ADV分离株全基因序列测定及VP2抗原表位区的表达与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水貂阿留申病(Aleutian Disease,AD)是由细小病毒亚科(Parvovirinae)阿留申水貂病毒属(Amdovirus)水貂阿留申病毒(Aleutian mink disease virus,ADV)引起的免疫系统病理性失调,是一种主要侵染水貂、病程缓慢的传染性疾病。该病以垂直和水平传播两种形式在世界各国的貂群中广泛流行,导致没有抗体的新出生幼貂的急性间质性肺炎甚至死亡,成年水貂的繁殖能力、皮张质量、健康状况下降以及死亡率增加,对水貂养殖业造成不可低估的经济损失。近年来,我国水貂养殖区阿留申病的流行情况在国内时有报道,高水平的AD感染一直是严重影响我国水貂养殖业高效、健康发展的一个非常重要的因素之一。由于目前针对该病缺少有效的防治方法,普遍采用的是通过定期检测,淘汰患病貂群,从而达到净化种群的目的。因此,在国内进行分离鉴定病毒株及进行分子生物学特性研究,建立国内适用的血清学诊断方法,将会对今后国内开展水貂阿留申病的临床诊断、有效防制及进一步的深入研究,提供更多的科学依据。
     在本研究中,首先通过CIEP以及本实验室建立的ADV PCR检测方法,对黑龙江某水貂养殖场发病送检貂以及辽宁某水貂养殖区疑似阿留申病貂进行检测,将经两种方法检测均为阳性结果的毒株进行PCR扩增产物的序列测定,从中抽取序列较为保守的四株病毒与标准对照毒株进行序列比对和同源性分析,与ADV-G相应片段的核酸同源率分别为92.8%、93.9%、93.2%和93.5%,与参考株ADV-Utah的同源率分别为94.5%、98%、94.6%和95.5%,确定为ADV特异性核苷酸片段。依据鉴定的结果,成功鉴定了四株病毒,分别命名为MS-1、DL-1、DL-2和DL-3。
     将MS-1、DL-1、DL-2和DL-3株病毒经组织病料提取总DNA,采用依据标准毒株ADV-G的DNA序列设计并合成的四对引物,经PCR扩增后分别构建重组质粒并测序,将测序结果用DNA Star软件中的SeqMan程序进行拼接,获得四株病毒的近全长DNA序列。用DNA Star软件MegAlign程序中的Jotun Hein method将实验测得的毒株与国外病毒参考株的对应核苷酸序列进行同源性比较和进化树分析。结果表明,ADV-Utah与四个实验毒株的序列同源性较高,同源率为92.9-93.4%,ADV-G、ADV-SL3与实验毒株的同源性较低;四个实验毒株和三个参考毒株被分别划归为两个组,分属于两个进化分支;实验毒株中ADV-DL1与DL2和DL3虽然同为大连分离株,却表现出较远的亲缘关系。用DNA Star软件MegAlign程序中的Clustal W method将实验测得的ADV毒株核苷酸序列、ADV参考株序列以及细小病毒其它四个属的代表毒株全序列进行进化树分析,发现14株病毒共划归为五个相对独立的进化分支,ADV与牛犬细小病毒作为细小病毒亚科中新增的属,与其它属的成员分属于不同的进化分支,分析结果验证了ICTV8公布的新分类体系的合理性。
     选择VP2蛋白主要抗原表位区相对保守的ADV MS-1毒株作为种毒,分别设计合成两对引物,用PCR方法扩增其VP2基因中主要抗原表位区的两个片段,分别将其克隆到原核表达载体pMAL-c2的多克隆位点中,构建重组表达质粒pMAL-VP2a和pMAL-VP2b,经PCR扩增、酶切和测序分析确证其正确插入到表达载体中,阅读框正确,成功地构建了原核表达载体。阳性重组质粒转化宿主菌TB1,用IPTG进行诱导表达,对表达产物进行SDS-PAGE检测和免疫印迹分析。结果表明两段融合蛋白均以包涵体形式获得了有效表达,表达产物分别占总菌体蛋白的32.7%和37.41%;表达产物的分子质量分别约为63kD和65kD,与理论推测的分子质量一致;在终浓度为1mM的IPTG诱导下,4h时其表达量达到高峰:Western blot分析表明表达蛋白能被兔抗MBP抗体所识别。将分离和初步纯化的表达包涵体蛋白作为抗原,对阳性血清进行CIEP检测,验证其免疫活性,并与标准抗原的CIEP检测结果相比较,二者的符合率达到94.3%。以本实验获得的重组蛋白作为诊断抗原的特异性、重复性、敏感性均较好,初步建立了临床诊断方法。
     总之,本研究对ADV国内分离毒株进行分离鉴定和全序列测定,为研究国内ADV病毒株的进化特点和规律提供基础性资料;在国内首次利用原核表达载体成功地对VP2主要抗原表位区进行表达,并以其为抗原,初步建立了ADV抗体的CIEP检测方法,将为国内养貂场有效开展阿留申病血清学调查提供有效的技术手段,在貂群的净化中发挥巨大的作用。
Aleutian Disease (AD), which caused by Aleutian mink disease virus belonged to Parvovirinae Amdovirus, is a major chronic infectious disease of mink. AD would cause immunologic system patho-disharmony. And it was wide spread all over the world in the mink with both vertical and horizontal transmission. The disease caused acute interstitial pneumonia even death of the new birth young mink without antibody and the descent of reproductive capacity, fur quality and health status of the adult minks. AD resulted in increase of death rate and enormous economic loss of mink cultivation. For the past few years, the popular information was reported in Chinese mink cultivation. High level AD infection is one of the all-important effect factors for developing Chinese mink cultivation healthy. Now, regular detection and condemn infected minks to clean the population was used widely. So the clinical diagnosis of AD, prevention and cure methods and more scientific information would be provided by identifying the AD strain, studying the virus molecular characters and founding the fit sero-diagnosis methods.
