整体多层夹紧式高压容器预应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体多层夹紧式高压容器是一种使各包扎层板纵、环焊缝均错开的新型多层结构,它除具有多层包扎式容器所具有的优点外,另一突出优点是避免了对容器的制造质量和安全有重要影响的深环焊缝,极大的减少了高压容器的薄弱环节,提升了容器的承载能力和安全系数,同时还具有机械化程度高,加工制造方便的优势。
     由于整体多层夹紧式高压容器的安全性和制造的方便性,它受到国内外的高度重视,但其在包扎制造过程中产生的预应力及预应力对容器使用过程的影响研究还很不完善,迄今为止,包扎制造过程中产生的预应力并没有得到很好地利用。因此,开展整体多层夹紧式高压容器预应力的研究和建立相应的设计方法对其工程应用具有重要的意义。
     本文以弹塑性理论为基础,构建了整体多层结构压力容器内筒与层板的力学模型,深入分析并提炼得到影响预应力的主要因素,研究包扎夹紧力与预应力的关系,揭示多层包扎容器预应力分布的一般规律;通过数值模拟和对整体多层包扎容器的水压试验和爆破试验研究,探讨了超水压试验与层间预应力的关系,为整体多层夹紧式高压容器预应力的合理应用建立完整的理论体系。本文的主要工作和结论如下:
     1)建立了整体多层夹紧式压力容器的包扎夹紧力学模型,研究得到该结构压力容器预应力沿壁厚的分布规律,内壁面为压缩应力,外壁面为拉伸应力,且内壁面的压缩应力逐步阶梯式上升为包扎层板的拉伸应力,径向应力在环向应力为零的区域达到最大值。
     2)通过内圆筒、层板力学模型为基础分析,提炼得到了多层结构参数此参数是一个仅与多层包扎容器结构有关参数,能直接表征多层包扎容器的预应力情况,当多层包扎结构压力容器的包扎层板超过6层时,容器壁厚可减少12%以上。
     3)得到容器层板包扎夹紧应力的上、下限约束条件。上限约束条件是确保层板夹紧应力集中部位不出现屈服;下限是确保第一层包扎层板始终保持拉伸预应力,以使层板不出现滑移。
     4)层板与内圆筒的接触是预应力的源头,在不改变本质力学关系前提下简化接触面情况,得到了局部接触力学模型,并计算获得了接触压力和接触半径的解析解。
     5)由于预应力及层间间隙的存在,常规水压试验不能达到预应力均匀分布的预期目标。论文通过理论与试验,分析验证了多层包扎结构容器的超水压试验的最佳压力范围为1.9-2.0倍设计压力;超水压试验不仅调整了整体多层夹紧式高压容器的预应力分布,同时还有提升容器承载能力的作用。
     6)论文建立了整体多层夹紧式高压容器的局部接触、整体接触和多层结构超水压试验的数值模拟计算模型,通过数值模拟获得的了接触压力与接触半径的数值解,与接触压力和接触半径的解析解误差分别为5%和11.9%;整体接触模型的接触压力数值解与解析解误差在3%以内;超水压试验数值模拟计算显示内圆筒应力水平下降7%左右,当超水压达到2.0倍设计压力,整体多层夹紧式高压容器内圆筒及第一层包扎层板将出现屈服。
     7)通过对整体多层夹紧式试验容器分别以1.25,1.3,1.6,1.75倍设计压力进行超压试验,并进行了内外壁的应力测试,内壁实测应力与解析解有较好的符合性和再现性,1.45倍水压时内壁局部点发生屈服,进行超水压试验范围使容器内外壁应力得到了调整,应力分布趋于均匀;外壁应力有较多的储备能力,容器的安全可靠性提高。另外,高压容器密封泄漏可以采用环氧树脂胶进行补救。
     8)容器爆破试验证明整体多层夹紧式高压容器有较高承载能力,实测爆破压力值与解析值都大,其爆破安全系数为3.16,爆破压力实测值与解析计算值相比的最大误差是第三强度理论,为26.7%。其他公式获得的爆破理论值与实测值之间最大误差均不超过15.4%。
The integrated multilayer clamping high pressure vessel is a new kind multilayer structure that the longitudinal&circumferential welded seams of the layers are staggered. The deep circumferential welded seams are avoided, and it is very important for the vessel quality and safety. The other advantages of this type of pressure vessel are as follows:less thickness, higher manufacture efficiency, and easy to fabricate.
