J].土壤通报,2003,34(6):501-504.
    李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123.
    李淑仪,廖观荣,廖新荣,等.不同母质砖红壤的磷有效性差异[J].土壤与环境,1999,8(3):227-229.
    李小军.粮食主产区农民收入问题研究[[D].北京:中国农业科学院,2005.
    李新爱,童成立,蒋平,等.长期不同施肥对稻田土壤有机质和全氮的影响[J].土壤,2006,38(3):298-303.
    李志鹏,潘根兴,张旭辉.改种玉米连续3年后稻田土壤有机碳分布和13C自然丰度变化[J].土壤学报,2007,44(2):244-251.
    李忠,孙波,林新雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002-39(3):351-360.
    李忠佩,唐永良,石华.不同轮作措施下贫瘠红壤中碳氮积累特征[J].中国农业科学,2002b,35(10):1236-1242.
    李忠佩,张桃林,陈碧云,等.红壤稻田土壤有机质的积累过程特征分析[J].土壤学报,2003,40(3):344-352.
    李忠佩.低丘红壤有机碳库的密度及分异[J].土壤,2004,360):292-297.
    李忠佩,焦坤,吴大付.不同提取条件下红壤水稻土溶解有机碳的含量变化[J].土壤,2005,37(5):512-516.
    李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报,2006,43(1):46-52.
    李忠武,罗霄,黄金权,等.红壤丘陵区不同成土母质发育稻田土壤的肥力特性[J].湖南大学学报(自然科学版),2009,36(9):73-77.
    梁爱珍,张晓平,杨学明,等.黑土颗粒态有机碳与矿物结合态有机碳的变化研究[J].土壤学报,2010,47(1):153-158.
    林凡,李典友,潘根兴,等.皖江自然湿地土壤碳密度及其开垦为农田后的变化[J].湿地科学, 2008,6(2):192-197.
    凌启鸿.论水稻生产在我国南方经济发达地区可持续发展中的不可替代作用[J].科技导报,2004,(3):42-45.
    刘梦云,常庆瑞,杨香云.黄土台塬不同土地利用方式下土壤碳组分的差异[J].植物营养与肥料学报,2010,16(6):1418-1425.
    刘守龙,童成立,吴金水,等.稻田土壤有机碳变化的模拟:SCNC模型检验[J].农业环境科学学报,2006a,25(5):1228-1233.
    刘守龙,童成立,张文菊,等.湖南省稻田表层土壤固碳潜力模拟研究[J].自然资源学报,2006b,21(1):118-125.
    刘洋.江西红壤坡地不同生态措施土壤侵蚀预报模型及养分流失特征研究[D].江苏南京:河海大学,2007.
    刘子刚.湿地生态系统碳储存和温室气体排放研究[J].地理科学,2004,24(5):634-639.
    卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81-85.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:106-109;123-124.
    逯非,王效科,韩冰,等.中国农田施用化学氮肥的固碳潜力及其有效性评价[J].应用生态学报,2008,19(10):2239-2250.
    陆琦,马克明,张洁瑜,等.三江平原退化湿地和农田土壤养分的比较研究[J].生态与农村环境学报,2007,23(2):23-28.
    路文涛,贾志宽,张鹏,等.秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响[J].农业环境科学学报,2011,30(3):522-528.
    骆东奇,侯春霞,魏朝富,等.不同母质发育紫色土团粒结构的分形特征研究[J].水土保持学报,2003,17(1):131-133.
    孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响[J].土壤学报,2005,42(5):769-776.
    缪驰远,汪亚峰,魏欣,等.黑土表层土壤颗粒的分形特征[J].应用生态学报,2007,18(9):1987-1993.
    倪健.中国陆地生态系统碳储量研究[J].气候变化,2001,49:339-358.
    倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报,2001,7(1):56-63.
    潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330-332.
    潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题-兼开展中国水稻土有机碳固定研究的建议[J].南京农业大学学报,2002,25(3):100-109.
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科 学进展,2003,18(4):609-618.
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005a,20(4):384-393.
    潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学,2005b,7(2):12-18.
    潘根兴,周萍,张旭辉,等.不同施肥对水稻土作物碳同化与土壤碳固定的影响[J].生态学报,2006,26(11):3704-3710.
    潘根兴,周萍,李恋卿,等.固碳土壤学的核心科学问题与研究进展[J].土壤学报,2007,44(2):327-337.
    潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展,2008-4(5):282-289.