     In the study, some Hei Long Jiang and Liao Ning province mink nursery were detected by CIEP and ADV PCR method founded by our laboratory. The PCR productions of positive strains in both methods were sequenced. And four conservative strains were draw-off to sequence compare and homology analyze with the standard contrast strain. The result showed that the nucleate homology with the corresponding ADV-G region was 92.8%, 93.9%, 93.2% and 93.5% respectively. And the homology with the collate strain ADV-Utah was 94.5%, 98%, 94.6% and 95.5% respectively. So the virus strain was determined ADV virus specific nuclear fragment. According to the result, the four viruses were named as MS-1, DL-1, DL-2 and DL-3 respectively.
     The total DNA of MS-1, DL-1, DL-2 and DL-3 were extracted from infective organizations. Four pairs of primers based on the standard virus strain ADV-G were designed. The recombinant plasmids were constructed with PCR productions and sequenced. The four proper complete DNA sequences were obtained by splicing the sequenced results with the software SeqMan of the DNA Star. The homology compare of the corresponding nuclear sequences and the cladogram analyze between the obtained virus strain and abroad virus collate strain were measured by Jotun Hein method in software DNA Star. The results suggested that there is high homology, from 92.9% to 93.4%, between the ADV-Utah and the experimental virus strain. And ADV-G and ADV-SL3 had the low homology with the experimental virus strain. The four experimental virus strains and the three collate virus strains were divided into two groups, and belonged two evolutionary branches. Although ADV-DL1, DL2 and DL3 were all belonged to the Da Lian separated strains, they had the ulterior genetic relationship. The nuclear sequences of the obtained experimental ADV virus strains, ADV virus collate virus strains and typify virus strains of other four Parvovirus generic were cladogram analyzed with the Clustal W method of software DNA Star. The results show that fourteen virus were divided into five independent evolutionary branches. ADV and Bovine parvovirus, as the new genus of the parvovirus subfamily, had the different evolutionary branches with the other genus viruses. The result validated the rationality of the new classify system reported by ICTV8.
     ADV MS-1 strain was selected with a relative conserved main antigenic region of VP2 protein. According to the two pairs of primers designed, two main antigen domains of VP2 gene of ADV strain were amplified by PCR. Then the amplified DNA products were cloned into the multiple cloning sites of prokaryotic expression vector pMAL-c2, respectively, through which recombinant vectors pMAL-VP2a and pMAL-VP2b were constructed. The insert position, the size and the reading frame were affirmed all right by restriction digestion, PCR and the sequence analysis which showed that the prokaryotic expression vectors pMAL-VPa and pMAL-VPb were constructed successfully. Then the positive recombinant vectors were transformed into recipient germs TB1 for expression by IPTG inducing. Through SDS-PAGE and Western blot, the two proteins were detected to be expressed successfully in the form of cytoryctes. The molecular weights of the expressed protein were 63KDa and 65 KD respectively which was identical with the theoretically presumed. Induced at a concentration of 1 mmol/L IPTG, it took 4 hours for the quantity of expressed protein to amount to peak value. Western blot indicated that the expressed antigen proteins could be recognized by the rabbit anti-MBP antiserum. To detect the immunoreactivity, the protein was isolated and purified as the antigen and CIEP was performed on the positive serum. The result was showed to be 94.3% similar to the CIEP with control antigen. It was believed that the expressed recombinant protein in this study can be used as the antigen in the clinical diagnosis with better specificity, reproducibility and sensitivity.
     In a word, this study provided lots of foundational information for the separating, identifying and complete sequencing of the ADV separated strains in China. And the results would be useful for the evolutionary characters and regularities of the ADV virus strains. VP2 major antigens epitope were expressed by the prokaryotic expression vector first time in China. Using the expression vector as the antigens, the CIEP detection was set up initially. All of these would be useful in AD sero-survey of the mink cultivation.
引文
[1] M. E. Bloom, R. E. Race, J. B. Wolfinbarger. Characterization of Aleutian disease virus as a parvovirus. J Virol. 1980, 35(3): 836-43.
    [2] D. D. Porter, A. E. Larsen, H. G. Porter. Aleutian disease of mink. ADV Immunol. 1980, 29: 261-86.
    [3] Alexandersen, S., M. E. Bloom and Wolfinbarger. Evidence of restricted viral replication in adult mink infected with Aleutian disease of mink parvovirus. J. Virol. 1988, 62: 1495-1507.
    [4] Hadlow, W. J., R. E. Race and R. C. Kennedy. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink. Infect. Immun. 1983, 41: 1016-1023.
    [5] Porter, D. D., A. E. Larsen, and H. G. Porter. The pathogenesis of Aleutian disease of mink. Ⅲ. Immune complex arteritis. Am. J. Pathol. 1973, 71: 331-344.
    [6] Alexandersen, S. Acute interstitial pneumonia in mink kits: experimental reproduction of the disease. Vet. Pathol. 1986, 23: 597-588.
    [7] Alexandersen, S. and M. E. Bloom. Studies on the sequential development of acute interstitial pneumonia caused by Aleutian disease virus in mink kits. J. Virol. 1987, 61: 81-86.
    [8] Alexandersen, S., M. E. Bloom, J. Wolfinbarger, et al. In situ molecular hybridization for detection of Aleutian mink disease parvovirus DNA by using strand-specific probes: in mink kits with virus-induced interstitial pneumonia. J. Virol, 1987, 61: 2407-2419.
    [9] Alexandersen, S., A. Uttenthal-Jensen, and B. Aasted. Demonstration of non-degraded Aleutian disease virus (ADV) proteins in lung tissue from experimentally infected mink kits. Arch. Virol. 1986, 87: 127-133.
    [10] J. R. Gorham. Control of Some Mink Diseases. International Veterinary Information Service (www.ivis.org). 30 Mar 2000
    [11] Hansen M, Lund E. Pregnancy rate and foetal mortality in Aleutian disease virus infected mink. Acta Vet Scand. 1988, 29(2): 271-2
    [12] Martino PE, Martino JJ, Villar JA. A note on diseases of mink. Zentralbl Veterinarmed B. 1991, 38(3): 227-30.
    [13] 闫喜军,肖家美,籍玉林.我国水貂阿留申病流行现状、特点及防治技术.特种经济动植物.2004,5:44
    [14] Hartsough, G. R., and J. R. Gorham. Aleutian disease in mink. Nat. Fur News. 1956, 28: 10-11
    [15] Haagsma, J. Epizootiology of Aleutian disease (plasmacytosis) in mink. Neth. J. Vet. Sci. 1969, 2: 19-30
    [16] Oie KL, Durrant G, Wolfinbarger JB, et al. The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections. J Virol. 1996, 70(2): 852-61
    [17] Manas S, Cena JC, Ruiz-Olmo J, et al. Aleutian mink disease parvovirus in wild riparian carnivores in Spain. J Wildl Dis. 2001, 37(1): 138-44.
    [18] Alexandersen, S. Pathogenesis of disease caused by Aleutian mink disease parvovirus. Acta Pathol. Microbiol. Immunol. Scand. 1990. 98(Suppl. 14): 1-32.
    [19] 张忠信,王瑶.病毒分类学.北京:高等教育出版社,2006:77-83
    [20] 殷震,刘景华.动物病毒学(第二版).北京:科学出版社,1997,1162-1165
    [21] 徐耀先,周晓峰,刘立德.分子病毒学.武汉:湖北科学技术出版社,2000:265-269
    [22] Pattison, J. R. Parvoviruses: medical and biological aspects. Virology. 1990, 2: 1765-1784.
    [23] Cotmore, S.F., Tattersall, P. The autonomously replicating parvoviruses of vertebrates. ADV. Virus Res. 1987, 33: 91-174.
    [24] Parrish, C.R. The emergence and the evolution of canine parvovirus-an example of recent host range mutation. Semin. Virol. 1995, 5: 121-132
    [25] Hueffer K, Parrish CR. Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol. 2003, 6(4): 392-8
    [26] Ariane Steinel, Colin R. Parrish, Marshall E. Bloom et al. Parvovirus Infections in Wild Carnivores. Journal of Wildlife Diseases. 2001, 37(3): 594-607
    [27] Bloom ME, Alexandersen S, Perryman S, et al. Nucleotide sequence and genomic organization of Aleutian mink disease parvovirus (ADV): sequence comparisons between a nonpathogenic and a pathogenic strain of ADV. J Virol. 1988, 62(8): 2903-15
    [28] 李长生,王喜萍.水貂阿留申病防治的研究进展.中国动物检疫.2000,12:38-40
    [29] 王金生主编.野生动物传染病学.哈尔滨:东北林业大学出版社,1990:288-292
    [30] McKenna R, Olson NH, Chipman PR, et al. Three-dimensional structure of Aleutian mink disease parvovirus: implications for disease pathogenicity. J Virol. 1999, 73 (8): 6882-91.
    [31] WELLS, G. A. H., I. F. KEYMER, AND K. C. BARNETT. Suspected Aleutian Disease in a wild otter (Lutra lutra). The Veterinary Record. 1989, 125: 232-235.
    [32] Oxenham M. Aleutian disease in the ferret. Vet Rec. 1990, 126(23): 585
    [33] Welchman Dde B, Oxenham M, Done SH. Aleutian disease in domestic ferrets: diagnostic findings and survey results. Vet Rec. 1993, 132(19): 479-84
    [34] Une Y, Wakimoto Y, Nakano Y, et al. Spontaneous Aleutian disease in a ferret. J Vet Med Sci. 2000, 62(5): 553-5
    [35] Murakami M, Matsuba C, Une Y, et al. Nucleotide sequence and polymerase chain reaction/restriction fragment length polymorphism analyses of Aleutian disease virus in ferrets in Japan. J Vet Diagn Invest. 2001, 13(4): 337-40
    [36] Alexandersen S, Jensen AU, Hansen M, et al. Experimental transmission of Aleutian disease virus (ADV) to different animal species. Acta Pathol Microbiol Immunol Scand [B]. 1985, 93(3): 195-200
    [37] Porter DD, Larsen AE, Cox NA, Porter HG, Suffin SC. Isolation of Aleutian disease virus of mink in cell culture. Intervirology. 1977, 8(3): 129-44.
    [38] Hahn EC, Ramos L, Kenyon AJ. Expression of Aleutian mink disease antigen in cell culture. Infect Immun. 1977, 15(1): 204-11.
    [39] Haas, L., P. Wohlsein, G. Trautwein, et al. Violet mink develop an acute disease after experimental infection with Aleutian disease virus (ADV). Zentralbl. Veterinaermed. 1990, 37: 106-117.
    [40] Bloom, M. E., B. D. Berry, W. Wei, et al. Characterization of chimeric full-length molecular clones of Aleutian mink disease parvovirus (ADV): identification of a detderminant governing replication of ADV in cell culture. J. Virol. 1993, 67: 5976-5988.
    [41] Gottschalck E, Alexandersen S, Cohn A, et al. Nucleotide sequence analysis of Aleutian mink disease parvovirus shows that multiple virus types are present in infected mink. J Virol. 1991, 65(8): 4378-86
    [42] Alexandersen S, Storgaard T, Kamstrup N, et al. Pathogenesis of Aleutian mink disease parvovirus infection: effects of suppression of antibody response on viral mRNA levels and on development of acute disease. J Virol. 1994, 68 (2): 738-49.
    [43] S. Schuierer, M. E. Bloom, O. R. Kaaden , and U. Truyen. Sequence analysis of the lymphotropic Aleutian disease parvovirus ADV-SL3. Arch Virol. 1997, 142: 157-166
    [44] van Dawen S, Kaaden OR, Roth S. Propagation of Aleutian disease parvovirus in cell line CCC clone 81. Arch Virol. 1983, 77(1): 39-50
    [45] Aasted B, Avery B, Cohn A. Serological analyses of different mink Aleutian disease virus strains. Arch Virol. 1984, 80(1): 11-22
    [46] Alexandersen, S., S. Larsen, A. Cohn, A. Uttenthal, R. E. Race, B. Aasted, M.Hansen, and M. E. Bloom. Passive transfer of antiviral antibodies restricts replication of Aleutian mink disease parvovirus in vivo. J. Virol. 1989, 63: 9-17.