     The research of the integrated multilayer clamping high pressure vessel is emphasiazed, but the preload stress of the layer clamping&wrapping is seldom studied. The study and the design method of the preload stress of integrated multilayer clamping high pressure vessel have great significance.
     The dissertation establishes the mechanics model of the inner shell and the layer based on the elasto-plasticity theory, and the main influence factor is deduced to study the relationship between the clamping force and the preload stress. The mechanics model shows the general rule of the preload stress distribution. The numerical&experimental studies are employed to research the hydrostatic experiment and the blast test, and the super hydroastatic test and the layers preload strss are also studied. The main work and the conclusion are as follows:
     1) The mechanics model of integrated multilayer clamping high pressure vessel is built, and the preload stress distribution along the vessel thickness is obtained. The inner wall preload stress is compression stress and the outer wall preload stress is the tensile stress. The compression stress is steped increasing to the tensil stress through the vessel thickness, and the radial stress reachs the maximum value when circumference stress is zero.
     2) The multilayer structure parameter,, is deduced from the mechanics model, and it is a parameter only related with the multilayer structure. The parameter indicates the multilayer pressure vessel preload stress distribution. The thickness ofthe multilayer vessel decreases12%, taken into account the multilayer structureparameter, when6layers are wrapped to the inner shell.
     3) The restriction condition of the layer wrapping&clamping. The upper limitof the layer wrapping&clamping stress is that the layer is not yielded, and the1stlayer maintains the preload tensile stress to avoid the layer slipping is the lower limit.
     4) The contact between the layers and the inner shell is the source of the preloadstress. The local contact mechanics model of the layer are built with the simplifiedboundary condition, and the formulas of the contact pressure&contact radius arededuced.
     5) The traditional hydrostatic test cannot adjust the preload stress adjustmentbecause of the preload stress and the gaps between the layers. The dissertationdeduces that the optimization hydrostatic pressure is1.9-2.0times design pressure,and the super hydrostatic test can redisreibute the preload stress, and the loadingcapacity of the pressure vessel is also improved.
     6) The local contact Finite Element Analysis (FEA) model, the integratedcontact FEA model and the multilayer structure super hydrostatic test FEA medoel arebuilt. The local contact FEA model result shows that the contact pressure errorbetween the analytic value and the numerical value is5%, while the contact radiuserror between the analytic value and the numerical value is lower than11.9%. Theintegrated FEA model obtain the numerical contact pressure has3%error withanalytic contact pressure. The super hydrostatic test FEA model shows that inner wallstress decrese7%, and the inner shell and the1stlayer yields when super hydrostaticpressure is2.0times of design pressure.
     7) The super hydrostatic test is performed with integrated multilayer clampinghig pressure vessel in1.25,1.3,1.6,1.75times design pressure, and the inner&outerwall stress are measured. The measured inner wall stresses have good agreement withthe analytic solution. The local point of inner wall yields in1.45times design pressure.The preload stress is adjusted with the hydrostatic test, and the outer wall stress haslots of loading potential to enhance the pressure vessel safety. The epoxided resin can be used in the high pressure sealing leakage.
     8) The blast test shows that the integrated multilayer clamping high pressurevessel have higher loading capacity. The measured blast pressure is higher than theanalytic solution, and the blast safety factor is3.16. The largest error between themeasured blast pressure and theanalytic blast pressure is26.7%with the3rdstrengththeory, and other errors are lower than15.4%.