    潘根兴,李恋卿,郑聚锋,等.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,2008b,45(5):901-914.
    彭佩钦,刘强,黄道友,等.湖南典型农田土壤有机碳含量及其演变趋势[J].环境科学,2006,27(7):1319-1322.
    彭少麟,李越林,任海,等.全球变化条件下的土壤呼吸效应[J].地球科学进展,2002,17(5):705-713.
    彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2177-2183.
    秦静,孔祥斌,姜广辉,等.北京典型边缘区25年来土壤有机质的时空变异特征[J].农业工程学报,2008,24(3):124-130.
    邱建军,王立刚,唐华俊,等.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171.
    全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998.
    曲福田,卢娜,冯淑怡.土地利用变化对碳排放的影响[J].中国人口资源与环境,2011,21(10):76-83.
    沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    石玲,戴万宏.淮北淤土不同利用方式下土壤有机碳组分的变异[J].安徽师范大学学报(自然科学版),2008,31(6):585-589.
    沈雨,黄耀,宗良纲,等.基于模型和GIS的江苏省农田土壤有机碳变化研究[J].中国农业科学,2003,36(11):1312-1317.
    孙文娟,黄耀,张稳,等.农田土壤固碳潜力研究的关键科学问题[J].地球科学进展,2008,23(9):996-1004.
    宋长春,王毅勇,阎百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J].环境科学,2004, 25(3):150-154.
    谭文峰,朱志锋,刘凡,等.江汉平原不同土地利用方式下土壤团聚体中有机碳的分布与积累特点[J].自然资源学报,2006,21(6):973-980.
    唐国勇,彭佩钦,苏以荣,等.洞庭湖区不同利用方式下农田土壤有机碳含量特征[J].长江流域资源与环境,2006,15(2):219-222.
    唐晓红,邵景安,高明,等.保护性耕作对紫色水稻土团聚体组成和有机碳储量的影响[J].应用生态学报,2007a,18(5):1027-1032.
    唐晓红,邵景安,黄雪夏,等.垄作免耕下紫色水稻土有机碳的分布特征[J].土壤学报,2007b,44(2):235-243.
    王伯仁,徐明岗,文石林.长期不同施肥对旱地土壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100.
    王德,傅伯杰,陈利顶,等.不同土地利用类型下土壤粒径分形分析:以黄土丘陵沟壑区为例[J].生态学报,2007,36(2):3081-3089.
    王峰,石辉,黄林,等.红壤丘陵区生物措施治理水土流失的技术体系-以江西省信丰县崇墩沟流域为例[J].水土保持研究,2005,12(5):248-251.
    王焕之,吕军.红壤地区三种不同母质发育土壤的水分特性差异[J].水土保持学报,2001,15(2):68-71.
    王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22(6):109-112.
    王开峰,王凯荣,彭娜,等.有机物循环对红壤稻田土壤有机碳和热水可提取碳的影响[J].土壤通报,2007,38(3):447-451.
    王立刚,邱建军.华北平原高产粮区土壤碳储量与平衡的模拟研究[J].中国农业科技导报,2004,6(5):27-31.
    王连峰,蔡延江,张喜林,等.长期不同施肥制度下的黑土热水提取态有机碳的变化[J].土壤通报,2009,40(2):262-266.
    王茹,张凤荣,王军艳,等.潮土区不同质地土壤的养分动态变化研究[J].土壤通报,2001,32(6):255-257.
    王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-356.
    王绍强,朱松丽.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):534-544.
    王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展.2002,17(4):528-534.
    王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797-802.
    王深法,王人潮,吴玉卫.成土母质的概念及其分类-浙江省成土母质类型划分[J].浙江农业大学 学报,1989,15(4):389-395.
    王胜春,刘可星,游植麟,等.不同母质发育的水稻土中铁锰对甲烷排放的影响[J].农村生态环境,1998,14(1):52-54.
    王树起,韩晓增,乔云发,等.不同土地利用方式对三江平原湿地土壤酶分布特征及相关肥力因子的影响[J].水土保持学报,2007,21(4):150-192.
    魏玉云,杜春梅,茶正早,等.不同母质砖红壤中尿素氨挥发差异的研究[J].农业环境科学学报2006,25(增刊):243-247.
    吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
    吴庆标,王效科,郭然.土壤有机碳稳定性及其影响因素[J].土壤通报,2005,36(5):743-747.
    吴乐知,蔡祖聪.基于长期实验资料对中国农田表土有机碳含量变化的估算[J].生态环境,2007a,16(6):1768-1774.