    [47] Bloom, M.E., Alexandersen, S., Garon, C.F. Nucleotide sequence of the 5'-terminal palindrome of Aleutian mink disease parvovirus and construction of an infectious molecular clone. J. Virol. 1990, 64 (7): 3551-3556
    [48] Tijsscn P. Handbook of Parvoviruses. Boca Raton. Florida: CRC Press, 1990, Vol 1: 227-254
    [49] Kestler J, Neeb B, Struyf S, Uan Damme J et al. Cis requirements for the efficient production of recombinant DNA vectors based on autonomous parvoviruses. Hum Gene Ther. 1999, 10(10): 1619-1632.
    [50] Astell C R, Chow M B, Ward D C. Sequence analysis of the termini of virion and replicative forms of minite virus of mice DNA suggests a modified rolling hairpin model for autonomous parvovirus DNA replication. J Virol. 1985, 54(1): 171-177.
    [51] Chen, K. C., B. C. Shull, E. A. Moses, M. Lederman, E. R. Stout, and R. C. Bates. Complete nucleotide sequence and genome organization of bovine parvovirus. J. Virol. 1986, 60: 1085-1097.
    [52] Cotmore, S. F., and P. Tattersall. The autonomously replicating parvoviruses. Adv. Virus Res. 1987, 33: 91-174.
    [53] Shade, R. O., M. C. Blundell, S. F. Cotmore, P. Tattersall, and C. R. Astell. Nucleotide sequence and genome organization of human parvovirus B 19 isolated from the serum of a child during aplastic crisis. J. Virol. 1986, 58: 921-936.
    [54] Fields B N, Knipe D M, Howley P M. Fundamental Virology. 3rd Edition. Philadelphia: Lippincott Willians & Wilkins Publisher. 1996
    [55] Christensen, J., Cotmore, S. F., and Tattersall, P. A novel cellular site-specific DNA- binding protein cooperates with the viral NS1 polypeptide to initiate parvovirus DNA replication. J Virol. 1997, 71: 1405-1416
    [56] Bloom M E, Race R E, Wolfinbarger J B. Characterization of Aleutian disease virus as a parvovirus. J. Virol. 1980, 35: 836-843.
    [57] Oleksiewicz, M.B., Alexandersen, S. S-phase dependent cell cycle disturbances caused by Aleutian mink disease parvovirus. J. Virol. 1997, 71: 1386-1396.
    [58] Bloom, M.E., Race, R E, Wolfinbarger, J.B. Identification of a nonvirion protein of Aleutian disease virus: mink with Aleutian disease have antibody to both virion and nonvirion proteins. J. Virol. 1982, 43: 608-616.
    [59] Willwand K, Kaaden O R. Proteins of viral and cellular origin bind to the Aleutian disease virus (ADV) DNA 3'-terminal hairpin: presentation of a scheme for encapsidation of ADV DNA. J. Virol. 1990, 64(4): 1598-605.
    [60] Christensen, J., Pedersen, M., Aasted, B. et al. Purification and characterization of the major nonstructural protein (NS-1) of Aleutian mink disease. J. Virol. 1995, 69(3): 1802-1809
    [61] Cotmore, S.F., Tattersall, P.. DNA replication in the autonomous parvoviruses. Sem. Virol. 1995, 6: 271-281.
    [62] 张宇,曹三杰,文心阳.猪细小病毒分子生物学研究进展.贵州畜牧兽医.2005,29(6):12-14
    [63] Kenneth I. Bems. Parvovirus Replication. Microbiological Reviews. 1990, 54(3): 316-329
    [64] Rhode S L, Paradis P R. Parvovirus genome: Nucleotide sequence of HI and mapping of its genes by hybrid arrest translations. Virol. 1983, 45: 173-176
    [65] Astell C R, Thomson M, Merchlinsky M J et al. The complete DNA sequence of minute virus of mice, an autonomous parvovirus. Nucleic acids Res. 1984, 11: 999-1000.
    [66] Shade R O, Blundell M C, Cotmore S R, et al. Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. Virology. 1986, 58: 921-923.
    [67] Alexandersen, S, Bloom ME, and Perryman S. Detailed transcription map of Aleutian mink disease parvovirus. J Virol. 1988, 62 (10): 3684-3694.
    [68] Wen Yuan. Studies of canine parvovirus capsid-assembly, disassembly and antibody neutralization. Doctor Dissertation of Cornell University. 2000: 30-31
    [69] Jianming Qiu, Fang Cheng, Lisa R. Burger, and David Pintel. The Transcription Profile of Aleutian Mink Disease Virus in CRFK Cells Is Generated by Alternative Processing of Pre-mRNAs ProdUced from a Single Promoter. J. Virol. 2006, 80(2): 654-662.
    [70] Bloom, ME, Martin DA, Qie LL, et al. Expression of Aleutian mink disease parvovirus capsid protein in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions. J. Virol. 1997, 71: 705-714
    [71] Christensen, J., T. Storgaard, B. Bloch, et al. Expression of Aleutian mink disease parvovirus proteins in a baculovirus vector system. J. Virol. 1993, 67: 229-238.
    [72] Clemens, D. L., J. B. Wolfinbarger, S. Mori, et al. Expression of Aleutian mink disease parvovirus capsid proteins by a recombinant vaccinia virus: self-assembly of capsid proteins into particles. J. Virol. 1992, 66: 3077-3085.
    [73][73] Wu. W. H., M. E. Bloom, B. D. Berry, et al. Expression of Aleutian mink disease parvovirus capsid proteins in a baculovirus expression system for potential diagnostic use. J. Vet. Diagn. Invest. 1994, 6: 23-29.
    [74] Christensen J, Storgaard T, Viuff B, et al. Comparison of promoter activity in Aleutian mink disease parvovirus, minute virus of mice, and canine parvovirus: possible role of weak promoters in the pathogenesis of Aleutian mink disease parvovirus infection. J Virol. 1993, 67 (4): 1877-86.
    [75] Ozawa, K., J. Ayub, Y. S. Hao, G. Kurtzman, T. Shimada, and N. Young. Novel transcription map for the B19 (human) pathogenic parvovirus. J. Virol. 1987, 61: 2395-2406.