引文
[1]陈国理.压力容器及化工设备(上册)[M].第2版.广州:华南理工大学出版社,1995
    [2]郑津洋,董其伍,桑芝富.过程设备设计[M].第2版.北京:化学工业出版社,2005
    [3]时铭显.我国化工过程装备技术的发展与展望[J].当代石油化工,2005,13(12):3-6
    [4]周羽,包士毅,董建令等.压力容器分析设计方法进展[J].清华大学学报(自然科学版),2006,46(6):886-892
    [5]郑津洋,黄冰,孙有国等.欧美压力容器设计技术进展[J].压力容器,2002,19(1):39-42
    [6]郑津洋,陈志平,孙有国.压力容器设计技术进展及我国应采取的对策[J].石油机械,2001,29(3):1-5
    [7]陈建俊.压力容器技术装备的新进展(一)[J].压力容器,2004,21(6):32-37
    [8]朱国辉,陈志平,郑传祥等.钢复合压力容器技术典型代表[J].化工装备技术,2000,21(1):1-8
    [9]朱国辉,陈志平,郑传祥等.新型绕带式压力容器技术的突出发展优势[J].化工机械,2000,27(3):162-166
    [10]朱国辉,朱立,郑津洋等.钢复合结构压力容器技术[J].中国工程科学,2001,3(7):79-84
    [11]丁伯民.ASME VIII-3高压容器建造另一规则[J].压力容器,2005,22(9):1-4
    [12]丁伯民.对分析设计中的一些问题的讨论[J].化工设备与管道,2004,41(4):5-7
    [13]丁伯民.峰值应力基本特征分析和讨论[J].化工设备与管道,2005,42(4):1-4
    [14]丁伯民.外压薄壁和厚壁圆筒的壁厚界限——析GB150-1998的修订[J].化工设备设计,1999,36(3):39-43
    [15]丁伯民.外压圆筒设计中的弹、塑性失效界限[J].化工设备与管道,2003,40(3):5-10
    [16]李建国.钢制压力容器分析设计基础(一)[J].石油化工设计,2002,19(3):74-76
    [17]李建国.压力容器分析设计的应力分类法与塑性分析法[J].化工设备与管道,2005,42(4):5-9
    [18]陆明万,徐鸿.分析设计中若干重要问题讨论(一)[J].压力容器,2006,23(1):15-19
    [19]陆明万,徐鸿.分析设计中若干重要问题讨论(二)[J].压力容器,2006,23(2):28-32
    [20]陆明万,张远高,张丕辛.理想塑性结构极限与安定分析的数值方法[J].应用力学学报,1994,11(4):19-24
    [21]陆明万,陈勇,李建国.分析设计中应力分类的一次结构法[J].核动力工程,1998,14(4):330-338
    [22]陆明万.关于应力分类问题的几点认识[J].压力容器,2005,22(8):18-23
    [23]陆明万.关于应力分类问题的一些认识[J].化工设备与管道,2005,42(4):10-15
    [24]冯西桥,刘信声.不同应变强度模型下结构安定性的研究[J].力学学报,1994,26(6):719-727
    [25]杨彬,陈钢,刘应华等.带缺陷管系结构的塑性极限分析[J].清华大学学报(自然科学版),2001,41(4/5):100-103
    [26]薛明德,王险峰,徐秉业等.含缺陷轴对称的安全与极限分析[J].固体力学学报,1996,17(2):121-129
    [27]刘应华,岑章志,徐秉业.含缺陷结构的塑性极限分析[J].固体力学学报,1999,20(3):211-218
    [28]刘应华,岑章志,徐秉业.三维结构极限上限分析的有限元方法[J].清华大学学报(自然科学版),1996,36(3):47-53
    [29]徐秉业,何祝斌.结合塑性加工发展塑性力学[J].塑性工程科学,2004,11(2):1-8
    [30]陈伟,薛明德,徐秉业.内压作用下球壳开孔接管的塑性极限分析[J].固体力学学报,1994,15(4):333-339
    [31]白洁,刘应华,陈钢等.含凹缺陷压力管道的塑性极限分析[J].清华大学学报(自然科学版),2002,42(S1):11-14
    [32]扶名福,熊祝华,徐秉业.球壳的模糊弹粘塑性分析[J].工程力学,1994,11(2):1-7
    [33]高德利,覃成锦,徐秉业.套管载荷分析与强度设计软件研究[J].石油钻采工艺,1999,21(6):13-19
    [34]徐志锋,刘应华,徐秉业.弯管的极限上限分析[J].油气储运,1999,18(8):14-17
    [35]徐志锋,刘应华,徐秉业.弯管结构塑性极限上限的有限元方法[J].清华大学学报(自然科学版),2002,42(4):427-430
    [36]李建中,岑章志,徐秉业.轴对称壳体弹塑性屈曲的有限元分析[J].清华大学学报(自然科学版),1999,39(2):82-85
    [37]张劲风,钟汉通,汤新文.整体多层包扎容器端部结构的应力分析与测试[J].压力容器,1998,15(2):41-46
    [38]刑惠明,陈国理,黄兴仁.自增强压力容器应用十二边形屈服准则残余应力的计算与试验研究[J].压力容器,1997,14(4):19-23
    [39]陆晓燕,金伟娅,高增梁等.某多层包扎氮气储罐的应力分析及安全评定[J].压力容器,2006,23(12):28-32
    [40]李玉江,许劲晖,尹谢平等.整体多层夹紧式高压容器的制造和应用[J].化工设备与防腐蚀,2000,(3):14-17
    [41]朱孝钦,吴京生,陈国理.整体多层夹紧式高压容器研制及应用[J].石油化工设备,1999,28(4):42-45
    [42]张羽翔,王坚,宜飞远等.整体多层包扎式高压容器应力状态研究进展[J].化工机械,2008,35(2):107-113
    [43]汪嘉春,徐秉业.铝合金厚壁圆筒二次机械自紧技术的实验研究[J].金属成形工艺,1996,14(6):32-34
    [44]汪嘉春,徐秉业.双线性材料模型机械自紧厚壁圆筒的弹塑性分析[J].上海力学,1995,16(2):109-119
    [45]杨松祥.多层筒体层板包扎相错角度的确定[J].硫磷设计与粉体工程,2001,(5):9-11
    [46]刘纪炎.层板包扎式高压容器层板间存在的间隙对应力的影响[J].青岛化工学院学报,1995,16(2):184-186
    [47]刘毅刚,张光函,魏星等.新型高压容器多层包扎的箍紧力与包扎方式[J].机械,2000,27(1):8-9
    [48]郑津洋,黄载生,朱国辉.螺旋错绕式高压容器层间摩擦特性及应力分析[J].机械工程学报,1994,30(增刊):86-93
    [49]郑津洋.扁平绕带式压力容器优化设计理论及工程应用研究[D].杭州:浙江大学,1992
    [50]俞茂宏.强度理论百年总结[J].力学进展,2004,34(4):529-560
    [51]俞茂宏.吉岭充俊,范文.工程材料强度理论研究的几次重大进展[J].中国科学基金,2002,(6):330-332
    [52]俞茂宏,M.Yoshimine,强洪夫等.强度理论的发展和展望[J].工程力学,2004,21(6):1-20
    [53]俞茂宏,张永强,李建春.塑性平面应力问题的统一特征线场理论[J].西安交通大学学报,1999,33(4):1-4
    [54]徐栓强,俞茂宏.拉压强度不同材料厚度球壳的安定性分析[J].机械设计与制造,2005,(1):36-37
    [55]高江平,俞茂宏.三剪应力统一屈服准则研究[J].西安建筑科技大学学报,2005,37(4):526-530
    [56]徐栓强,俞茂宏.厚壁圆筒安定问题的统一解析解[J].机械工程学报,2004,40(9):23-26
    [57]王亚,朱瑞林.Tresca和Mises屈服条件之间的关系[J].化工装备技术,2001,22(4):33-34
    [58]刘丽芳.不同强度条件下压力容器的可靠性分析[J].湖北工学院学报,1999,14(3):40-43
    [59]朱瑞林,张吴星.单层厚壁圆筒弹塑性与强度分析[J].湘潭大学自然科学学报,1999,21(3):79-83
    [60]张吴星,王亚,朱瑞林.压力容器的强度研究[J].湘潭师范学院学报,2001,23(2):16-18
    [61]杨金来.高压容器自增强的研究[J].力学与实践,1998,20(3):46-49
    [62]杨金来,陶伟华.高压容器的弹塑性应力分析[J].浙江工业大学学报,1998,26(4):320-323
    [63]张于贤.超高压容器中的自增强理论的研究及应用[D].重庆:重庆大学,2005
    [64]张于贤,王红.关于材料屈服强度的实验研究[J].材料工程,2005,(11):43-45
    [65]张于贤,王红,陈德淑.关于计算最佳弹塑性界面半径的探讨[J].重庆大学学报(自然科学版),2004,27(6):30-31
    [66]张于贤,廖振方,王红等.确定屈服材料极限的一种新方法[J].重庆大学学报(自然科学版),2005,28(9):13-15
    [67]张于贤,廖振方,王红等.确定厚壁圆筒初始屈服压力的一种实验方法[J].中国工程科学,2005,7(11):72-75
    [68]张于贤,王红.关于厚壁容器自增强容器的理论研究[J].机械,2004,31(8):13-14
    [69]张于贤.基于等强度理论的缩套超高压缸改进设计[J].中国机械工程,2006,17(增刊):351-353
    [70]张于贤.测定厚壁圆筒初始屈服压力的液压方法[J].机械,2006,33(9):18-19
    [71]许琦,詹月林,李永生.压力容器随机应力强度的模糊可靠性设计[J].石油机械,2004,32(3):8-10
    [72]马秉骞.中径公式用于厚壁圆筒设计的条件[J].石油机械,1999,27(6):45-46
    [73]吴振强,张灿邦,张曙红.轴对称压力容器弹塑性与强度分析[J].红河学院学报,2004,2(2):4-7
    [74]左卫东,于溯源,刘俊杰等.10MW高温气冷堆压力容器主法兰结构的有限元接触分析[J].核动力工程,2001,22(3):226-230
    [75]杜雪松,林腾蛟,李润方等.ANSYS二次开发及其在压力容器热态密封分析中的应用[J].机械设计与研究,2004,20(4):78-80
    [76]丁昌,汪荣顺.ANSYS在低温压力容器应力分析与优化设计中的应用[J].低温与超导,2007,35(6):455-457
    [77]王辉,桑芝富,王晓东.补强圈与容器壳体间的接触行为[J].南京工业大学学报,2002,24(2):15-19
    [78]费国标,刘正林,海鹏洲等.超高压密封件有限元分析研究[J].武汉理工大学学报(交通科学与工程版),2006,30(6):1055-1057
    [79]杨刚,经树栋.齿啮式快开压力容器的接触分析[J].化工设备与管道,2006,43(3):19-23
    [80]苏文献,郑津洋,开方明等.齿啮式快开压力容器整体有限元塑性载荷分析[J].压力容器,2006,23(2):33-37
    [81]郑津洋,苏文献,徐平等.基于整体有限元应力分析的齿啮式快开压力容器设计[J].压力容器,2003,20(7):20-24
    [82]赵杰,陈家庆,李峰等.高压焊接试验舱齿啮式卡箍锁紧结构有限元分析[J].石油矿场机械,2005,34(6):7~10
    [83]贺寅彪,曲家棣,窦一康.反应堆压力容器金属O形环密封性能研究[J].压力容器,2004,21(9):9~12
    [84]陈家庆,焦向东,赵增慧等.高压焊接试验舱的设计及其关键问题研究[J].石油矿场机械,2004,33(3):1~5
    [85]郭英涛,任文敏.关于限制失稳的研究进展[J].力学进展,2004,34(1):41-52
    [86]严国平,刘正林,费国标等.基于ANSYS的高压密封容器开孔的有限元计算[J].机电工程技术,2005,34(12):59-61
    [87]庞保强,杨洪波,刘通通等.基于接触非线性的螺钉标准件的优化设计方法[J].计算机仿真,2008,25(6):181-183
    [88]陈旭,焦荣,田淘.棘轮效应预测及其循环本构模型研究进展[J].力学进展,2003,33(4):461-470
    [89]吴本华,桑芝富.接管纵向弯矩作用下补强圈与壳体间的接触行为[J].压力容器,2004,21(6):14-17
    [90]李静,刘敏珊,董其伍.新型压力容器法兰密封结构的有限元接触分析[J].石油机械,2005,33(10):8~10
    [91]姜卫忠.压力容器筒体与补强圈间的接触特性[J].压力容器,2003,20(2):20-23
    [92]李磊,吴本华,桑芝富.压力容器筒体与补强圈间接触特性的研究[J].机械强度,2007,29(6):975-981
    [93]金建新,梁利华,高增梁.圆柱壳开孔补强的弹性和弹塑性有限元分析[J].压力容器,2007,24(9):9~14
    [94] Hamid Jahed. Farshi Behrooz. Karimi Morvarid. Optimum design of multi-layeredvessels [A]. American Society of Mechanical Engineers, Pressure Vessels and PipingDivision (Publication) PVP,2005,2:207-213
    [95] I.Vikram Kumar1Reddy. R. Gnanamoorthy. N.Siva Prasad. Analysis of prestresses inmultilayered filament wound cylindrical pressure vessels [A]. International SAMPESymposium and Exhibition (Proceedings)[C],1999,44:1
    [96] Soheir A. R. Naga. M.O.A. Mokhtar. An analytical and finite element analysis study ofmultilayered pressure vessels under thermal conditions [A]. American Society ofMechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP[C],2005,3:173-179
    [97] P. Y. Tabakov, E. B. Summers. Lay-up optimization of multilayered anisotropic cylindersbased on a3-D elasticity solution [J]. Computers and Structures,2006,84(1):374-384
    [98] Viktor E. Verijenko. Sarp Adali. Pavel Y. Tabakov. Stress distribution in continuouslyheterogeneous thick laminated pressure vessels [J]. Composite Structures,2001,54(11):371-377
    [99] E. Y. Lee. Y. S. Lee. J. H. Kim et al. Residual stress analysis of an Autofrettagedcompound cylinder under machining process [A]. Special Edition: AdvancedComputational Engineering and Experimenting[C],2009,40(3):204-210
    [100] Alain Nicaud. Franck Delmaire-Sizes. Olivier Kadouch. et al. Behaviour ofmulti-layered cylinders under explosive loading [A]. American Society of MechanicalEngineers, Pressure Vessels and Piping Division (Publication) PVP[C],1999,394:101-111
    [101] Dennis K Williams. A proposed design criterion for vessel lifting lugs in lieu of ASMEB30.20[A]. American Society of Mechanical Engineers, Pressure Vessels and PipingDivision (Publication) PVP[C],2002,440:205-212
    [102] Yasumasa Shoji. An effect of gasket contact stress distributions on the tightnessestimation in pipe flange connections by finite element analyses [A]. American Societyof Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP[C],2004,478:113-120
    [103] Toshiyuki Sawa. Rie Higuchi. FEM Stress Analysis and Sealing Performance in BoltedFlange Connections with Cover of Pressure Vessel Subjected to Internal Pressure [A].American Society of Mechanical Engineers, Design Engineering Division (Publication)DE[C],2003,116(1):511-519
    [104] Mohammed Diany. A. H. Bouzid. Evaluation of contact stress in stuffing box packings
    [A]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication) PVP[C],2006
    [105] Y.C. Jeon. S. H. Hwang. J. H. Kim. et la. Three dimensional elasto-plastic finiteelement analysis for a deformable body with an inclined contact [A]. American Societyof Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP,1999,385:227-234
    [106] Y. H. Shi. Don R. Metzger. A new penalty stiffness treatment for master-slave contactsurfaces [A]. American Society of Mechanical Engineers, Pressure Vessels and PipingDivision (Publication) PVP[C],2001,417:43-49
    [107] S.K. Koh. R. I. Stephens. Improved fatigue life of an autofrettaged thick-walledpressure vessel with an external groove [J]. International Journal of Pressure Vessels andPiping.1994,58(2):131-145
    [108] Hideo Kobayashi. Haruo Nakamura. L. Chen. Assessment of structural integrity ofhigh-pressure autofrettaged vessel using failure assessment diagram [A]. AmericanSociety of Mechanical Engineers, Pressure Vessels and Piping Division (Publication)PVP[C].1995,365-372
    [109] M. Perl. J. Perry. A numerical model for evaluating the residual stress field in anautofrettaged spherical pressure vessel incorporating the bauschinger effect [A].American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication) PVP[C].2008,3-9
    [110] F. V. Ellis, R. J. Gdaniec. Evaluation of hydrostatic test over-pressurization transient [A].American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication) PVP[C].2001,301-307
    [111] Hamid Jahed,Behrooz Farshi,Morvarid Karimi. Optimum Autofrettage and Shrink-FitCombination in Multi-Layer Cylinders [J].Journal of Pressure Vessel Technology,2006,128(5):196-200
    [112] Rolf R. de Swardt. Tony D. Andrews. Stress Analysis of Autofrettaged Midwall CooledCompound Gun Tubes [J]. Journal of Pressure Vessel Technology,2006,128(5):201-207
    [113]徐芝纶.弹性力学(上册)[M].第4版.北京:高等教育出版社,2006
    [114]杨桂通.弹性力学简明教程[M].北京:清华大学出版社,2006
    [115]李建国.压力容器设计的力学基础及其标准应用[M].北京:机械工业出版社,2004
    [116]丁伯民,黄正林等编.化工设备设计全书——化工容器[M].北京:化学工业出版社,2003
    [117]丁伯民,黄正林等编.化工设备设计全书——高压容器[M].北京:化学工业出版社,2003
    [118] Maan H. Jawad, James R. Farr. SRUCTURAL ANALYSIS AND DESIGN OFPROCESS EQUIPMENT [M]. Second edition. New York: Wiley-IntersciencePublication,1989
    [119]周仲荣.摩擦学发展前沿/学科发展战略[M].北京:科学出版社,2006
    [120]温师铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008
    [121] Bharat Bhushan.摩擦学导论[M].葛世荣译.北京:机械工业出版社,2007
    [122] HG3129-1998.整体多层夹紧式高压容器[S].北京:1998
    [123]王仁,黄文彬,黄筑平.塑性力学引论[M].修订版.北京:北京大学出版社,1992
    [124]徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981
    [125]徐秉业.弹性与塑性力学[M].第2版.北京:机械工业出版社,1991
    [126]徐秉业,沈新普,崔振山.固体力学[M].北京:中国环境科学出版社,2003
    [127]严宗达.塑性力学[M].天津:天津大学出版社,1988
    [128]陈钢,刘应华.结构塑性极限与安定分析理论及工程方法[M].北京:科学出版社,2006
    [129]徐萃薇,孙绳武.计算方法引论[M].第2版.北京:高等教育出版社,2002
    [130] Saeed Moaveni.有限元分析——ANSYS理论与应用[M].第2版.王崧,董春敏,金云平译.北京:电子工业出版社,2005
    [131] Daryl L. Logan.有限元方法基础教程[M].第3版.伍义生,吴永礼译.北京:电子工业出版社,2003
    [132]余伟炜,高炳军.ANSYS在机械与化工装备中的应用[M].北京:水利水电出版社,2006
    [133]白葳,喻海良.通用有限元分析ANSYS8.0基础教程[M].北京:清华大学出版社,2005
    [134]李润芳,龚剑霞.接触问题数值方法——及其在机械设计中的应用[M].重庆:重庆大学出版社,1991
    [135]李开泰,黄艾香,黄庆怀.有限元方法及其运用[M].北京:科学出版社,2006
    [136] Sawa Toshiyuki1,Nagata Satoshi,Akita Yosuke. Axi-symmetric stress analysis anddetermination of bolt preload in bolted flange connections with cover of pressure vesselsubjected to internal pressure [A]. American Society of Mechanical Engineers, PressureVessels and Piping Division (Publication) PVP.2005ASME Pressure Vessels andPiping Conference[C]. American Society of Mechanical Engineers,2005:105-113
    [137] Sawa, Toshiyuki, Kurosawa Ryo, Maezaki, Wataru. Stress analysis and sealingperformance evaluation in rectangular box-shape bolted flange connection with gasketsubjected to internal pressure [J]. Journal of Pressure Vessel Technology, Transactionsof the ASME,2011, Vol.133(2):0212011-0212018
    [138] Sawa, Toshiyuki1, Nagata, Satoshi, Tsuji, Hirokazu. New development in studies on thecharacteristics of bolted pipe flange connections in JPVRC [J]. Journal of PressureVessel Technology, Transactions of the ASME,2006, Vol.128(1):103-108
    [139] Alkelani, Ali A., Housari, Basil A., Nassar, Sayed A. A proposed model for creeprelaxation of soft gaskets in bolted joints at room temperature [J]. Journal of PressureVessel Technology, Transactions of the ASME.2008, Vol.130(1):0112111-0112116
    [140] Ludman, John, Waterland III, A. Fitzgerald. Practical application of fastener preloadguidance research[A]. American Society of Mechanical Engineers, Pressure Vessels andPiping Division (Publication) PVP.2008ASME Pressure Vessels and PipingConference[C]. American Society of Mechanical Engineers,2008:163-170
    [141] Reid, Daniel F., Frew, James E.B., Benet, Steve. A practical approach to evaluatingfastener preload retention with elastomeric gaskets [A]. American Society ofMechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP.2008ASME Pressure Vessels and Piping Conference[C]. American Society of MechanicalEngineers,2008:189-199
    [142] Nassar, Sayed A, Ganganala, Mohan. Effect of separating load eccentricity on the clampload loss in a bolted joint using a strain hardening model [J]. Journal of Pressure VesselTechnology, Transactions of the ASME.2011, Vol.133(1):0212061-0212066
    [143] Novak Jiri. Further analysis of Warm Prestressing (WPS) effects: Role of local stressand strain [A].2007ASME Pressure Vessels and Piping Conference [C]. AmericanSociety of Mechanical Engineers,2007:265-271
    [144] Jeon, Se-Jin, Chung Chul-Hun. Axisymmetric modeling of prestressing tendons innuclear containment dome [J]. Nuclear Engineering and Design,2005, Vol.235(23):2463-2476
    [145] Jhung Myung Jo, Choi Young Hwan, Jang, Changheui. Structural integrity of reactorpressure vessel for small break loss of coolant accident [J]. Journal of Nuclear Scienceand Technology,2009, Vol.46(3):310-315
    [146] Siegele Dieter, Varfolomeyev, Igor, Nagel, Gerhard. Brittle failure assessment of aPWR-RPV for operating conditions and loss of coolant accident [J]. Journal of PressureVessel Technology, Transactions of the ASME,2008, Vol.130(3):0314031-0314038
    [147] Andrews Tony D, Brine Fred E. Hydraulic testing of ordnance components [J]. Journalof Pressure Vessel Technology, Transactions of the ASME,2006, Vol.128(2):162-167
    [148]何庆中,袁宏远,王勇等.多层包扎容器筒体预应力分析计算方法[J].化工机械,2010,37(2)148-152
    [149]李南京,朱孝钦,宋鹏云等.多层压力容器的研究及其进展[J].化工机械,2008,35(6):368-373
    [150]刘斯嘉.整体多层夹紧式高压容器超压处理研究[D].广州:华南理工大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700