    吴乐知,蔡祖聪.农业开垦对中国土壤有机碳的影响[J].水土保持学报,2007b,21(6):118-121.
    夏建强,章明奎,徐建民.林地开垦后对不同质地红壤碳氮和磷库的影响[J].土壤通报,2005,36(2):185-189.
    解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    解宏图,李维福,郑立臣.东北黑土活性有机碳、氮分布研究[J].土壤通报,2008,39(2):249-253.
    辛刚,颜丽,汪景宽,等.不同开垦年限黑土有机质变化的研究[J].土壤通报,2002,33(5):332-335.
    徐建明,袁可能.我国土壤中有机矿质复合体地带性分布的研究[J].中国农业科学,1993,26(4):65-67.
    徐建民,赛夫,袁可能.土壤有机矿质复合体研究Ⅸ.钙键复合体和铁铝键复合体中腐殖质的性状特征[J].土壤学报,1999,36(2):168-178.
    徐建民,侯惠珍,袁可能.土壤有机矿质复合体研究Ⅷ.分离钙键有机矿质复合体的浸提剂-硫酸钠[J].土壤学报,1998,35(4):468-474.
    徐江兵,何园球,李成亮,等.不同施肥处理红壤生物活性有机碳变化及与有机碳组分的关系[J].土壤,2007,39(4):627-632.
    徐明岗,文石林,高菊生.红壤丘陵区不同种草模式的水土保持效果与生态环境效应[J].水土保持学报,2001,15(1):77-80.
    徐琪,杨林章,董元华,等.中国稻田生态系统[M].北京:中国农业出版社,1998.1-20.
    徐艳,张凤荣,汪景宽.20年来我国潮土区与黑土区土壤有机质变化的对比研究[J].土壤通报,2004,35(2):102-105.
    徐艳,张凤荣,段增强,等.区域土壤有机碳密度及碳储量计算方法探讨[J].土壤通报,2005,36(6): 836-839.
    许泉,芮雯奕,何航,等.不同利用方式下中国农田土壤有机碳密度特征及区域差异[J].中国农业科学,2006a,39(12):2 505-2510.
    许泉,芮雯奕,刘家龙.我国农田土壤碳氮耦合特征的区域差异[J].生态与农村环境学报,2006b,22(3):57-60.
    许信旺,潘根兴.中国水稻土碳循环研究进展[J].生态环境,2005a,14(6):961-966.
    许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报,2005b,19(6):193-200.
    许信旺,潘根兴,曹志红,等.安徽省土壤有机碳空间差异及影响因素[J].地理研究,2007,26(6):1077-1068.
    许信旺.不同地理尺度下农田土壤有机碳分布与变化[D].江苏南京:南京农业大学,2008.
    许信旺,潘根兴,汪艳林,等.中国农田耕层土壤有机碳变化特征及控制因素[J].地理研究,2009,28(3):601-612.
    闫玉春,唐海萍,常瑞英,等.长期开垦与放牧对内蒙古典型草原地下碳截存的影响[J].环境科学,2008,29(5):1388-1393.
    杨黎芳,李贵桐,赵小蓉,等.栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征[J].生态环境,2007,16(1):158-162.
    杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报,2004,35(4):502-505.
    杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展,2002,21(2):111-120.
    尹云锋,蔡祖聪.不同施肥措施对潮土有机碳平衡及固碳潜力的影响[J].土壤,2006,38(6):745-749.
    于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003,211-240.
    于寒青,孙楠,吕家珑,等.红壤地区三种母质土壤熟化过程中有机质的变化特征[J].植物营养与肥料学报,2010,16(1):92-98.
    于建光,李辉信,胡锋.秸秆施用及蚯蚓活动下土壤有机碳变化表征指标的筛选[J].土壤学报,2007,44(5):878-884.
    于建军,杨锋,吴克宁,等.河南省土壤有机碳储量及空间分布[J].应用生态学报,2008,19(5):1058-1063.
    于严严,郭正堂,吴海斌.1980-2000年中国耕作土壤有机碳的动态变化[J].海洋地质与第四纪地质,2006,26(6):123-130.
    俞海,黄季煜,ScottRozelle,等.中国东部地区耕地土壤肥力变化趋势研究[J].地理研究,2003,22 (3):380-388.
    袁芳,赵小敏,乐丽红,等.江西省表层土壤有机碳库储量估算与空间分布特征[J].生态环境,2008,170):268-272.
    袁可能,张友全.土壤腐殖质氧化稳定性的研究[J].浙江农业科学,1964,(7):345-349.
    袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.
    袁颖红,李辉信,黄欠如,等.长期施肥对水稻土颗粒有机碳和矿物结合态有机碳的影响[J].生态学报,2008,28(1):353-360.
    岳曼,常庆瑞,王飞,等.土壤有机碳储量研究进展[J].土壤通报,2008,39(5):1173-1 178.
    张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略[J].植物学通报,2007,24(6):687-694.
    张金波,宋长春,杨文燕,等.土地利用方式对土壤水溶性有机碳的影响[J].中国环境科学,2005a,25(3):343-347
    张金波,宋长春,杨文燕,等.三江平原沼泽湿地开垦对表土有机碳组分的影响[J].土壤学报,2005b,42(5):857-859.
    张俊华,李国栋,南忠仁,等.黑河中游不同土地利用类型下土壤有机碳时空分布[J].兰州大学学报(自然科学版),2009,45(4):66-72.
    章明奎.浙南变质岩发育土壤中氧化铁组成及其发生学意义[J].科技通报,1996,12(1):54-58.
    章明奎,韩常灿.浙江省丘陵土壤的抗蚀性[J].浙江农业学报,2000,12(1):25-30.
    张琪,李恋卿,潘根兴,等.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2):236-242.
    张文菊,彭佩钦,童成立,等.洞庭湖湿地有机碳垂直分布与组成特征[J].环境科学,2005,26(3):56-60.
    张旭辉,李恋卿,潘根兴,等.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,2001,20(2):16-19.
    张旭辉,李典友,潘根兴,等.中国湿地土壤碳库保护与气候变化问题[J].气候变化研究进展,2008,4(4):202-208.
    赵兰坡,杨学明,路立平,等.长期连作玉米的黑钙土、风沙土中有机-无机复合体组成及有机碳分布的研究[J].土壤通报,1996,27(3):120-123.
    赵劲松,张旭东,袁星,等.土壤溶解性有机质的特性与环境意义[J].应用生态学报,2003,14(1):126-130.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    周航,徐文,王京文,等.土壤粒级分析的简易方法[J].浙江农业科学,2009,46(5):964-965.
    周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J].植物营养与肥料学报,2006,12(6):765-771.
    周萍,潘根兴.长期不同施肥对黄泥土水稳性团聚体颗粒态有机碳的影响[J].土壤通报,2007,38(2):256-261.
    周萍,刘国彬,候喜禄.黄土丘陵区不同土地利用方式,土壤团粒结构分形特征[J].中国水土保持科学,2008a,6(2):75-82.
    周萍,宋国菡,潘根兴,等.南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ团聚体物理保护作用[J].土壤学报,2008b,45(6):1063-1071.
    周萍,潘根兴,张旭辉,等.氧化铁辅助农业固碳减排的技术探索[J].农业环境科学学报2009a,28(12):2590-2595.
    周萍,宋国菡,潘根兴,等.三种南方典型水稻土长期试验下有机碳积累机制研究Ⅱ团聚体内有机碳的化学结合机制[J].土壤学报,2009b,46(2):263-273.
    周萍,Alessandro Piccolo,潘根兴,等.三种南方典型水稻土长期试验下有机碳积累机制研究Ⅲ两种水稻土颗粒有机质结构特征的变化[J].土壤学报,2009c,46(3):398-405.
    周萍,潘根兴,李恋卿,等.南方典型水稻土长期试验下有机碳积累机制V碳输入与土壤碳固定[J].中国农业科学,2009d,42(12):4260-4268.
    周萍,潘根兴,Alessandro Piccolo,等.南方典型水稻土长期试验下有机碳积累机制研究Ⅳ颗粒有机质热裂解-气相-质谱法分子结构初步表征[J].土壤学报,2011,48(1):112-124.
    周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734.
    周涛,史培军.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展,2006,21(2):138-143.
    周学军,夏卫生.衡山土壤加速侵蚀与花岗岩地貌发育问题研究[J].土壤学报,2004,41(4):624-627.
    周运超,潘根兴,李恋卿,等.太湖地区3种水稻土不同温度培养中有机碳库变化及其对升温的相应[J].环境科学,2003,24(1):46-51.
    朱咏莉,吴金水,周卫军,等.亚热带稻田生态系统CO2排放及影响因素[J].中国环境科学,2005,25(2):151-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700