    [76] Liu, Z., J. Qiu, F. Cheng, Y. Chu, Y. Yoto, M. G. O'Sullivan, K. E. Brown, and D. J. Pintel. Comparison of the transcription profile of simian parvovirus with that of the human erythrovirus B19 reveals a number of unique features. J. Virol. 2004, 78: 12929-12939.
    [77] Vashisht, K., K. S. Faaberg, A. L. Aber, K. E. Brown, and M. G. O'Sullivan. Splice junction map of simian parvovirus transcripts. J. Virol. 2004, 78: 10911-10919.
    [78] TORBEN STORGAARD, MARTIN OLEKSIEWICZ, MARSHALL E. BLOOM, BRIAN CHING, AND SOREN ALEXANDERSEN. Two Parvoviruses That Cause Different Diseases in Mink Have Different Transcription Patterns: Transcription Analysis of Mink Enteritis Virus and Aleutian Mink Disease Parvovirus in the Same Cell Line. JOURNAL OF VIROLOGY. 1997, 71 (7): 4990-4996.
    [79] Johnson, F. B., Blacklow, N. R., and Hoggan, M. D. Immunological reactivity of antisera prepared against the sodium dodecyl sulfate-treated structural polypeptides of adenovirus-associated virus. J Virol. 1972, 9: 1017-1026
    [80] Santaren, J. F., Ramirez, J. C., and Almendral, J. M. Protein species of the parvovirus minute virus of mice strain MVMp: involvement of phosphorylated VP-2 subtypes in viral morphogenesis. J Virol. 1993, 67: 5126-5138
    [81] Tullis, G. E., Burger, L. R., and Pintel, D. J.. The minor capsid protein VP1 of the autonomous parvovirus minute virus of mice is dispensible for encapsidation of progeny single stranded DNA but is required for infectivity. J. Virol. 1993, 67: 131-141
    [82] Gregory S. Park, Sonja M. Best, Marshall E. Bloom. Two mink parvoviruses use different cellular receptors for entry into CRFK cells. Virology. 2005, 340: 1-9.
    [83] Wang, D., Yuan, W., Davis, I., and Parrish, C. R.. Nonstructural protein-2 and the replication of canine parvovirus. Virology. 1998, 240: 273-281.
    [84] JAMES M. FOX AND MARSHALL E. BLOOM. Identification of a Cell Surface Protein from Crandell Feline Kidney Cells That Specifically Binds Aleutian Mink Disease Parvovirus. JOURNAL OF VIROLOGY. 1999, 73(5): 3835-3842.
    [85] Strassheim ML, Gruenberg A, Veijalainen P, Sgro JY, Parrish CR. Two dominant neutralizing antigenic determinants of Canine Parvovirus are found on the threefold spike of the virus capsid. Virology. 1994, 198: 175-84.
    [86] Corte's E, San Martin C, Langeveld J, Meloen R, Dalsgaard K, Vela C, Casal I. Topographical analysis of canine parvovirus virions and recombinant VP2 capsids. J Gen Virol. 1993, 74: 2005-10.
    [87] Tsao, J., M. S. Chapman, M. Agbandje, W. Keller, K. Smith, H. Wu, M. Luo, T. J. Smith, M. G. Rossmann, R. W. Compares, and C. R. Parrish. The three-dimensional structure of canine parvovirus and its functional implications. Science. 1991, 251: 1456-1464.
    [88] Li, X., and S. L. Rhode Ⅲ. Mutation of lysine 405 to serine in the parvovirus H-1 NS1 abolishes its functions for viral DNA replication, late promoter trans activation, and cytotoxicity. J. Virol. 1990, 64: 4654-4660.
    [89] Anouja F, Wattiez R, Moussedt S et al. The cytotoxicity of parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins. J Virol. 1997, 71 (6): 4671-4678
    [90] Cotmore, S. F., D'Abramo, A. M. Jr., Carbonell, L. F., Bratton, J., and Tattersall, P. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells. Virology. 1997, 231: 267-280
    [91] Storgaard T, Christensen J, Aasted B, et al. Cis-acting sequences in the Aleutian mink disease parvovirus late promoter important for transcription: comparison to the canine parvovirus and minute virus of mice. J Virol. 1993, 67 (4): 1887-95.
    [92] Aasted, B., S. Alexandersen, and J. Christensen. Vaccination with Aleutian mink disease parvovirus (ADV) capsid proteins enhances disease, while vaccination with the major non-structural ADV protein causes partial protection from disease. Vaccine. 1998, 16: 1158-1165.
    [93] Martin, B. Oleksiewicz, James B, et al. A comparison between permissive and restricted infections with Aleutian mink disease parvovirus (ADV): characterization of the viral protein composition at nuclear sites of virus replication. Virus Research. 1998, 56: 41-51
    [94] Agbandje, M., R. McKenna, M. G. Rossmann, M. L. Strassheim, and C. R. Parish. Structure determination of feline panleukopenia virus empty particles. Proteins. 1993. 16: 155-171.
    [95] Bloom ME, Best SM, Hayes SF, et al. Identification of aleutian mink disease parvovirus capsid sequences mediating antibody dependent enhancement of infection, virus neutralization, and immune complex formation. J Virol. 2001, 11: 11116-11127.
    [96] 肖家美,赵元楷,籍玉林等.水貂阿留申病灭活疫苗免疫效果观察.经济动物学报,2003,7(2):5-6
    [97] Bloom, M. E., J. M. Fox, B. D. Berry, et al. Construction of pathogenic molecular clones of Aleutian mink disease parvovirus that replicate both in vivo and in vitro. Virology. 1998, 251: 288-296.
    [98] Fox JM, McCrackin Stevenson MA, Bloom ME. Replication of Aleutian mink disease parvovirus in vivo is influenced by residues in the VP2 protein. J Virol. 1999, 73 (10): 8713-8719.
    [99] Stevenson MA, Fox JM, Wolfinbarger JB, et al. Effect of a valine residue at codon 352 of the VP2 capsid protein on in vivo replication and pathogenesis of Aleutian disease parvovirus in mink. Am J Vet Res. 2001, 62(10): 1658-63.
    [100] Costello, F., N. Steenfos, K. T. Jensen, J. Christensen, E. Gottschalk, A. Holm, and B. Aasted. Epitope mapping of Aleutian mink disease parvovirus virion protein VP1 and VP2. Scand. J. Immunol. 1999, 49: 347-354.
    [101] Gottschalck, E., S. Alexanderson, T. Storgaaard, et al. Sequence comparision of the nonstractural genes of four different types of Aleutian mink disease parvovirus indicates an unusual degree of variability. Arch. Virol. 1994, 138: 213-231
    [102] Olofsson A, Mittelholzer C, Treiberg Bemdtsson L, et al. Unusual, high genetic diversity of Aleutian mink disease virus. J Clin Microbiol. 1999, 37(12): 4145-9
    [103] 赵广英主编.野生动物流行病学.哈尔滨:东北林业大学出版社,2000:145-150
    [104] Haagsma, J. Epizootiology of Aleutian disease (plasmacytosis) in mink. Neth. J. Vet. Sci. 1969, 2: 19-30
    [105] An SH, Ingram DG. Transmission of Aleutian disease from mink with inapparent infections. Am J Vet Res. 1978, 39(2): 309-13
    [106] Jackson MK, Winslow SG, Dockery LD, et al. Investigation of an outbreak of Aleutian disease on a commercial mink ranch. Am J Vet Res. 1996, 57(12): 1706-10
    [107] Padgett, G. A., J. R. Gorham, and J. B. Henson. Epizootiologic study of Aleutian disease. Transplacental transmission of the virus. J. Infect. Dis. 1967, 117: 35-38.
    [108] Bazeley PL. The nature of aleutian disease in mink. I. Two forms of hypergammaglobulinemia as related to method of disease transmission and type of lesion. J Infect Dis. 1976, 134(3): 252-7
    [109] 籍玉林,曲维江,赵元楷等.水貂阿留申病循环免疫复合物含量与抗体水平对产仔成活的影响.中国兽医学报.1995,15(3):224-227
    [110] Broil S, Alexandersen S. Investigation of the pathogenesis of transplacental transmission of Aleutian mink disease parvovirus in experimentally infected mink. J Virol. 1996, 70(3): 1455-66
    [111] Guilbert, J., Robertson, S. A., Wegmann, T. G. The trophoblast as an integral component of a macrophage-cytokine network. Immunol. Cell Biol. 1993, 71: 49-57.
    [112] Aasted, B. Aleutian disease of mink. Virology and Immunology. Acta. Path. Microbial. Immunol. Stand. 1985, 93(suppl. 287), 1-47.
    [113] 王东,陈祝栏,李全智等.宁夏水貂阿留申病流行病学调查.中国兽医科技.1991,21:14-15
    [114] 籍玉林.水貂阿留申病的历史回顾及最新研究概述.经济动物学报.1998,2(3):44-48
    [115] Fournier-Chambrillon C, Aasted B, Perrot A, et al. Antibodies to Aleutian mink disease parvovirus in free-ranging European mink (Mustela lutreola) and other small carnivores from southwestern France. J Wildl Dis. 2004, 40(3): 394-402.
    [116] Alexandersen, S. and J. Hau. Rocket line immunoelectrophoresis: an improver assay for simultaneous quantification of a mink parvovirus (Aleutian disease virus) antigen and antibody. J. Virol. Methods 1985, 10: 145-151.
    [117] BIRGITTE VIUFF, BENT AASTED, AND SOREN ALEXANDERSEN. Role of Alveolar Type Ⅱ Cells and of Surfactant-Associated Protein C mRNA Levels in the Pathogenesis of Respiratory Distress in Mink Kits Infected with Aleutian Mink Disease Parvovirus. JOURNAL OF VIROLOGY. 1994, 68(4): 2720-2725.
    [118] DYER, N. W., B. CHING, AND M. E. BLOOM. Non-suppurative meningoencephalitis associated with Aleutian mink disease parvovirus infection in ranch mink. Journal of Veterinary Diagnostic Investigation. 2000, 12: 159-162.
    [119] HADLOW, W. J. Ocular lesions in mink affected with Aleutian disease. Veterinary Pathology. 1982, 19: 5-15.
    [120] Wohlsein P, Trautwein G et al. Antigen distribution in organs of mink with Aleutian disease parvovirus infection. Zentralbl Veterinarmed B. 1990, 37(9): 651-9.
    [121] Mori, S., J. B, Wolfinbarger, N. Dowling, W. Wei, et al. Simultaneous identification of viral proteins and nucleic acids in cells infected with Aleutian mink disease parvovirus. Microb. Pathog. 1991, 9: 243-253.
    [122] Mori, S., J. B, Wolfinbarger, M. Miyazawa, et al. Replication of Aleutian mink disease parvovirus in lymphoid tissues of adult mink: involvement of follicular dendritic cells and macrohages. J. Virol. 1991, 65: 952-956.
    [123] Jensen PV, Castelruiz Y, Aasted B. Cytokine profiles in adult mink infected with Aleutian mink disease parvovirus. J Virol. 2003, 77(13): 7444-51.
    [124] Aasted B. Mink infected with Aleutian disease virus have an elevated level of CD8-positive T-lymphocytes. Vet Immunol Immunopathol. 1989, 20: 375-85.
    [125] Chen W, Aasted B. Analyses of leucocytes in blood and lymphoid tissues from mink infected with Aleutian mink disease parvovirus (ADV). Vet Immunol Immunopathol. 1998, 63: 317-34.
    [126] Porter, D. D. Aleutian disease: a virus infection of mink with a maximal but ineffective host humoral immune response. Prog. Med. Virol. 1986, 33: 42-60.
    [127] Porter DD, Porter HG, Larsen AE. Aleutian disease parvovirus infection of mink and ferrets elicits an antibody response to a second nonstructural viral protein. J Virol. 1990, 64: 1859-60.
    [128] Mouritsen S, Aasted B, Hoier-Madsen M. Mink with Aleutian disease have autoantibodies to some autoantigens. Vet Immunol Immunopathol. 1989, 23: 179-86.
    [129] Kanno, H., Wolfinbarger, J.B., Bloom, M.E. Aleutian mink disease parvovirus infection of mink macrophages and human macrophage cell line U937: demonstration of antibody-dependent enhancement of infection. J. Virol. 1993, 67: 7017-7024.
    [130] Homsy, J., Meyer, M., Tateno, M et al. The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science. 1989, 244: 1357-1360.
    [131] Bloom, M. E., H. Kanno, S. Mori, and J. B. Wolfinbarger. Aleutian mink disease: puzzles and paradigms. Infect. Agents Dis. 1994, 3: 279-301
    [132] Aasted B, Tierney GS, Bloom ME. Analysis of the quantity of antiviral antibodies from mink infected with different Aleutian disease virus strains. Scand J Immunol. 1984, 19: 395-402.
    [133] Porter DD, Porter HG, Larsen AE. Much of the increased IgG in Aleutian disease of mink is viral antibody. J Exp Pathol. 1984, 1: 79-88.
    [134] An SH, Wilkie BN. Mitogen- and viral antigen-induced transformation of lymphocytes from normal mink and from mink with progressive or nonprogressive Aleutian disease. Infect Immunol. 1981, 34: 111-4.
    [135] Kanno H, Wolfinbarger JB, Bloom ME. Identification of Aleutian mink disease parvovirus transcripts in macrophages of infected adult mink. J Virol. 1992, 66(9): 5305-12.
    [136] Oleksiewicz, M.B., Costello, F., Huhtanen, M., Wolfinbarger, J.B., Alexandersen, S., Bloom, M.E. Subcellular localization of Aleutian mink disease parvovirus proteins and DNA during permissive infection of Crandell feline kidney cells. (Generic). J. Virol. 1996, 70: 3242-3247.
    [137] SOREN ALEXANDERSEN, STEEN LARSEN, ANDERS COHN et al. Passive Transfer of Antiviral Antibodies Restricts Replication of Aleutian Mink Disease Parvovirus In Vivo. JOURNAL OF VIROLOGY. 1989, 63(1): 9-17.
    [138] Liu, J. M., S. W. Green, T. Shimada, and N. S. Young. A block in full-length transcript maturation in cells nonpermissive for B19 parvovirus. J. Virol. 1992, 66: 4686—4692.
    [139] Moffatt, S., N. Yaegashi, K. Tada, N. Tanaka, and K. Sugamura. Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J. Virol. 1998, 72: 3018-3028.
    [140] Morey, A. L., D. J. Ferguson, and K. A. Fleming. Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: evidence of cell death by apoptosis. J. Pathol. 1993, 169: 213-220.
    [141] Best, S. M., and M. E. Bloom. Caspase activation during virus infection: more than just the kiss of death? Virology. 2004, 320: 191-194.
    [142] Best, S. M., J. B. Wolfinbarger, and M. E. Bloom. Caspase activation is required for permissive replication of Aleutian mink disease parvovirus in vitro. Virology. 2002, 292: 224-234.
    [143] Best, S. M., J. F. Shelton, J. M. Pompey, J. B. Wolfinbarger, and M. E. Bloom. Caspase cleavage of the nonstruetural protein NS1 mediates replication of Aleutian mink disease parvovirus. J. Virol. 2003, 77: 5305-5312.
    [144] S. M. Bestl and M. E. Bloom. Pathogenesis of Aleutian Mink Disease Parvovirus and Similarities to B19 Infection. J. Vet. Med. B. 2005, 52: 331-334
    [145] 白文彬,于康震.动物传染病诊断学.北京:中国农业出版社,2002:901-903.
    [146] 常国权,杨盛华.水貂阿留申病的直接电镜和免疫电镜检查.黑龙江畜牧兽医.1994.1:28
    [147] 汪义娟,谢三星.水貂阿留申病的血清学诊断研究进展.特产研究.1995,1:21-22
    [148] 吴威等.应用阿留申CIEP左细胞抗原检疫水貂.特产研究.1990,4:48
    [149] 赵元楷,籍玉林,曲维江等.阿留申病循环复合物检测技术在水貂育种中的应用.经济动物学报.1997,1(1):1-3.
    [150] 陈德宇,兰伟.貂阿留申病特异性IgE及IgD型循环免疫复合物检测.中国兽医科技.2001,31(11):33-35
    [151] 刘润珍.应用酶标斑点纸条法诊断水貂AD的研究.黑龙江畜牧兽医.1990,5:30
    [152] Wright P F, Wilkie B N. Detection of antibody in Aleutian disease of mink: comparison of enzyme-linked immunosorbent assay and counter immunoelectrophoresis. Am J Vet Res. 1982, 43(5): 865-8.
    [153] 吴威等.水貂阿留申病PPA-ELISA诊断方法的研究.中国畜禽传染病.1993(2):13
    [154] 华育平,王金生.水貂阿留申病病毒单克隆抗体的研制和初步应用.中国禽畜传染病.1990,6:49-52
    [155] 吴威,聂金珍,程世鹏等.水貂阿留申病病毒(ADV)单克隆抗体的研制.吉林农业大学学报.1995,14(2):59-62
    [156] Aasted B, Bloom ME. Sensitive radioimmune assay for measuring Aleutian disease virus antigen and antibody. J Clin Microbiol. 1983, 18(3): 637-44.
    [157] McGuire TC, Crawford TB, Henson JB, Gorham JR. Aleutian disease of mink: detection of large quantities of complement-fixing antibody to viral antigen. J Immunol. 1971, 107(5): 1481-2.
    [158] Alexandersen S, Bloom ME, Wolfinbarger J, Race RE. In situ molecular hybridization for detection of Aleutian mink disease parvovirus DNA by using strand-specific probes: identification of target cells for viral replication in cell cultures and in mink kits with virusinduced interstitial pneumonia. J Virol. 1987, 61(8): 2407-19.
    [159] Haas L, Lochelt M, Kaaden OR. Detection of Aleutian disease virus DNA in tissues of naturally infected mink. J Gen Virol. 1988, 69 ( Pt 3): 705-10.
    [160] Jackson MK, Ellis LC, Morrey JD, et al. Progression of Aleutian disease in natural and experimentally induced infections of mink. Am J Vet Res. 1996, 57(12): 1753-8.
    [161] Dyer NW, Ching B, Bloom ME. Nonsuppurative meningoencephalitis associated with Aleutian mink disease parvovirus infection in ranch mink. J Vet Diagn Invest. 2000, 12(2): 159-62.
    [162] 朱善元,王健.水貂阿留申病基因检测芯片的研究与初步应用.中国预防兽医学报.2006,28(6):688-691
    [163] 杨帆,李淑梅,王红宁.DNA疫苗免疫机理及其在动物医学中的应用.中国兽医 杂志.2005,41(1):38-40
    [164] Yurdana Castelruiz, Merete Blixenkrone-Moller, Bent Aasted. DNA vaccination with the Aleutian mink disease virus NS1 gene confers partial protection against disease. Vaccine. 2005, 23: 1225-1231
    [165] DE GEUS, B., J. VAN ECK, A. VAN DE LOUW, F. K. VAN WILLIGEN, AND B. BOKHOUT. Transmission of Aleutian disease virus by air. Scientifur. 1996, 20: 350-354.
    [166] Ellis LC. Melatonin reduces rnortality from Aleutian disease in mink (Mustela vison). J Pineal Res. 1996, 21 (4): 214-7.
    [167] Jung, Kie-Hoon. PhD dissertation. Using immune modulators to ameliorate Aleutian disease in mink. UTAH STATE UNIVERSITY, 2004: 157
    [168] Alexandersen, S. Acute interstitial pneumonia in mink kits: experimental reproduction of the disease. Vet. Pathol. 1986, 23: 597-588.
    [169] Uwe Truyen and Colin R. Parrish. The evolution and control of parvovirus host ranges. Seminars in VIROLOGY. 1995, 6: 311-317
    [170] Langerveld JPM, Casal JI, Corte's E et al. Effective induction of neutralizing antibodies with the amino terminus of VP2 of canine parvovirus as a synthetic peptide. Vaccine. 1994, 12: 1473-80.
    [171] Langerveld JPM, Casal JI, Osterhaus ADME et al. First peptide vaccine providing protection against viral infection in the target animal. Studies of canine parvovirus in dogs. J Virol. 1994, 8: 4506-13.
    [172] Kawase M, Momodeda M, Young NS, Kajigaya S. Most of the VP1 unique region of B19 parvovirus is on the capsid surface. Virology. 1995, 211: 359-66.
    [173] Rosenfeld S J, Yoshimoto K, Kajigaya S et al. Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface. J Clin Invest. 1992, 89: 2034-29.
    [174] 林清华主编.免疫学实验.武:汉:武汉大学出版社,1999:138-140
    [175] 张维铭主编.现代分子生物学实验手册.北京:科学出版社,2003.
    [176] [美]J.萨姆布鲁克,D.W拉塞尔著.分子克隆实验指南.黄培堂等译.第三版.北京:科学出版社
    [177] 冯小黎.重组包涵体蛋白质的折叠复性.生物化学与生物物理进展.2001,28(4):482-485.
    [178] 汪家政、范明主编.蛋白质技术手册.北京:科学出版社,2000:166-178
    [179] 郭尧君,蛋白质电泳实验技术.北京:科学出版社,1999
    [180] 罗祖玉,施志仪,林万敏.自主性细小病毒非结构蛋白NSl对转化细胞的毒性及其调控DNA复制和转录的机制.复旦学报(自然科学版).1999,38(5):578-583
    [181] 马健.养殖水貂阿留申病感染情况及分子流行病学的研究.东北林业大学.硕士.2005:20,38-40
    [182] 李莲瑞.嗜水气单胞菌Aer毒素的表达与抗原性分析.中国人民解放军军需大学.硕士.2003:32
    [183] http://www.ebiotrade.com/newsf/2002-7/B20027816518.htm
    [184] 张德泉.水貂主要疫病防制技术.毛皮动物饲养.1995,4:17-18
    [185] 吉清.包涵体复性的研究进展.国外医学临床生物化学与检验学分册.2004,25(6):516-518
    [186] 黄文林.分子病毒学.北京:人民卫生出版社,2002:10
    [187]] Hemando E, Llamas-Saiz A L, Foces-Foces C, McKenna R, Portman I, AgbandjeMcKenna M, and Almendral J M Biochemical and physical characterization of parvovirus minute virus of mice virus-like particles. Virology. 2000, 267: 299-309
    [188] Lopez de Turiso J A, Cortes E, Martinez C, Ruiz de Ybanez R, Simarro I, Vela C. and Casal I. Recombinant vaccine for canine parvovirus in dogs. J Virol. 1992, 66: 2748-2753
    [189] Saliki J T, Mizak B, Flore H P, Getting R R, Burand J P, Carmichael E, Wood H E, and Parrish C R. Canine parvovirus empty capsids produced by expression in a baculovirus vector; use in analysis of viral properties and immunization of dogs. J Gen Virol. 1992, 73: 369-374
    [190] Martinez C, Dalsgaard K, Lopez de Turiso J A, Cortes E, Vela C, and Casal J I. Production of porcine parvovirus empty capsids with high immunogenic activity. Vaccine. 1992, 10: 684-690
    [191] Christensen J, Alexandersen S, Bloch B, Aasted B, and Uttenthal A. Production of mink enteritis parvovirus empty capsids by expression in a baculovirus vector system: a recombinant vaccine for mink enteritis parvovirus in mink. J Gen Virol. 1994, 75: 149-155
    [192] Le Gall-Recule G, Jestin V, Chagnaud P, Blanchard P, and Jestin A. Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins. J Gen Virol. 1996, 77: 2159-2163
    [193] Brown C S, Van Lent J W, Vlak J M, and Spaan W J. Assembly of empty capsids by using baculovirus recombinants expressing human parvovirus B19 structural proteins. J Virol. 1991, 65: 2702-2706
    [194] Ruffing M, Zentgraf H, and Kleinschmidt J A. Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells. J Virol. 1992, 66: 6922-6930

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700