峨眉山大火成岩省岩浆作用过程的定量模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于我国西南云贵川三省的二叠纪的峨眉山大火成岩省是我国唯一被国际承认的大火成岩省,一般被认为是地幔柱作用的产物,其主要证据是存在高温苦橄岩和喷发前存在公里级的地壳隆升。公里级隆升是大火成岩省火山作用前深部地幔柱上涌碰撞岩石圈底部并且造成地壳大规模隆升的最好的一个例子。然而,这一结论受到了挑战,因为在峨眉山大火成岩省隆升幅度最大的地区发现了一些代表海底喷发环境的玄武岩。所以,峨眉山大火成岩省是否是地幔柱活动的产物以及地幔柱的模型需要更多的检验。
     玄武岩成分可以反映地幔熔融温度和熔融压力,因为其成分随着地幔潜温(Tp)、初始熔融压力(P0)和终止熔融压力(Pf)的变化而变化。因此,本文利用峨眉山大火成岩省已发表的玄武岩数据,筛选掉明显遭受同化混染的样品。并且通过Klein and Langmuir的方法校正玄武岩成分至MgO为8%,再利用PRIMELT2软件计算原始岩浆成分。通过计算的温度和压力约束大火成岩省形成时地幔的热状态和它的地球化学、物理结构、岩石学特征。计算结果显示峨眉山大火成岩省原始岩浆形成压力在0.4~4.0GPa之间,接近15~130 km深部的地幔源区。地幔潜温在1 420~1 637℃之间,高出正常地幔温度100~300℃,从而为峨眉山地幔柱提供了进一步的证据。此外,地幔熔融的P-T分布关系也为峨眉山地幔柱提供了新证据,中心在丽江地区。
     另外,伴随着大火成岩省玄武岩巨量喷发,携带的大量的能量和物质与周围地壳相互作用,在一些构造活跃部位,由于岩浆的侵入还会形成各种类型的与岩浆成因相关的矿床。峨眉山大火成岩省是全球矿产资源最为丰富的大火成岩省之一。镁铁‐超镁铁岩侵入体是重要的矿产赋矿岩体,主要以岩浆铜镍硫化物‐铂族元素矿床和钒钛磁铁矿矿床为主。本文通过最新的能量控制下的同化混染分离结晶(EC-AFC)模型模拟了峨眉山大火成岩省岩浆与地壳相互作用,结果表明力马河铜镍硫化物矿床的形成是镁铁‐超镁铁质岩浆与围岩相互作用的结果,EC-AFC过程是矿床形成的重要约束。
The Permian Emeishan large igneous province(LIP) in Sichuan, Yunnanand Guizhou Provinces is only internationally admitted large igneous provincein China, generally considered to be a product of mantle plume, the mainevidences are the existence of high-temperature picrites and kilometers crustaluplift prior to the eruption. Kilometers uplift is a commonly cited example ofa LIP that formed as a result of a deep-mantle plume impinging on the base ofthe lithosphere and generating large regional-scale up-doming prior tovolcanism. However, this conclusions were challenged for reporting the lavashad been emplaced in submarine where is the most uplift in the Emeishanlarge igneous province. Thus, it is needs more tests weather Emeishan largeigneous province is the result of mantle plume and mantle plume simulations.
     Basalts can be used as melting temperature and pressure probes of themantle because their compositions change with variations in mantle potentialtemperature(Tp), initial melting pressure(P0) and final melting pressure(Pf).Thus, we collect more than 600 published basaltic samples of Emeishan largeigneous province, and exclude samples which significantly contaminated.Then the remaining samples were corrected to MgO=8% using the Fe8.0 andSi8.0 expressions from Klein and Langmuir, and calculated primary magmasusing PRIMELT2 software. The calculated temperatures and pressures areused to define the thermal state, geochemistry, lithology and physicalstructure of the melting region in the underlying mantle when large igneousprovince forming. The results show that the primary magmas of EmeishanLarge igneous could be generated in the pressure range 0.4~4.0 GPa at anapproximate depth of 15~130 km from mantle sources. And the generated temperatures in range 1 420~1 637℃, which excess normal mantletemperature 100~300℃, provide further evidence of Emeishan mantle plume.Furthermore, the distributions of P-T also strengthen the existence ofEmeishan mantle plume, and Lijiang most probably is the mantle plume axis.
     Additionally, large igneous province erupted with huge amounts ofbasaltic melt, heat and materials, and interacted with the surrounding crust. Ina number of tectonic active sites, there are various types of deposits due tomagma intrusion. Emeishan large igneous province is one of the world's mostabundant mineral resources of the large igneous provinces. Mafic-ultramaficintrusions are major mineral ore-bearing terranes, mainly magmaticcopper-nickel sulphide - PGE deposits and vanadium-titanium magnetitedeposits. We modeling Emeishan large igneous province magmatism andcrustal interaction using the latest energy-constrained assimilation-fractionalcrystallization (EC-AFC) model. The results show that the Limahecopper-nickel sulfide deposit is the result of the interaction of mafic-ultramafic magma and wall rock. EC-AFC process is an important constraintto deposit formation.
引文
Ahern J L, and Turcotte D. Magma migration beneath an ocean ridge. Earth and Planetary ScienceLetters, 1979, 45: 115-122.
    Ali J R, Lo C H, Thompson G M, et al. Emeishan Basalt Ar–Ar overprint ages define severaltectonic events that affected the western Yangtze Platform in the Meso- and Cenozoic.Journal of Asian Earth Sciences, 2004, 22: 163–178.
    Ali J R, Thompson G M, Song X Y, et al. Emeishan Basalts(SW China) and the end-Guadalupiancrisis: magnetobiostratigraphic constraints. Journal of the Geological Society (London), 2002,159: 21-29.
    Ali J R, Thompson G M, Zhou MmF et al. Emeishan large igneous province, SW China. Lithos,2005, 79: 475–489.
    Ali J R, Fitton J G, Herzberg C. Emeishan large igneous province (SW China) and themantle-plume up-doming hypothesis. Journal of the Geological Society, 2010, 167:953–959.
    Allen R M, Nolet G, Morgan W J, et al. The thin hot plume beneath Iceland. GeophysicalJournal International, 1999, 137: 51-63.
    Anh T V, Pang K N, Chung S L, et al. The Song Da magmatic suite revisited: A petrologic,geochemical and Sr–Nd isotopic study on picrites, flood basalts and silicic volcanic rocks.Journal of Asian Earth Sciences, 2011, 42: 1341-1355.
    Arndt N T. Komatiites: A dirty window to the Archean mantle, Terra Cognita, 1986, 6: 59-66.
    Arndt, N T, Kerr A C, Tarney J. Dynamic melting in plume heads: The formation of Gorgona
    Barbokzoam Sat iAit,e sB aenrdg abnatsza Glts .W E.a rMthe altn dp rPoldauncettiavriyty S acniedn crhe eLoelottgeyrs:, c1o9m97p,l e1m46e:n t2a8r9y- 3in0f1lu.ences on theprogress of melting. Numerical Heat Transfer, 1997, 31: 375-392.
    Barboza S A, Bergantz G W. Rheological transitions and the progress of melting of crustal rocks.Earth and Planetary Science Letters, 1998, 158: 19-29.
    Bohrson W A, Spera F J. Energy-constrained opensysterm magmatic processesⅡ: Application ofenergy-constrained assimilation-fractional crystallization (EC-AFC) model to magmaticsystems. Journal of Petrology, 2001, 42: 1019-1041.
    Boudreau A E. PELE - A version of the MELTS software program for the PC platform.Computers and Geosciences, 1999, 25: 21-20.
    Boven A, Pasteels P, Punzalan L E, et al. 40Ar/39Ar geochronological constraints on the age andevolution of Permo-Triassic Emeishan volcanic province, Southwest China. Journal of AsianEarth Sciences, 2002, 20: 157-175.
    Bowen N L. The behavior of inclusions in igneous magmas. Journal of Geology, 1922b, 30:513-570.
    Bowen N L. The Evolution of the Igneous Rocks. Princeton, NJ: Princeton University Press, 1928,334.
    Bowen N L. The reaction principle in petrogenesis. Journal of Geology, 1922a, 30: 177-198.
    Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zircon geochronology and tempo of theend-Permian mass extinction. Science, 1994, 280: 1039-1045.
    Bryan S E, Ernst R E. Revised definition of large igneous provinces (LIPs). Earth ScienceReviews, 2008, 86: 175-202.
    Bryan S E, Ernst R E. Revised definition of Large Igneous Provinces (LIPs).Earth-Science Reviews, 2008, 86: 175-202.
    Bunge H P. Low plume excess temperature and high core heat flux inferred from non-adiabaticgeotherms in internally heated mantle circulation models. Physics of the Earth and PlanetaryInteriors, 2005, 153: 3-10.
    Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution offlood basalts. Earth and Planetary Science Letters, 1990, 99: 79–93.
    Campbell I H. Identification of ancient mantle plumes.// Mantle plumes: their3id5e2n: t5if-i2c2a.tion through time. Geological Society of America Special Papers, 2002,
    Campbell I H. Large Igneous Provinces and the mantle plume hypothesis. Elements, 2006, 1:265-269.
    Cawthorn R G. Degrees of melting in mantle diapirs and the origin of ultrabasic liquids. Earth andPlanetary Science Letters, 1975, 23: 113-120.
    Chan L S, Wang C Y, Wu X Y. Paleomagnetic results from some Permian–Triassic rocks fromsouthwestern China. Geophysical Research Letters, 1984, 11: 1157-1160.
    Chung S L, Jahn B M, Lo C H, et al. The Emeishan flood basalt in SW China: a mantle plumeinitiation model and its connection with continental breakup and mass extinction at thePermian–Triassic boundary. In: Flower M F J, Chung S L, Lo C H, et al. (Eds.), Mantledynamics and plate interactions in East Asia, AGU Geodynamics Series, 1998, 27: 47-58.
    Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basaltsat the Permian-Triassic boundary. Geology, 1995, 23: 889-892.
    Chung S L, Jahn B M. Plume–lithosphere interaction in the generation of the Emeishan floodbasalts at the Permian–Triassic boundary. Geology, 1995, 23: 889-892.
    Claoue′-Long J C, Zhang Z, Ma G, et al. The age of the Permian–Triassic boundary. Earth andPlanetary Science Letters, 1991, 105: 182-190.
    Coffin M F, Eldholm O. Large igneous provinces: crustal structure, dimensions, and externalconsequences: Reviews of Geophysics, 1994, 32: 1–36.
    Coffin M F, Eldholm O. Scratching the surface: estimating dimensions of large igneousprovinces. Geology, 1993, 21: 515-518.
    Coffin M F, Eldholm O. Volcanism and continental break-up: a global compilation oflarge igneous provinces. In: Storey B C, Alabaster T, Pankhurst R J. (Eds.)Magmatism and the Causes of Continental Break-up. Geological Society, London,Special Publications, 1992, 68: 17-30.
    Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts andcontinental breakup. Earth and Planetary Science Letters, 1999, 166: 177-195.
    Courtillot V, Renne P R. On the ages of flood basalt events. Comptes Rendus Geoscience, 2003,335: 1113-1140.
    Davies G F.地幔柱存在的依据.科学通报, 2005, 50(17): 1081-1093.
    Davies J H, Bunge H P. Are splash plumes the origin of minor hotspots?, Geology, 2006, 34:349–352.
    Depaolo D J. Isotopic studies of processes of in mafic magma chambers:Ⅰ. The Kiglapaitintrusion, Labrador. Journal of Petrology, 1985, 26: 925-951.
    Depaolo D J. Trace element and isotopic effects of combined wallrock assimilation andcrystallization. Earth and Planetary Science Letters, 1981, 53: 198-202.
    Dixon J E, Leist L, Langmuir C, et al. Recycled dehydrated lithosphere observed in plumeinfluenced mid-ocean-ridge basalt. Nature, 2002, 28: 385–389.
    Dmitriev Y I, Bogatikov O A. Emeishan flood basalts, Yangtze Platform: indicators of an abortedoceanic environment. Petrology, 1996, 4: 407- 418.
    Duncan R A, Richards M A. Hotspots, mantle plumes, flood basalts, and true polar wander.Reviews of Geophysics, 1991, 29: 31-50.
    Enkin R J, Yang Z, Chen Y, et al. Paleomagnetic constraints on the geodynamic history of themajor blocks of China from the Permian to the present. Journal of Geophysical Research,1992, 97: 13953-13989.
    Enos P. The Permian of China. In: Scholle P A, Peryt T M, Ulmer-Scholle D S. (Eds.), ThePermian of northern Pangea, Sedimentary Basins and Economic Resources 1995, 2:225-256.
    Ernst R E, Buchan K L, West T D, et al. Giant dyke swarms: Characteristics, distribution andgeotectonic applications. In: Baer G, Heimman A (eds.). Physics and Chemistry of Dykes.Rotterdam: Balkema, 1995a, 3-21.
    Ernst R E, Buchan K L. Giant radiating dyke swarms: Their use in identifying preMesozoic largeigneous provinces and mantle,plumes. In: Mahoney J J, Coffin M F ( eds.). Large IgneousProvinces: Continental Oceanic, and Planetary Flood Volcanism. Washington, DC: AmericanGeophysical Union, 1997, 297- 333.
    Ernst R E, Buchan K L. The use of mafic dike swarms in identifying and locating mantle plumes.In: Ernst R E and Buchan K L (eds.). Mantle Plumes: Their Identif ication through Time.Boulder, Colorado: Geological Society of America Special Paper, 2001, 352: 247-265.
    Ernst R E, Head J W, Parfitt E, et al. Giant radiating dyke swarms on Earth and Venus. EarthScience Reviews, 1995b, 39: 1-58.
    Fan W M, Wang Y J, Peng T P, et al. Ar-Ar and U-Pb geochronology of Late Paleozoic basalts inwest Guangxi and its constraints on the eruption age of Emeishan basalt magmatism. ChineseScience Bulletin, 2004, 49: 2318-2327.
    Fan W M, Zhang C H, Wang Y J, et al. Geochronology and geochemistry of Permian basalts inwestern Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction.Lithos, 2008, 102: 218–236.
    Farnetani C G, Richards M A. Numerical investigations of the mantle plume initiationmodel for flood basalt events. Journal of Geophysical Research, 1994, 99B:13813-13833.
    Farnetani C G, Samuel H. Beyond the thermal plume paradigm. Geophysical Research Letters,2005, 32: L07311, doi:10.1029/2005GL022360.
    Foulger G R, Julian B R, Allen R M, et al. Seismic tomography shows that upwelling beneathIceland is confined to the upper mantle, Geophysical Journal International, 2001, 146:504–530.
    Fyfe W S. The evolution of the Earth’s crust: Modern plate tectonics to ancient hot spot tectonics?.Chemical Geology, 1978, 23: 89-114.
    Ghiorso M S, Kelemen P B. Evaluating reaction stoichiometry in magma systems evolving undergeneralized thermodynamic constraints: examples comparing isothermal and isenthalpicassimilation. Geochemical Society Special Publication, 1987, 1: 319-336.
    Ghiorso M S, Sack R O. Chemical mass transfer in magmatic processes: IV. A revised andinternally consistent thermodynamic model for the interpolation and extrapolation ofliquid–solid equilibria in magmatic systems. Contributions to Mineralogy and Petrology,1995, 119: 197–212.
    Glennie K W. Introduction to the Petroleum Geology of the North Sea. Blackwell Sci. Pubs. 1984,17–59.
    Green D H, Ringwood A E. The genesis of basaltic magmas. Contributions to Mineralogy andPetrology, 1967, 15: 103-190.
    Griffiths R W, Campbell I H. Interaction of mantle plume heads with the Earth’s surfaceand onset of small-scale convection. Journal of Geophysical Research, 1991, 96B:18275–18310.
    Griffiths R W, Campbell I H. Stirring and structure in mantle plumes. Earth and PlanetaryScience Letters, 1990, 99: 66-78.
    Griffiths R W. Thermals in extremely viscous fluids, including the effects oftemperature-dependent viscosity. Journal of Fluid Mechanics, 1986, 166: 115–138.
    Gruenewaldt G. The mineral resources of the Bushveld complex. Minerals Science andEngineering, 1977, 9( 2): 83-95.
    Guo Z F, Wilson M, Liu J Q, et al. Post-collisional, potassic and ultrapotassic magmatism of theNorthern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamicsetting and uplift mechanisms. Journal of Petrology, 2006, 47: 1177-1220.
    Halama R, Marks M, Gerhard B, et al. Crustal contamination of mafic magmas: evidence from apetrological, geochemical and Sr–Nd–Os–O isotopic study of the Proterozoic Isortoq dikeswarm, South Greenland. Lithos, 2004, 74: 199-232.
    Hallam A, Wignall P B. Mass extinctions and sea-level changes. Earth-Science Reviews, 1999, 48:217–250.
    Hanski E, Kamenetsky V S, Luo Z Y, et al. Primitive magmas in the Emeishan Large IgneousProvince, southwestern China and northern Vietnam. Lithos, 2010,doi:10.1016/j.lithos.2010.04.008.
    Hanski E, Walker R J, Huhma H, et al. Origin of the Permian-Triassic komatiites, northwesternVietnam. Contributions to Mineralogy and Petrology, 2004, 147: 453–469.
    Hawkesworth C J, Kempton P D, Rogers N W. Continental mantle lithosphere, and shallow levelenrichment processes in the Earth’s mantle. Earth Planet Science letters, 1990, 96: 256-268.
    He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid crustal doming beforethe eruption of the Emeishan flood basalts. Earth and Planetary Science Letters,2003, 213: 389–403.
    He B, Xu Y G, Chung S L, et al. Sedimentary evidence for doming prior to the eruption of theEmeishan flood basalts. Earth and Planetary Science Letters, 2003, 213: 391–405.
    He B, Xu Y G, Huang L X, et al. Age and duration of the Emeishan flood volcanism, SWChina:Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites,post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth andPlanetary Science Letters, 2007, 255:306-323.
    He B, Xu Y G, Wang Y M, et al. Sedimentation and lithofacies paleogeography insouthwestern China before and after the Emeishan flood volcanism: new insightsinto surface response to mantle plume activity. Journal of Geology, 2006, 114:117–132.
    He Q, Xiao L, Brian B, et al. Variety and complexity of the Late-Permian Emeishan basalts:Reappraisal of plume–lithosphere interaction processes. Lithos, 2010, 119: 91-107.
    Heller F, Chen H, Dobson J, et al. Permian–Triassic magnetostratigraphy—new results fromSouth China. Physics of the Earth and Planetary Interiors, 1995, 89: 281–295.
    Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle andplumes: Constraintsfrom basalts, picrites and komatiites: Geochemistry Geophysics Geosystems, 2007, 8:doi:10.1029GC001390.
    Herzberg C, Asimow P D. Petrology of some oceanic island basalts: PRIMELT2.XLS softwarefor primary magma calculation: Geochemistry Geophysics Geosystems, 2008, 8:doi:10.1029GC002057.
    Herzberg C, Gazel E. Petrological Evidence for Secular Cooling in Mantle Plumes, Nature, 2009,458: 619-622.
    Herzberg C, Gazel E. Petrological evidence for secular cooling in mantle plumes: Nature, 2009,458: 619–622.
    Herzberg C. Basalts as temperature probes of Earth’s mantle. Geological Society ofAmerica, 2011, 39(12):1179-1180.
    Herzberg C. Lithosphere peridotites of the Kaapvaal craton. Earth and Planetary Sciences Letters,1993, 120: 13-29.
    Herzberg C. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. Journal ofPetrology, 2004, 45: 2389-2405.
    Hill R I. Starting Plumes and Continental Break-Up, Earth and Planetary Sciences Letters,1991, 104: 398-416.
    Hirano N, Koppers A A P. Response: Another nail in which coffin?. Science, 2007, 315: 40.
    Hofmann A W, Hart S R. Another nail in which coffin? Science, 2007, 315: 39 40.
    Hou Z Q, Chen W, Lu J R. Collision event during 177–135 Ma on the eastern margin of theQinghai–Tibet plateau: evidence from Ar-40/Ar-39 dating for basalts on the western marginof the Yangtze platform. Acta Geologica Sinica, 2002, 76: 194–204.
    Hou Z Q, Chen W, Lu J R. Eruption of the continental flood basalts at ~259 Ma in the Emeishanlarge igneous province, SW China: Evidence from Laser Microprobe 40Ar-39Ar dating. ActaGeologica Sinica, 2006, 80(4): 514-521.
    Huang K, Opdyke N D. Magnetostratigraphic investigations of an Emeishan basalt section inwestern Guizhou Province, China. Earth and Planetary Sciences Letters, 1998, 163: 1–14.
    Huppert H E, Sparks R S J. The generation of granitic magmas by intrusion of basalt intocontinental crust. Journal of Petrology, 1988, 29: 599-642.
    Iwamori H, McKenzie D, Takahashi E. Melt generation by isentropic mantle upwelling. Earth andPlanetary Sciences Letters, 1995, 134: 253–266.
    Jaques A L, Green D H. Anhydrous melting of peridotite at 0-15kb pressure and the genesis oftholeiitic basalts. Contributions to Mineralogy and Petrology, 1980, 73: 287-310.
    Jarvis G T, Campbell I H. Archean komatiites and geotherms: Solution to an apparentcontradiction. Geophysical Research Letters, 1983, 10: 1133–1136.
    Jin Y, Shang Q. The Permian of China and its interregional correlation. In: Yin H, Dickins J M,Shi G R, et al.(Eds.), Permo-Triassic evolution of Tethys and Western Circum-Pacific.Elsevier, 2000, 71–98.
    Jin Y, Utting J, Wardlaw B R.(Eds.). Permian Stratigraphy, Environments and Resources: volume1, Palaeoworld vol. 4. Nanjing University Press. 1994.
    Jin Y, Wardlaw B R, Glenister B F, et al. Permian chronostratigraphic subdivisions. Episodes,1997, 20: 10–15.
    Jin Y, Wardlaw B R, Wang Y. (Eds.). Permian Stratigraphy, Environments and Resources volume2, Palaeoworld vol. 9. Nanjing University Press. 1998.
    Kamo S L, Czamanske G K, Amelin Y, et al. Rapid eruption of Siberian flood volcanic rocks andevidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma.Earth and Planetary Sciences Letters, 2003, 214: 75–91.
    Karato S I. Mapping water content in the upper mantle, in Inside the Subduction Factory, Geophys.in Eiler J.(Eds). Monogr. Ser., vol. 138, AGU, Washington D C. 2004, 135–152
    Keays R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of oredeposits. Lithos, 1995, 34: 1–18.
    Keiding J K, Trumbull R B, Veksler IV, et al. On the significance of ultra-magnesian olivines inbasaltic rocks. Geology, 2011, 39: 1095–1098.
    Kelemen P B. Reaction between ultramafic rock and fractionating basaltic magmaⅠ. Phaserelations, the origin of calc-alkaline magma series, and the formation of discordant dunite.Journal of Petrology, 1990, 31: 51-98.
    Kent R W, Storey M, Saunders A D. Large igneous provinces: sites of plume impact or plumeincubation?. Geology, 1992, 20: 891–894.
    Klein E, Langmuir C. Global Correlations of Ocean ridge basalt chemistry, axial depth, crustalthickness. Journal of Geophysical Research, 1987, 92: 8089-8115.
    Klein E, Langmuir C. Local versus global variations in ocean ridge basalt composition: A reply.Journal of Geophysical Research, 1989, 94: 4241-4252.
    Korenaga J. Archean geodynamics and the thermal evolution of Earth. In: Benn K, Mareschal J C,Condie K.(Eds.), Archean Geodynamics and Environments. AGU Geophysical MonographSeries, 164. Washington DC, 2006, 7–32.
    Langmuir C H, Hanson G N. An evaluation of major element heterogeneity in the mantle sourcesof basalts. Philosophical Transactions of the Royal Society of London , 1980, 297: 383–407.
    Langmuir C H, Klein E M, Plank T. Petrological systematics of mid-ocean ridge basalts:Constraints on melt generation beneath ocean ridges. in Morgan J P, et al. eds. Mantle flowand melt generation at midocean ridges. Washington, DC, American Geophysical Union,1992, 183–280.
    Larson R L. Latest pulse of the earth: evidence for a mid-Cretaceous superplume. Geology, 1991,19: 547-550.
    Lee C T, Luffi P, Plank T, et al. Constraints on the depths and temperatures of basaltic magmageneration on Earth and other terrestrial planets using new thermobarometers for maficmagmas: Earth and Planetary Science Letters, 2009, 279: 20–33.
    Lee J S. The Geology of China. Thomas Murby, London, 1939, 528.
    Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan–Red River shear zone (Yunnan,China), Tertiary transform boundary of Indochina. Tectonophysics, 1995, 251, 3–84.
    Lesher C M, Groves D I. Controls on the formation of komatiite-associated nickel-copper sulfidedeposits, in Friedrich G, Genkin A, Naldrett A J, et al. eds. Geology and metallogeny ofcopper deposits Berlin, Springer-Verlagp, 1986, 43-62.
    Lewis J D, Williams J R. The petrology of an ultramafic lava near Murphy Well, EasternGoldfields, Western Australia. Geological Survey of W A. 1973, 60-68.
    Li C, Maier W D, de Waal S A. Magmatic Ni-Cu versus PGE deposits—Contrasting geneticcontrols and exploration implications. South African Journal of Geology, 2001, 104:309–318.
    Li J, Xu J F, Suzuki K, et al. Os, Nd and Sr isotope and trace element geochemistry of the Mulipicrites: Insights into the mantle source of the Emeishan Large Igneous Province. Lithos,2010, 119: 108–122.
    Lin J L, Fuller M, Zhang W Y. Preliminary polar wander paths for the North and South Chinablocks. Nature, 1985, 313: 444–449.
    Lin S C, van-Keken P E. Multiple volcanic episodes of flood basalts caused by thermochemicalmantle plumes. Nature, 2005, 436: 250–252.
    Liu B, Xu X. (Chief Eds), Atlas of the lithofacies and paleogeography of South China(Sinian–Triassic). Science Press, Beijing, 1994, 192.
    Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations toPermian–Triassic boundary events. Earth and Planetary Science Letters, 2002, 198,449–458.
    Loper D E, Stacey F D. The dynamical and thermal structure of deep mantle plumes. Physics ofthe Earth and Planetary Interiors, 1983, 33: 304–317.
    Luo Z, Jin Y, Zhao X. The Emei taphrogenesis of the upper Yangtze Platform in south China.Geological Magazine, 1990, 127: 393–405.
    Lyubetskaya T, Korenaga J. Chemical composition of Earth’s primitive mantle and its variance, 1,methods and results. Journal of Geophysical Research, 2007a, 112: B03211.doi:10.1029/2005JB004223.
    Lyubetskaya T, Korenaga J. Chemical composition of Earth’s primitive mantle and its variance, 2,Bim0p3l2ic1a2t.i odnosi: 1f0o.r1 0g2l9o/b2a0l0 5gJeBo0d0y4n2a2m4i.cs. Journal of Geophysical Research, 2007b, 112:
    Ma X, McElhinny M W, Embleton B J J, et al. Permo-Triassic paleomagnetism in the EmeiMountain Region, southwest China. Geophysical Journal International, 1993, 114: 293–303.
    Mahoney J J, Coffin M F. Large Igneous Provinces. Geophys Monograph, 1997, 100: 438.
    Marsh B D. On the interpretation of crystal size distributions in magmatic systems. Journal ofPetrology, 1998, 39: 553-599.
    Marsh J S. Geochemical constraints on coupled assimilation and fractional crystallizationinvolving upper crustal compositions and continental tholeiitic magma. Earth and PlanetaryScience Letters, 1989, 92: 70-80.
    McDonough W F, Sun S S. Composition of the Earth. Chemical Geology, 1995, 120: 223-253.
    McElhinny M W, Embleton B J J, Ma X H, et al. Fragmentation of Asia in the Permian. Nature,1981, 293: 212–216.
    McKenzie D, Bickle M J. The volume and composition of melt generated by extension of thelithosphere. Journal of Petrology, 1988, 29: 625–679.
    McKenzie D. The generation and compaction of partial melts. Journal of Petrology, 1984, 25:713–765.
    Mei S, Jin Y, Wardlow B R. Conodont succession of the Guadalupian-Lopingian boundary stratain Laibin of Guangxi, China and West Texas, USA. Palaeoworld, 1998, 9: 53–76.
    Metcalfe I. Gondwana dispersion and Asian accretion: an overview. In: Metcalfe I. (Eds.),Gondwana Dispersion and Asia Accretion, Final Results Volume for IGCP Project 321. 1999,9–28.
    Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency tomography reveals a variety of plumesin the mantle. Science, 2004, 303: 338–343.
    Morgan W J. Convection plumes in the lower mantle. Nature, 1971, 230: 42-43.
    Morgan W J. Plate motions and deep mantle convection. Geological Society ofAmerica, 1972,132: 7-22.
    Mutter J C, Zehnder C M. Deep crustal structure and magmatic processes: The inception ofseafloor spreading in the Norwe-gian-Greenland Sea. In: Morton AC, Parsons L M, eds.Early Ter-tiary Volcanism and the Opening of the NE Atlantic. Geological Society ofAmerica, Special Paper, 1988, 39: 35-48.
    Naldrett A J. Magmatic sulfide deposits—Geology, geochemistry, and exploration. Berlin,Springer-Verlag, 2004, 727.
    Naldrett A J. World-class Ni-Cu-PGE deposits: Key factors in their genesis. MineraliumDeposita , 1999, 34: 227-240.
    Nikishin A M, Ziegler P A, Abbott D, et al. Permo-Triassic intraplate magmatism and rifting inEurasia: implications for mantle plumes and mantle dynamics. Tectonophysics, 2002, 351:3–39.
    Nisbet E G, Cheadle M J, Arndt N T, et al. Constraining the potential temperature of the Archeanmantle: A review of the evidence from komatiites. Lithos, 1993, 30: 291–307.
    Niu Y L, Batiza R. An empirical method for calculating melt compositions produced beneathmid-ocean ridges: Application for axis and off-axis (seamounts) melting. Journal ofGeophysical Research, 1991, 96: 21 753-21 777.
    Niu Y L, Waggoner G, Sinton J M, et al. Mantle source heterogeneity and melting processesbeneath seafloor spreading centers: The East Pacific Rise 18°- 19°S. Journal of GeophysicalResearch, 1996, 101: 27 711-27 733.
    O’Hara M J. Are ocean fl oor basalts primary magmas?. Nature, 1968, 220: 683–686,doi:10.1038/220683a0.
    O’Hara M J. Trace element geochemical effects of integrated melt extraction and shaped meltingregimes. Journal of Petrology, 1995, 34: 1111-1132.
    O’Hara M J. Volcanic plumbing and the space problem—thermal and geochemical consequencesof large-scale assimilation in ocean island development. Journal of Petrology, 1998, 39:1077-1089.
    Olson P, Singer H A. Creeping plumes. Journal of Fluid Mech., 1985, 158: 511-531.
    Paone A. The geochemical evolution of the Mt. Somma-Vesuvius volcano. Mineralogy andPetrology, 2006, 87: 53-80.
    Pearce J A, Mei H J. Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa and Golmud.Philosophical Transactions of the Royal Society in London, 1988, 327: 169–201.
    Peate D W. The Parana–Etendeka province. In: Mahoney J J, Coffin M F(Eds.), Large IgneousProvinces: Continental, Oceanic and Planetary Flood Volcanism, Am. Geophys. UnionMonogr. 1997, 100: 217–245.
    Piochi M, Ayuso R A, Vivo B D, et al. Crustal contamination and crystal entrapment duringpolybaric magma evolution at Mt. Somma–Vesuvius volcano, Italy: Geochemical and Srisotope evidence. Lithos, 2006, 86: 303-329.
    Putirka K D, Perfit M, Ryerson F J, et al. Ambient and excess mantle temperatures, olivinethermometry, and active vs. passive upwelling. Chemical Geology, 2007, 241: 177–206,doi:10.1016/j.chemgeo.2007.01.014.
    Putirka K D. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, asinferred from olivine phenocrysts: Evidence for thermally driven mantle plumes.Geochemistry Geophysics Geosystems, 2005, 6: doi:10.1029/ 2005GC000915.
    Qi L, Zhou M F. Platinum-group elemental and Sr–Nd–Os isotopic geochemistry of PermianEmeishan flood basalts in Guizhou Province, SW China. Chemical Geology, 2008, 248:83–103.
    Raia F, Spera F J. Simulations of crustal anatexis: Implications for the growth and differentiationof continental crust. Journal of Geophysical Research, 1997, 102: 22629-22648.
    Reichow M K, Saunders A D, White R V, et al. Ar-40/Ar-39 dates from the West Siberian Basin:Siberian flood basalt province doubled. Science, 2002, 296: 1846–1849.
    Renne P R, Karner D E, Ludwig K R. Absolute ages aren’t exactly. Science, 1998, 282:1840–1841.
    Richards M A, Duncan R A, Courtillot V E. Flood- basalts and hot spot tracks : plumeheads and tails. Science,1989, 246: 103-107.
    Richards M A, Duncan R A, Courtillot V E. Flood basalts and hot-spot tracks; plume heads andtails. Science, 1989, 246: 103-107.
    Rivalenti G, Correia C T, Girardi V A V, et al. Sr–Nd isotopic evidence for crustal contaminationin the Niquelandia complex, Goias, Central Brazil. Journal of South American Earth Sciences,2008, 25: 298-312.
    Rochette P, Tamrat E, Feraud G, et al. Magnetostratigraphy and timing of the Oligocene Ethiopian
    RollisTorna psH. EaRr.t h Uansidn gP laGneetoacrhye Smciiceanlc eD Laettat:e rsE, v1a9l9u8a,t i1o6n4, : P4r9e7s–e5n1ta0t.ion, Interpretation. London:Longman Group United Kingdom, 1993. 1-351.
    Schubert G, Masters G, Olson P, et al. Superplumes or plume clusters?. Physics of the Earth andPlanetary Interiors, 2004, 146: 147–162.
    Sharma M. Siberian Traps. In: Mahoney J J, Coffin M F.(Eds.), Large igneous provinces:continental, oceanic and planetary flood volcanism. Am. Geophys. Union Monogr. 1997, 100:273–295.
    Shellnutt J G, Jahn B M. Origin of Late Permian Emeishan basaltic rocks from the Panxi region(SW China): Implications for the Ti-classification and spatial–compositional distribution ofthe Emeishan flood basalts. Journal of Volcanology and Geothermal Research, 2011, 199:85–95.
    Shellnutt J G, Zhou M F, Yan D P, et al. Longevity of the Permian Emeishan mantleplume (SW China): 1 Ma, 8Ma or 18Ma?. Geological Magzine, 2008, 145: 373-388.
    Sheng J, Jin Y. Correlation of Permian deposits in China. Palaeoworld: Nanjing University, 1994,4: 14–113.
    Shi G R, Shen Z S. A Changshingian (Late Permian) brachiopod fauna from Son La, northwestVietnam. Journal of Asian Earth Sciences, 1998, 16: 501–511.
    Song X Y, Qi H W, Robinson P T, et al. Melting of the subcontinental lithospheric mantle by theEmeishan mantle plume; evidence from the basal alkaline basalts in Dongchuan, Yunnan,Southwestern China. Lithos, 2008, 100: 93–111.
    Song X Y, Zhou M F, Cao Z M, et al. Ni–Cu–(PGE) magmatic sulfide deposits in the Yangliupingarea, Permian Emeishan Igneous province, SW China. Mineralium Deposita, 2003, 38:831–843.
    Song X Y, Zhou M F, Hou Z Q, et al. Geochemical constraints on the mantle source of the upperPermian Emeishan continental flood basalts, southwestern China. International GeologyReview, 2001, 43: 213–225.
    Song X Y, Zhou M F, Keays R R, et al. Geochemistry of the Emeishan flood basalts atYangliuping, Sichuan, SW China: implications for sulfide segregation. Contributions toMineralogy and Petrology, 2006, 152: 53–74.
    Sparks R S J. The role of crustal contamination in magma evolution through geological time.Earth and Planetary Science Letters, 1986, 78: 211-223.
    Spera F J, Bohrson W A. Energy-constrained open-system magmatic processesⅠ: general modeland energy-constrained assimilation and fractional crystallization (EC-AFC) formulation.Journal of Petrology, 2001, 42: 999-1018.
    Spera F J, Oldenburg C, Christensen C et al. Simulations of convection with crystallization in thesystem KalSi2O6-CaMgSi2O6: implications for compositionally zoned magma bodies.American Mineralogist, 1995, 80: 1188-1207.
    Spera F J, Yuen D A, Kirschvink S J. Thermal boundary layer convection in silicic magmachambers: effects of temperature dependent rheology and implications forthermogravitational chemical fractionation. Journal of Geophysical Research, 1982, 87:8755-8767.
    Sproule R A, Lesher C M, Ayer J A, et al. Spatial and temporal variations in the geochemistry ofkomatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Research, 2002,115: 153–186.
    Stanley S M, Yang X. A double mass extinction at the end of the Paleozoic Era. Science, 1994,291: 1340–1344.
    Storey B C, Kyle P R. An active mantle mechanism for Gondwana breakup. South African Journalof Geology, 1997, 100: 283-290.
    Storey B C. The role of mantle plumes in continental breakup: case histories from Gondwanaland.Nature, 1995, 377: 301-308.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications formantle composition and processes. In: Saunders A D, Norry M J. (Eds.), Magmatism inocean basins. Geological Society, London, Special Publication, 1989, 42: 313–345.
    Tao Y, Li C, Song X Y, et al. Mineralogical, petrological, and geochemical studies of the Limahemafic-ultramafic intrusion and associated Ni-Cu sulfide ores, SW China. MineraliumDeposita, 2008, 43: 849-872.
    Taylor S R, McLennan S M. The continental crust: its composition and evolution. Blackwell,Oxford, 1985: 312.
    Thomas D N, Rolph T C, Shaw J, et al. Palaeointensity studies of a Late Permian lava successionfrom Guizhou Province, South China: implications for post-Kiaman dipole field behaviour.Geophysical Journal International, 1998, 134: 856–866.
    Thompson G M, Ali J R, Song X Y, et al. Emeishan Basalts, southwest China: reappraisal of theformation’s type area stratigraphy and a discussion of its significance as a large igneousprovince. Journal of the Geological Society (London), 2001, 158: 593–599.
    Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferred frommagnesian olivines in Phanerozoic picrites. Nature, 2000, 407: 502–506,doi:10.1038/35035058.
    Tien C P. The Permian of Vietnam, Laos and Cambodia and its interregional correlation. In: YinH, Dickins J M, Shi G R, et al. (Eds.), Permo-Triassic Evolution of Tethys and WesternCircum-Pacific. Elsevier, 2000, 99–109.
    Tien C P. Upper Carboniferous–Permian volcano-sedimentary formations in Vietnam andadjacent territories. In: Findlay R H, Unrung R, Banks M R, et al.(Eds.), Gondwana Eight:Assembly, Evolution And Dispersal. A.A. Balkema, Rotterdam, 1993, 229–306.
    Turner S, Hawkesworth C. The nature of the sub-continental mantle: constraints from themajor-element composition of continental flood basalts. Chemical Geology, 1995, 120:295-314.
    Van der Voo R, Wu F, Wang Z, et al. Paleomagnetism and electron microscopy of the Emeishanbasalts, Yunnan China. Tectonophysics, 1993, 221: 367–379.
    Walter M J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere.Journal of Petrology, 1998, 39: 29-60.
    Wang C Y, Zhou M F, Qi L. Permian flood basalts and mafic intrusions in the Jinping (SWChina)–Song Da (northern Vietnam) district: Mantle sources, crustal contamination andsulfide segregation. Chemical Geology, 2007, 243: 317–343.
    Wang C Y, Zhou M F, Zhao D G. Mineral chemistry of chromite from the Permian JinbaoshanPt-Pd sulphide-bearing ultramafic intrusion in SW China with petrogenetic implications.Lithos, 2005, 83(1-2): 47-66.
    Wang E, Burchfiel B C, Royden L H, et al. (eds). Late Cenozoic Xianshuihe–Xiaojiang, RedRiver, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China.Geological Society of America, Special Papers, 1998, 327.
    Wang X D, Sugiyama T. Diversity and extinction patterns of Permian coral faunas of China.Lethaia, 2000, 33: 285–294.
    Wang X, Metcalfe I, Jian P, et al. The Jinshajiang–Ailoshan Suture Zone, China:
    Weavteecr tJo,n Loastnrgamtiguriarp Ch.y ,C aaglceu alnatdi oenv oolfu ptihoans.e J oeuqrunilailb orifu Ams iiann m Eianretrha lS-cmieenltc seys,s t2e0m0s0., C18o:m 6p7u5t–e r6s 9a0n.dGeosciences, 1990, 16: 1-19.
    Weiberg R F, Leitch A M. Mingling in mafic magma chambers replenished by light felsic inputs:fluid dynamical experiments. Earth and Planetary Science Letters, 1998, 157: 41-56.
    White R S, McKenzie D. Mantle plumes and flood basalts. Journal of GeophysicalResearch, 1995, 100(B9): 17543–17585.
    White R, McKenzie D. Magmatism at rift zones: the generation of volcanic continentalmargins and flood basalts. Journal of Geophysical Research, 1989, 94B:7685–7729.
    White W M. Oceanic island basalts and mantle plumes: The geochemical perspective. AnnualReview of Earth and Planetary Sciences, 2010, 38: 133–160,doi:10.1146/annurev-earth-040809-152450.
    Wignall P B. Large igneous provinces and mass extinctions. Earth-Science Reviews,2001, 53: 1-33.
    Wignall P B. Large igneous provinces and mass extinctions. Earth-Science Reviews, 2001, 53:1–33.
    Wilson J T. Evidence from islands on the spreading of the ocean floor. Nature, 1963, 197:536-538.
    Wilson M. Igneous petrogenesis. London: Unwin Hyman, 1989.
    Xiao L, Xu Y, Chung S L, et al. Chemostratigraphic correlation of upper Permian lavas fromYunnan province, China: extent of the Emeishan large igneous province. InternationalGeology Review, 2003, 45: 753–766.
    Xiao L, Xu YG, Mei H J, et al. Distinct mantle sources of low-Ti and high-Ti basalts from thewestern Emeishan large igneous province, SW China: implications for plume–lithosphereinteraction. Earth and Planetary Science Letters, 2004, 228: 525–546.
    Xu J F, Suzuki K, Xu Y G, et al. Os, Pb, and Nd isotope geochemistry of the Permian Emeishancontinental flood basalts: Insights into the source of a large igneous province. Geochimica etCosmochimica Acta, 2007, 71: 2104–2119.
    Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesisof Permian–Triassic Emeishan flood basalts in southwestern China. Lithos, 2001, 58:145–168.
    Xu Y G, He B, Chung S L, et al. Geologic, geochemical, and geophysical consequencesof plume involvement in the Emeishan flood-basalt province. Geology, 2004, 32:917–920.
    Xu Y G, He B, Huang X L, et al. Identification of mantle plumes in the Emeishan LargeIgneous Province. Episodes, 2007, 30: 32–42.
    Xu Y, Mei H, Xu J, et al. Origins of two differentiation trends in the Emeishan flood basalts.Chinese Science Bulletin, 2003, 48: 390–394.
    Yang Z Y. The Permian system. In: Yang Z Y, Cheng Y Q, Wang H Z. (Eds.), The Geology ofChina, Clarendon Press, Oxford, 1986, 303.
    Zhang Z C, Mahoney J J, Mao J W, et al. Geochemistry of Picritic and Associated Basalt Flows ofthe Western Emeishan Flood Basalt Province, China. Journal of Petrology, 2006, 47(10):1997-2019.
    Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic-ultramaficlayered intrusions in the Emeishan large igneous province, SW China, based on isotopic andbulk chemical constraints. Lithos, 2009, 113: 369-392.
    Zhang Z C, Wang F S. Geochemistry of two types of basalts in the Emeishan Basaltic Province:2ev3i7d.ence for mantle plume–lithosphere interaction. Acta Geologica Sinica, 2002, 76: 229–
    Zheng L, Yang Z, Tong Y, et al. Magnetostratigraphic constraints on two‐stage eruptions of theEmeishan continental flood basalts, Geochem. Geophys. Geosyst., 2010, 11: Q12014,doi:10.1029/2010GC003267.
    Zhong H, Yao Y, Hu S F, ert al. Trace-element and Sr–Nd isotopic geochemistry of thePGE-bearing Hongge layered intrusion, southwestern China. International Geology Review,2003, 45: 371–382.
    Zhong H, Zhou X H, Zhou M F, et al. Platinum-group element geochemistry of the HonggeFe–V–Ti deposit in the Pan-Xi area, Southwestern China. Mineral Deposits, 2002, 37: 226–239.
    Zhong H, Zhu W G, Chu Z Y, et al. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Srisotopic study of contrasting granites in the Emeishan large igneous province, SW China.Chemical Geology, 2007, 236: 112-133.
    Zhong H, Zhu W G. Geochronology of layered mafic intrusions from the Pan-Xi area in theEmeishan large igneous province, SW China. Mineralium Deposita, 2006, 41: 599-606.
    Zhou M F, Arndt N T, Malpas J, et al. Two magma series and associated ore deposite types in thePermian Emeishan large igneous province, SW China. Lithos, 2008, 103: 352-368.
    Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneousprovince (SW China) and the end-Guadalupian mass extinction. Earth and Planetary ScienceLetters, 2002, 196: 113-122.
    Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneousprovince (SW China) and the end-Guadalupian mass extinction. Earth and Planetary ScienceLetters, 2002a, 196: 113–122.
    Zhou M F, Robinson P T, Lesher C M, et al. