热轧管线钢冷却过程组织建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为热轧带钢产品的重要品种之一,管线钢具有高强度、高韧性、高止裂性、低的包申格效应和良好的焊接性能,广泛应用于石油、天然气运输行业。管线钢轧后冷却过程中微观组织演变直接决定着管线钢最终的组织状态,进而决定最终的力学性能,因此对管线钢轧后冷却过程中微观组织演变的预测和控制已经成为当前微合金钢研究热点之一。
     本文以X80级别管线钢轧后冷却过程中微观组织演变为研究对象,通过考虑相变潜热、相变和温度三者之间相互影响关系,建立了包括奥氏体相变热力学、相变动力学、相变潜热以及温度场等模型在内的耦合组织预测模型,深入研究了控轧控冷工艺条件下X80管线钢奥氏体相变规律,并通过热模拟试验验证了该模型的准确性,为管线钢冷却过程中微观组织演变的预测和控制提供了重要的理论依据和实际参考。
     采用KRC模型计算了X80管线钢的相界面浓度、相变驱动力以及相平衡开始温度等热力学参数,并分析了变形量、变形速率和变形温度对其热力学参数的影响规律。通过热力学模型的建立,为轧后冷却阶段组织演变过程的预测提供必要的计算前提。
     建立相变动力学模型,包括:相变孕育期模型、相变实际温度模型、相变体积分数计算模型以及铁素体晶粒尺寸预测模型,计算分析了变形和冷却速度对相变动力学的影响。其中在计算铁素体相变温度时考虑了合金元素Nb的固溶现象对铁素体相变抑制作用,完善了含Nb微合金钢铁素体相变开始温度模型。
     从相变机理出发,建立了基于相变过程焓变量的相变潜热模型,并与DSC实验结果进行对比,显示了模型具有较好的准确性,并分析了碳含量和冷却速度对相变潜热的影响规律。提出了连续冷却过程中各个相变温度下相变潜热的计算方法,并与实验数据进行对比,吻合较好。
     利用有限差分法建立了层流过程中温度场模型,模拟分析了相变潜热、带钢厚度、辊道速度以及水流密度对其温度分布的影响。根据已建立的温度场模型,结合现场实际冷却情况,针对钢板温度不均匀现象从冷却方式和设备参数两个方面提出了改进措施,取得了较好的效果。并基于传热学原理计算了上下水量比,利用模拟数据回归了边部遮蔽量与板宽、板厚、水流密度的关系式,且计算结果与现场实际数据吻合良好,证明了边部遮蔽量计算模型的合理性。
     在已有的连续冷却相变模型的基础上,通过含内热源的二维温度场模型,将相变潜热与相变模型联系起来,进行迭代计算,建立了奥氏体相变、相变潜热和温度场耦合模型。将计算结果与实验结果及普通奥氏体相变模型计算结果进行比较可以发现,耦合模型计算结果与普通奥氏体相变模型计算结果相比,更贴近实验结果,具有较高的计算精度。
     对两种不同Nb含量的X80管线钢进行了Gleeble热模拟实验,结合金相观察分析了不同的控轧控冷工艺条件和合金元素Nb对管线钢中奥氏体相变规律的影响,并验证了耦合模型的准确性。总体而言,本文建立的管线钢轧后冷却过程微观组织演变模型,考虑了相变潜热和合金元素Nb对相变的影响,提高了组织预测精度,对科学的制定控轧控冷工艺,特别是对更准确的控制冷却过程具有一定的理论价值和实际参考意义。
As one important product of hot rolled strip, the pipeline steel is widely used inpetroleum and natural gas transportation industry because of high strength, hightoughness, high crack, low bauschinger effect and good welding performance. Themicrostructure evolution of pipeline steel during the cooling process not only decide thefinally phase transformation organization but also decide to the finally mechanicalproperty of pipeline steel, which become the hotspot study of alloy steel to predict andcontrol the microstructure evolution during the cooling process.
     In the present paper, a new integrated mathematical model for prediction ofmicrostructure evolution during rolling and cooling was developed for X80 pipeline steelby considering the relationship between the transformation, latent heat and temperature,which consists of transformation thermodynamic, transformation kinetics, latent heat andtemperature field models. The influence of controlled rolling and controlled cooling onmicrostructure evolution was thoroughly investigated, which provides importanttheoretical evidence for predicting and controlling the microstructure evolution ofpipeline steel during cooling process. The innovate works and corresponding results areas follows.
     The phase interface concentration, transformation force and phase equilibriumtemperature of X80 pipeline steel was calculated by KRC model, and the effect of hotdeformation on the thermodynamic parameters was analyzed, which provides thenecessary calculation hypothesis for predicting the microstructure evolution during thecooling process.
     The transformation kinetics model of X80 pipeline steel was established, whichincluded phase incubation period model, phase transformation temperature model, phasetransformation volume fraction model and ferrite grain size model, the effect of hotdeformation and cooling rate on the transformation kinetics was analyzed. Whencalculating the ferrite phase starting temperature, the effect of the solute drag of Nbshould be considered, which improved the ferrite phase starting temperature model for the Nb micro-alloyed steel.
     Based on the phase transformation mechanism, a mathematical model of latent heatfor X80 pipeline steel was established, which considered the enthalpy change during thephase transition. The results given by the model were in good agreements with the DSCexperimental results. According to the variation of latent heat, combined with theory andexperiment, a new method to calculate the latent heat at any temperature was proposed,the results given by the method were in accord with the measured value.
     The temperature field model of X80 pipeline steel during laminar cooling wasestablished by using finite difference method, the effect of latent heat, plate thickness,conveyor speed and water discharge density on the temperature distribution. According tothe temperature field model of X80 pipeline steel, and combined with actual coolingconditions, some improvements in connection with uneven temperature strip wereproposed from the cooling method and device parameters, which achieved good results. Itcalculated the optimum water flow based on the heat transfer theory, a formula tocalculate edge masking amount was regressed through the relationship between edgemasking amount and plate width, plate thickness, water discharge density. Throughcomparing the results with field data, it proved the edge masking model reasonableness.
     A new model for austenite transformation volume fraction and temperature in thetwo-dim unstable temperature fields considering latent heat was established. Bycomparing volume fraction of the three phase obtained by kinetic model, temperaturecoupling model and experiment, it is indicated that the coupling model has superiorityand the calculation accuracy of the three values.
     The continuous cooling transformation behaviors of two different Nb content of X80pipeline steel are simulated on Gleeble-3500 thermomechanical simulator, it ananlysesthe influences of cooling rate, deformation and addition of Nb element on transformationof X80 pipeline steel with metallographic observation and verifies the veracity ofcoupling model. Overall, the coupling model for prediction of microstructure evolutionduring rolling and cooling is developed for X80 pipeline steel in the present paper, whichimproves the predicted precision of microstructure evolution during the cooling process.The effect of latent heat and alloy element Nb on the austenite transformation is studied. It has a certain theory value and practical reference sense to formulate the scientificcontrolled rolling and controlled cooling and more accurate control the cooling process.
引文
1潘继平.对中国油气资源可持续供应战略的思考.资源战略, 2002: 27-30
    2中国石油工业“十五”规划,国际石油经济, 2001, 8(7): 5-10
    3李晓刚,杜翠薇,董超芳,等. X70钢的腐蚀行为与试验研究.北京:科学出版社, 2006: 1-2
    4朱喜龙.我国油气管道发展的探讨.石油与化工, 2005, 16(2): 4-9
    5王萍,王道远,姜辉,等. X80钢连续冷却转变规律的实验研究.热加工工艺, 2010, 39(10):17-20
    6张永青,李明,郝亚魁,等.首钢西气东输二线用X80热轧板卷产品设计和性能分析.首钢科技, 2010, 1: 35-41
    7 I. Moro, L. Briottet, P. Lemoine, et al. Hydrogen embrittlement susceptibility of a high strengthsteel X80. Materials Science and Engineering A, 2010, 527: 7252-7260
    8 S. Moeinifar, A. H. Kokabi, H. R. Madaah Hosseini. Influence of peak temperature duringsimulation and real thermal cycles on microstructure and fracture properties of the reheated zones.Materials Design, 2010, 31: 2948-2955
    9 Hiroyuki M, Naoto H, Tomoki M. Tensile propertise and microstructure of weld metal of X80steel. Materials Science Forum, 2003, (426-432): 4013-4018
    10郑磊,傅俊岩.高等级管线钢的发展现状.钢铁, 2006, 41(10): 1-10
    11庄传晶,冯耀荣,霍春勇,等.国内X80级管线钢的发展及今后的研究方向.焊管, 2005, 28(2): 10-14
    12 Jang Y. Yoo, Jong S. Woo. Mechanical properties and HIC Resistance of API X80 GradeC-Mn-Cu-Ni-Mo linepipe steel. Proceeding of the International Pipe Dreamer’s Conference,Yokohama, Japan, 7-8Nov, 2002: 441-456
    13范跃华.高强度管线钢的连续冷却转变研究. [南京理工大学工学硕士学位论文]. 2007: 1-10
    14张新武.从追随者到引领者.石油管道报, 2010.6.
    15 V. Chaudhari, et al. German gas pipeline first to use new generation linepipe. Oil Gas, Jan, 1995:40-47
    16王庆鹏. X80管线钢粗晶区相变的模拟及性能研究. [天津大学工学硕士学位论文]. 2005: 1-3
    17 A. G. Glover, et al. High strength steel becomes standard on Alberta gas system. OGJ, 1999, Jan:36-45
    18赵明纯.超低碳针状铁素体管线钢的显微特征及强韧性行为.金属学报, 2003, 3(38): 283-287
    19郭永军,王永民.我国管线用钢的生产现状及发展趋势.世界金属导报, 2006, 8(38): 24-28
    20王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.第1版.北京:冶金工业出版社, 1995:1-49
    21王占学.控制轧制与控制冷却.第1版.北京:冶金工业出版社, 1988: 1-11
    22肖福仁.针状铁素体管线钢的组织控制与细化工艺研究. [燕山大学工学博士学位论文]. 2003:5-9
    23吴冰. X80管线钢焊接性能研究. [西南交通大学工学硕士学位论文]. 2008: 1-20
    24王健.基于流变应力的热塑性变形过程微观组织模拟建模研究. [燕山大学工学博士学位论文]. 2009: 1-50
    25刘毅.空冷条件下金属相变潜热对组织转变的影响研究. [河北理工大学工学硕士学位论文].2005: 1-50
    26鲜宁.典型管线钢应力腐蚀行为评定及控制方法研究. [西北工业大学工学硕士学位论文].2007: 1-50
    27高宝雷. X80焊接HAZ晶粒长大规律研究及计算机模拟. [天津大学大学工学硕士学位论文].2005: 1-50
    28张国民.板带热轧过程多参数耦合数值模拟. [燕山大学工学博士学位论文]. 2005: 1-30
    29 F. H. Samuel, S. Yue, J. J. Jonas, et al. Modeling of Flow Stress and Rolling Load of a Hot StripMill by Torsion Testing. ISIJ International, 1989, 29(10): 878-886
    30 J. W. Bowden, F. H. Samuel, J. J. Jonas. Effect of Interpass Time on Austenite Grain Refinementby Means of Dynamic Recrystallization of Austenite. Metallurgical and Materials Transactions A,1991, 22(12): 2947-2957
    31 A. Laasraoui, J. J. Jonas. Prediction of Temperature Distribution, Flow Stress and Microstructureduring the Multipass Hot Rolling of Steel Plate and Strip. ISIJ International, 1991, 31(1): 95-105
    32 T. M. Maccagno, J. J. Jonas, P. D. Hodgson. Spreadsheet Modelling of Grain Size Evolutionduring Rod Rolling. ISIJ International, 1996, 36(6): 720-728
    33 K. Minami, F. Siciliano Jr, T. M. Maccagno, et al. Mathematical Modeling of Mean Flow Stressduring the Hot Strip Rolling of Nb Steels. ISIJ International, 1996, 36(12): 1507-1515
    34 C. Devadas, D. Baragar, G. Ruddle, et al. The Thermal and Metallurgical State of Steel Stripduring Hot Rolling: Part II. Factors Influencing Rolling Loads. Metallurgical Transactions A, 1991,22: 321-333
    35 C. Devadas, I. V. Samarasekera, E. B. Hawbolt. The Thermal and Metallurgical State of Steel Stripduring Hot Rolling: Part III. Microstructural Evolution. Metallurgical Transactions A, 1991, 22:335-349
    36 C. Devadas, I. V. Samarasekera, E. B. Hawbolt. The Thermal and Metallurgical State of Steel Stripduring Hot Rolling: Part I. Characterization of Heat Transfer. Metallurgical Transactions, 1991, 22:307-319
    37 B. A. Parker, R. K. Gibbs, P. D. Hodgson. Prediction of Ferrite Grain Size in NiobiumMicroalloyed Controlled Rolled Steels. International Symposium on Low-Carbon Steels for the90's, 1993: 173-179
    38 Zbigniew Kedzierski Maciej Pietrzyk, Halina Kusiak, et al. Evolution of the Microstructure in theHot Rolling Process. Steel Research, 1993, 64(11): 549-556
    39 M. Pietrzyk. Finite Element Based Model of Structure Development in the Hot Rolling Process.Steel Research, 1990, 61(2): 603-607
    40 K. Karhausen, R. Kopp, M. M. De Souza. Numerical simulation method for designingthermomechanical treatments, Illustrated by Bar Rolling. Scandinavian journal of metallurgy, 1991,20(6): 351-363
    41刘哲. X80高强度管线钢焊接性的模拟研究. [天津大学工学硕士学位论文]. 2006: 1-30
    42石孝武.带钢卷取温度精度预报的方法研究. [中南大学工学硕士学位论文]. 2008: 1-30
    43 J. Yanagimoto, K. Karhausen, A. J. Brand, et al. Incremental formulation for the prediction of flowstress and microstructural change in hot forming. Journal of Manufacturing Science andEngineering, 1998, 120: 316-323
    44 J. Yanagimoto, J. Liu. Incremental formulation for the prediction of microstructural change inmulti-pass hot forming. ISIJ International, 1999, 39(2): 171-175
    45 J. S. Liu, A. Yanagida, S. Sugiyama, et al. The analysis of phase transformation for the predictionof microstructure change after hot forming. ISIJ International, 2001, 41(12): 1510-1516
    46 S. R. Wang, A. A. Tseng. Macro- and micro-modelling of hot rolling of steel coupled by amicro-constitutive relationship. Materials & Design, 1995, 16(6): 315-336
    47 P. M. Pauskar. An integrated system for analysis of metal flow and microstructural evolution in hotrolling. PhD Thesis, the Ohio State University, 1998: 30-224
    48 Y. Lee, S. Choi, P. D. Hodgson. Integrated model for thermo-mechanical controlled process in rod(or bar) rolling. Journal of Materials Processing Technology, 2002, 125-126(9): 678-688
    49 C. G. Sun, H. N. Han, J. K. Lee, et al. A finite element model for the prediction of thermal andmetallurgical behavior of strip on run-out-table in hot rolling. ISIJ International, 2002, 42(4):392-400
    50谢红飙. H型钢轧制过程多参数耦合模拟与实验研究. [燕山大学工学博士学位论文]. 2006:1-50
    51 M. Suehiro, K. Sato, Y. Tsukano, et al. Computer modeling of microstructural change and strengthof low carbon steel in hot strip rolling. Transactions of the Iron and Steel Institute of Japan, 1987,27(6): 439-445
    52 Takehide Senuma, Masayoshi Suehiro, Hiroshi Yada. Mathematical models for predictingmicrostructural evolution and mechanical properties of hot strips. ISIJ International, 1992, 32(3):423-432
    53王娜. X80管线钢焊接接头在含硫介质中耐蚀性的研究. [西安理工大学工学硕士学位论文].2009: 1-30
    54 Yoshiyuki Watanabe, Shin-Ichi Shimomura, Kazuo Funato, et al. Integrated model formicrostructural evolution and properties of steel plates manufactured in production line. ISIJInternational, 1992, 32(3): 405-413
    55 Atsuhiko Yoshie, Masaaki Fujioka, Yoshiyuki Watanabe, et al. Modelling of microstructuralevolution and mechanical properties of steel plates produced by thermo-mechanical controlprocess. ISIJ International, 1992, 32(3): 395-404
    56陈翠欣. X80高强管线钢的焊接性及模拟仿真. [天津大学工学博士学位论文]. 2005: 1-30
    57 P. D. Hodgson, R. K Gibbs. A mathematical model to predict the mechanical properties of hotrolled C-Mn and microalloyed steels. ISIJ International, 1992, 32(12): 1329-1338
    58 P. D. Hodgson. Microstructure modelling for property prediction and control. Journal of MaterialsProcessing Technology, 1996, 60(1-4): 27-33
    59 WANG Min-Ting, ZANG Xin-Liang, LI Xue-Tong, et al. Finite element simulation of hot stripcontinuous rolling process coupling microstructural evolution. Journal of Iron and Steel Research,International, 2007, 14(3): 30-36
    60 XU Yun-Bo, YU Yong-Mei, LIU Xiang-Hua, et al. Prediction of rolling load, recrystallizationkinetics, and microstructure during hot strip rolling. Journal of Iron and Steel Research,International, 2007, 14(6): 42-46
    61 Hiroshi Yoshida, Akira Yorifuji, Satoshi Koseki, et al. Integrated mathematical simulation oftemperatures, rolling loads and metallurgical properties in hot strip mills. ISIJ International, 1991,31(6): 571-576
    62 F. Mucciardi, N. Pokutylowicz, S. Yue, et al. Windowstm-based rolling model for long products.ASME, Materials Division (Publication) MD, 1995, 70: 153-160
    63 J. Andorfer, D. Auzinger, M. Hirsch, et al. Vaiq-Strip: A new integrated quality control system forhot rolled strip. Revue de Metallurgie. Cahiers D'Informations Techniques, 1998, 95(7-8): 883-892
    64 K. Randerson, A. J. Trowsdale, P. F. Morris, et al. Metmodel: microstructural evolution model forhot rolling and prediction of final product properties. Ironmaking and Steelmaking, 2001, 28(2):170-174
    65王长会.热轧带钢层流冷却过程控制方法的应用研究. [东北大学工学硕士学位论文]. 2005:1-30
    66 David L. Rosburg Richard A. Shulkosky, Jerrid D. Chapman, et al. A microstructure evolutionmodel used for hot strip rolling. Materials Science and Technology 2003 Meeting, 2003: 509-527
    67 O. Kwon. A Technology for the Prediction and Control of Microstructural Changes andMechanical Properties in Steel. ISIJ International, 1992, 32(3): 350-358
    68刘振宇. C-Mn钢热轧板带组织—性能预测模型的开发及在生产中的应用. [东北大学工学博士学位论文]. 1995: 1-32
    69曲锦波. HSLA钢板热轧组织性能控制及预测模型. [东北大学工学博士学位论文]. 1998: 1-17
    70许云波,邓天勇,刘相华,等.热轧中厚板显微组织和平均流变应力的预测与优化.东北大学学报(自然科学版), 2008, 29(1): 81-84
    71赵辉.低碳钢轧后显微组织变化的计算机模拟与性能预测. [北京科技大学工学博士学位论文]. 1998: 1-18
    72窦晓峰,鹿守理,赵辉. Q235低碳钢静态再结晶模型的建立.北京科技大学学报, 1999, 21(1):20-22
    73崔振山. H型钢热轧过程变形和微观组织演变的计算机模型. [燕山大学工学博士学位论文].1999: 12-80
    74 WANG Jian, XIAO Hong. Determination of the Kinetics for Dynamic and Static Recrystallizationby Using the Flow Curves. Materials Science Forum, 2008, 575-578(2): 904-909
    75 WANG Min-ting, LI Xue-tong, DU Feng-shan, et al. A Coupled Thermal–mechanical andMicrostructural Simulation of the Cross Wedge Rolling Process and Experimental Verification.Materials Science and Engineering A, 2005: 305-312
    76彭艳,李修琨,刘宏民.热轧带钢冷却过程奥氏体相变与温度耦合模型.中南大学学报(自然科学版), 2009, 40(3): 699-705
    77 SUN Jian-liang, PENG Yan, LIU Hong-min, et al. Vibration of moving strip with distributed stressin rolling process. Journal of Iron and Steel Research, International , 2009, 17(4): 24-30
    78 LIN Yong-cheng, CHEN Ming-song, ZHONG Jue. Study of Metadynamic RecrystallizationBehaviors in a Low Steel. Journal of Materials Processing Technology, 2009, 209: 2477-2482
    79许云波.基于物理冶金和人工智能的热轧钢材组织─性能预测与控制. [东北大学工学博士学位论文]. 2003, 28: 143
    80 M. Hillert著.赖和怡,刘国勋译.合金扩散和热力学.北京:冶金工业出版社, 1984: 274
    81杨利坡.板带轧制三维热力耦合条元法研究及仿真系统开发. [燕山大学工学博士学位论文].2006: 1-50
    82 G. J. Shifet, J. R. Bradley, H. I. Aaronson. A Re-examination of the Thermodynamics of theProeuteoid Ferrite Transformation in Fe-C Alloys, Metall. Trans. A , 1978, 9: 999
    83俞德刚,王世道.贝氏体相变理论.上海:上海交通大学出版社, 1997: 274
    84 Kaufman L, Radeliffe S V, Cohen M. Decomposition of austenite by diffusional processes. NewYork: Interscience, 1962.
    85 R. H. Fowler, E. A. Guggenheim. Statistical Thermodynamics. Camb. Uni. Press, New York, 1983:654
    86刘效东,方鸿生,刘南平.奥氏体形变条件下铁素体成分的计算.钢铁, 1991, 26: 51
    87 J. W. Cahn. The Kinetics of Grain Boundary Nucleated Reaction, Acta Metallurgica, 1956, 4: 449
    88 M. Avrami. Kinetics of Phase Change Transformation-Time Relations for Random Distribution ofNuclei, J. Chem. Phys, 1940, 8: 212
    89 M. A. Johnson, R. H. Mehl. Reaction kinetics in processes of nucleation and growth, Trans. AIME,1939, 135: 416
    90 M. Avrami. Kinetics of Phase Change: General Theory, J. Chem. Phys, 1939, 7: 1103
    91 Dukman Lee, Yongsug Lee. Application of Neural-network for Improving Accuracy of Roll-forceModel in Hot-rolling Mill. Control Engineering Practice, 2002, 10(4): 473-478
    92 J. S. Kirkaldy. Prediction of Alloy Hardenability from Thermodynamic and Kinetic Data, Metal.Trans, 1973, 4: 2327
    93 M. Umemoto, N. Nishioka. Prediction of Hardenability from Isothermal Transformation Diagrams.Transactions ISIJ, 1982, 22: 629
    94 M. Umemoto, K. Horiuchi. Transformation Kinetics of Bainite during Isothermal Holding andContinuous Cooling, Transaction ISIJ, 1982, 22: 855
    95 P. K. Agawal, J. K. Brimacombe. Grain Boundary Precipitation in Aluminum Alloys: Effect ofBoundary Structure, Metal. Trans. B, 1981, 12: 121
    96 M. Enomoto ,H. I. Aaronson. Nucleation Kinetics of proeutectoid Ferrite at austenite GrainBoundaries in Fe-C-X Alloys, Metall. Trans. A, 1985, 17: 1385
    97 YSatio, M. Saeki, M. Nishida. Proc. of Int. Conf. on Steel Rolling, ISIJ, Tokyo, 1980: 1309
    98江坂一彬,肋田淳一,高桥学,等.材质予测·制御モデルの开发.制铁研究, 1986, 321: 92
    99 E.B.Hawbolt, B.Chau, J.K.Brimacombe. Kinetics of Austenite-Pearlite Transformation inEutectoid Carbon Steel,Metall.Trans.A,1983,14: 1803
    100蔡正,王国栋,刘相华,等.热轧带钢在冷却中温度与相变的耦合解析.塑性工程学报, 2000,7(2): 17
    101 Miettinen J. Simple Semiempirical Model for Prediction of Austenite Decomposition and RelatedHeat Release During Cooling of Low Alloyed Steels. Ironmaking and Steelmaking, 1996, 23(4):352
    102 LEE J L, CHEN J.K,PAN Y.T, et al. Evaluation of Transformation Latent Heat in C-Mn Steels.ISIJ International, 1999, 39(4): 281-282
    103 Lacaze J, Sundman B. Assessment of Fe-C-Mn system. Metall. Trans. A, 1991, 22: 2211
    104陈连升,狄国标,任吉堂,等.热变形奥氏体CCT曲线实用化修正研究.上海金属, 2006,28(2): 23
    105支颖.热轧带钢全线温度演变的模拟计算与软件开发. [东北大学工学博士学位论文]. 2004:1-56
    106余万华,张中平.热轧钢板在加速冷却时的温度模型.北京科技大学学报, 2005, 27(5): 569
    107王晓东,何安瑞,杨荃.热轧带钢层流冷却过程中温度与相变耦合预测模型.北京科技大学学报, 2006, 28(10): 966
    108张志勇.热轧带钢层流冷却控制技术的创新.钢铁技术, 2008 (3): 36-39
    109彭礼,李稳.层流冷却系统的自动化控制.河北理工学报, 1997, 11(4): 42-47
    110钱振声.鞍钢厚板厂柱状层流冷却技术开发.宽厚板, 2003, 9(4): 31-34
    111 Gustaaf Van Ditzhuijzen. The Controlled Cooling of Hot Rolled Strip: A Combination of PhysicalModeling, Control Problem and Practical Adaption.IEEE Trans on Automatic Control, 1993,28(27): 1060
    112 N.Hatta et al. Numercial Study on Cooling Process of Hot Steel Plates by a Water Curtain. ISIJinternational, 1989, 29(8): 673-679
    113 T. O. Masahisa et a1.The Computer Control of Hot Strip Cooling Temperature. Paper for the worldCongress of IFAC, June 12-16, 1978: 156-166
    114 J. I. Kokado, et al. An Analysis of Film Boiling Phenomena of Sub-cooled Water SpreadingRadically on a Hot Steel Plate Arch. Eisenhuttenwes, 1984, 55(3): 113-118
    115 I. Naokazu, New Cooling Control Technology on Hot Strip Mill. R&D KOBE Steel EngineeringRepots, 1992, 42(4): 75-78
    116 X.Yao. Evolutionary Artifitial Neural Networks. J. Of Neural Systems. 1993, (4): 203-222
    117小指军夫.控制轧制控制冷却—改善材质的轧制技术的发展.北京:冶金工业出版社, 2002:128-138
    118 Rao KP Neural network approach to flow stress evaluation in hot deformation. Journal ofMaterials Processing Technology, 1995, 53(2): 552-566
    119 Larkioa J, Myllykoski P, Nylandder J, et a1. Prediction of rolling force in cold by physical Modelsand neural computing[J].Journal of Materials Processing Technology, 1996, 60: 38l
    120 Aistleitner K, Mattersdorfer L G Hass W, et a1.Neural networks for identification of rolleccentricity in rolling mills[J].Journal of Materials Processing Technology, 1996(60): 387
    121 Portmann N F, Dieter Linhoff, Gunter Sorgel, et a1. Application of neural networks in rolling millautomation. Iron and Steel Engineer, 1995, 2: 33
    122朱丽娟,吴迪,赵宪明. Fe-C-X系合金奥氏体分解热力学计算.东北大学学报(自然科学版),2004, 25(11): 1065-1068.
    123徐祖耀,牟翊文. Fe-C合金相变热力学(KRC模型).金属学报, 1985, 21(3): A107-A1-06.
    124 Shiflet G J, Bradley J R, Aaronson H I. A re-examination of the thermodynamic of theproeutectoid ferrite transformation Fe-C alloys. Mater Trans A, 1978, 9A(7): 999-1008.
    125 Lobo J A, Geiger G H. Thermodynamic and solubility of carbon in ferrite and ferritic Fe-Mnalloys. Metall Trans A, 1976, 7A(9): 1347-1357.
    126 H I Aaronson, H A Domian and G M Pound. Thermodynamic of the austenite-proeutectoid ferritetransformation II, Fe-C-X alloys. TMS-AIME, 1966, 236: 768.
    127 H K D H, Bhadeshia. Met, Sci. 1984, 15: 178.
    128 L Kaufman, E V Clougherty, R J Weiss. Acta Metall, 1963, 11: 323.
    129 R L Orr, J Chipman. Trans of the metallurgical society of Aime, 1967, Vol, 239: 630-635.
    130张斌,张鸿冰,阮雪榆.热变形奥氏体先共析铁素体的热力学计算.上海交通大学学报, 2003,37(10): 1517-1521.
    131曲锦波.加工硬化奥氏体的连续冷却相变.沈阳: [东北大学工学博士学位论文]. 1998: 87-91
    132 Emomoto M, Aaronaon, H I.Met.Trans, 1988, 17A: 1381
    133刘振宇,王国栋,张强.形变奥氏体→铁素体的热力学计算.钢铁研究学报, 1994, 6: 34
    134 H. K. D. H. Bhadeshia. Thermodynamic analysis of isothermal transformation diagrams. Met. Sci,1982, 16: 159.
    135 Roberts W, Lidefelt H, Sandberg A, et al. Hot working and forming processes. London: TheMetals Society, 1980.
    136 Dutta B, Palmiere E J, Sellara C M. Modelling the kinetics of strain induced precipitation in Nbmicroalloyed steels. Acta Mater, 2001. 49: 785
    137 M El Wahabi, J M Cabrera, H M Prado. Hot working of two AISI 304 steels: a comparative study.Materials science and engineering, 2003, A343: 116-125.
    138 D M Douglas著,韦博成等译.非线性回归分析及其应用.北京:中国统计出版社, 1997:125-130
    139刘嵩韬,马铮,杜林秀,等.铌微合金钢形变诱导相变的上限温度.钢铁研究学报, 2006,18(6): 38-41
    140 Lange W F, Enomoto M, et al. The kinetics of ferrite nucleation at austenite grain boundaries inFe-C alloys. Metall Trans, 1988. 19A(3): 417-440
    141 Capdevila C, Garcia C. Incubation time of isothermally transformed allotriomorphic ferrite inmedium carbon steel. Scripta Materialia, 2001. (44): 129-134
    142 Gomez M, Medina S F, Caruana G. Modelling of phase transformation kinetics by correction ofdilatometry results for a ferritic Nb-microalloyed steel[J]. ISIJ int, 2003. 43(8): 1228-1237
    143 Bhadeshia H. Stress-induced transformation to bainite in a Fe-Cr-Mr-C pressure vessel steel. MatSci Tech, 1911, 7: 686-698
    144邓天勇,许云波,袁向前,等.含Nb低碳钢相变温度Ar3预测模型.金属学报, 2007, 10(43):1091-1095.
    145衣海龙,薛鹏,崔荣新,等. X80管线钢连续冷却过程中的相变研究.轧钢, 2008, 4(25): 10-12
    146韩晨,于浩,杨海波,等.高铌对X80管线钢相变与微观组织的影响.广东科技, 2009, 1(204):182-183
    147程慧静,王福明,潘钊彬,等. Nb-V复合微合金化中碳非调质钢的连续冷却相变.材料热处理学报, 2009, 10(30): 44-49
    148 Manohar P A, Chandra T, Killmore C R. Continuous cooling transformation behaviour ofmicrealloyed steels containing Ti, Nb, Mn and Mo. ISIJ International, 1996, 36(12): 1486-1493
    149方芳,雍岐龙,杨才福,等. V(C,N)在V-N微合金钢铁素体中的析出动力学.金属学报, 2009,5(45): 625-629
    150 Dutta B, Sellars C M. Effect of composition and process variables on Nb(C, N) precipitation inniobium microalloyed austenit. Matcr. Sci. Tech, 1987(3): 197
    151 Fulvio Siciliano Jr, John J Jonas. Mathematical modeling of the hot strip rolling of microalloyedNb multiple-alloyed Cr-Mo and plain C-Mn steels. Metallurgical and Materials Transactions A,2000, 31A(2): 511
    152赵英利,时捷,刘苏,等.中碳铌微合金钢的应变诱导析出行为.钢铁, 2010, 45(2): 99-101
    153王东城,彭艳,刘宏民.基于位错密度的热轧含Nb钢平均变形抗力模型.钢铁, 2006, 41增刊(2): 343-347
    154允冰,董小雷,刘新忠,等.低合金钢奥氏体连续冷却过程中组织演变的预测.材料热处理技术, 2009, 7: 4-7
    155周晓光,赵宪明,吴迪,等.热轧带钢连续冷却过程中相变体积分数的计算.钢铁研究, 2004,2(1): 25-29
    156 Cahn K S, Lee J K, Shiflet G J, Aaronson H I. Met Trans A,1978, 9A: 1016
    157 Tong Mingming, Li Dianzhong, Li Yiyi. Modeling the austenite-ferrite diffusive transformationduring continuous cooling on a mesoscale using Monte Carlo method. Acta Materialia, 2004, 52:1155-1162
    158张斌,张鸿冰.形变奥氏体→铁素体转变的动力学研究.上海交通大学学报, 2003, 37(12):1831-1834
    159 R. Bengchea, B. Lopen, I. Gutierren. Microstructural evolution during the austenite-to-ferritetransformation from deformed austenite. Metallurgical and Materials Transactions A, 1998, 22A:417-426
    160 H. I. Aaronson, M. Enomoto, T. Furuhare, er al. proceeding of int. conf.on physical metallurgy ofthermomechanical processing of steels and other metals(THERMEC-88). Iron and Steel Instituteof Japan, Tokyo, 1988, Vol.1: 80-89
    161 H. Yada, Y. Matsumura, T. Senuma. Proceedings of international conference on physicalmetallurgy of thermomechanical processing of steels and other metals, ed. Iron and Steel Instituteof Japan, Tokyo, 1988, Vol.1: 200
    162汪日志,雷廷全,谭舒平.锅炉用ASTMA299钢动态再结晶及形变促发A-F转变的研究,钢铁, 1992, 8: 50
    163 I. Kozasu, C. Ouchi, T. Sampei, et, al. Microalloying 75. Union Carbide Corp, 1977: 120
    164 H. Sekine, T. Maruyama, H. Kawashima, et, al. The thermomechanical processing of microalloyedaustenite. The Metallurgical Society of the American Institute of Metallurgical and PetrochemicalEngineers, 1982: 141
    165 V. M. Khlestov, E. V. Konopleva, H. J. Mcqueen. Kinetics of austenite transformation duringthermomechanical processes. Canadian Metallurgical Quarterly, 1982, 68: S1384
    166赵四新,王巍,毛大立.钢中贝氏体相变研究新进展.材料热处理学报, 2006, 27(4): 1-5
    167 G. V. Kurdomov, L. M. Utevsky, R. I. Entin. Transformations in iron and steel. Mauka Moscow,1977: 238
    168李承基.贝氏体相变理论.北京:机械工业出版社, 1995: 6
    169康沫狂,张明星,刘峰.金属合金等温相变的体激活能及相变机制,Ⅰ.钢的中温(贝氏体)等温相变.金属学报, 2009, 45(1): 25-31
    170 A. G. Kozlova, E. V. Konopleva, V. M. Khlestov. Metal Metallog, 1974, 38(1): 208-221
    171 D. S. Liu, X. H. Liu, G. D. Wang, et al. Effect of cooling rates and compressive deformation ofaustenite on bainitic transformation and microstructure for plastic die AISI P20 steel. ISIJ Int,1998, 38(5): 482-488
    172 D. S. Liu, X. H. Liu, G. D. Wang, et al. Mechanical stabilization of deformed austenite duringcontinuous cooling transformation in an C-Mn-Cr-Ni-Mo plastic die steel. Acta MetallurgicaSinica, 1998, 11(2): 93-99
    173 Z. D. Wang, X. H. Liu, G. D. Wang, et al. Influence of hot deformation on continuous coolingbainitic transformation in a low carbon steel. Acta Metallurgica Sinica, 1998, 11(2): 121-127
    174 Wang Guodong, Liu Xianghua, Wang Zhaodong. Effect of hot deformation on continuous coolingbainite transformation in a low carbon steel. THERMEC-97 Conference, Wollongon, Australia,1997: 717-723
    175 S. B. Singh, H. K. D. H. Bhadeshia. Quantitative evidence for mechanical stabilization of bainite.Mater. Sci. Technol, 1996, 7: 610-612
    176 J. R. Yang, C. Y. Huang, W. H. Hsieh, et al. Mechanical stabilization of austenite against bainiticreaction in Fe-Mn-Si-C bainitic steel. Mater. Trans. JOM, 1996, 37(4): 579-585
    177 Umemmto M. ActaMetall, l986, 34: 1377
    178 Umemoto M, Ohtsuka H, Tamura I. THERMEC-88,ISIJ, Tokyo, 1988, 2: 76
    179 H.Yada, C.M.Li, H.Yamagata. Dynamicγ→αTransformation during hot deformation iniron-nickel-carbon alloys. ISIJ International, 2000, 40(2): 200-206
    180 Han Dong. Deformation induced ferrite transformation in microalloyed steel.新一代钢铁材料研讨会论文集,中国金属学会, 2001: 41-47
    181 Matsumura Y, Yada H. Transaction ISIJ, 1978, 27: 907
    182 P.Rassoul, Y.Steve. Dynamic transformation of austenite to ferrite in low carbon steel. ISIJInternational, 34: 270-279
    183杨忠民,赵燕,王瑞珍,等.形变诱导铁素体的形成机制.金属学报, 2000, 36(8): 818
    184杨忠民,赵燕,王瑞珍,等.低温变形低碳钢超细铁素体的形成.金属学报, 2000, 36(10):1061
    185杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制.金属学报, 2000, 36(10): 1050
    186杨平,傅云义,崔凤娥,等.形变温度对Q235碳素钢应变诱导相变的影响.金属学报, 2001,37: 601
    187 Serajzadeh S. Prediction of temperature distribution and phase transformation on the run-out tablein the process of hot strip rolling. Applied Mathematical Modeling, 2003, (27): 861-875.
    188雍崎龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金.北京:机械工业出版社, 1989: 321
    189许云波,王国栋,刘相华.低碳钢低温变形γ-α相变行为的预测模型.金属学报, 2002, 10(37):1021-1026
    190潘洪波,唐荻,胡水平,等.热分析法测量相变温度的研究.物理测试, 2008, 6(26): 43-44.
    191 W. Huang. A Thermodynamic assessment of the Fe-Mn-C system. Metall.Trans.A, 1990, 21A:2115-2116
    192刘振宇,许云波,王国栋著.热轧钢材组织-性能演变的模拟和预测.沈阳:东北大学出版社,2004: 125-128
    193西泽泰二著,郝士明译.微观组织热力学.北京:化学工业出版社, 2006: 18-22
    194王秀峰,江红涛,程冰,等.数据分析与科学绘图软件ORIGIN详解.北京:化学工业出版社,2008: 360-363.
    195李修琨.热轧带钢冷却过程奥氏体相变与温度耦合模型的研究. [燕山大学工学硕士学位论文], 2008: 41-47
    196王晓东,何安瑞,杨荃,等.热轧带钢层流冷却过程中温度与相变耦合预测模型.北京科技大学学报, 2006, 28(10): 964-968
    197韩斌.带钢控制冷却模型的研究. [东北大学工学博士学位论文]. 2005: 32-67
    198熊彪.热轧带钢在层流冷却过程中的温度仿真研究. [北京科技大学工学硕士学位论文]. 2007:14-51
    199焦多田,蔡庆伍,武令宾.轧后冷却制度对X80抗大变形管线钢组织和屈强比的影响.金属学报, 2009, 45(9): 1111-1112
    200李建平,蔡晓辉.钢板冷却过程中厚度方向的冷却均匀控制.钢铁, 2008, 43(1): 42-43
    201 Incropera F P, Dewitt D P. Fundamentals of heat and mass transfer. 4th ed. New York: John Wiley& Sons, 1996: 68-72
    202赵镇南.传热学.北京:高等教育出版社, 2002: 1-89
    203龚彩军,于明等.中厚板层流冷却温度控制模型的自学习.钢铁, 2005, 40(6): 49
    204龚彩军.中厚板控制冷却过程温度均匀性的研究. [东北大学工学博士学位论文]. 2005: 42-45
    205周娜,吴迪,张殿华.边部遮蔽在中厚板冷却中的研究与应用.冶金设备, 2008, 167(2): 21-22
    206刘晓艳.加速冷却设备边部遮蔽装置的研制与应用.冶金设备, 2010: 106
    207张朝晖,柳永宁,金波,等.铌微合金钢形变连续冷却过程中的相变.机械工程材料, 2007,31(4): 85-88
    208彭海红,陈晔,李国宝,等. X60管线钢再结晶和过冷奥氏体连续冷却相变行为的研究.钢铁钒钛, 2006, 27(4): 34-37
    209黄海冰,白秉哲,冯勇,等.铌、钛微合金化仿晶界型铁素体/粒状贝氏体复相钢的形变诱导铁素体相变的研究.金属热处理, 2006(增刊): 124-129
    210翁宇庆.超细晶钢—钢的组织细化理论和控制技术.北京:冶金工业出版社, 2003: 150-160
    211 K P Ydari, D Givey. Application of carbon extraction replicas in grain-size measurements ofhigh-strength steels using TEM. Materials Characterization, 2007, 58: 544-554
    212李永强,张学辉,朱国辉,等.合金元素Mo对冷轧双相钢组织的影响.安徽工业大学学报,2009, 26(2): 135-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700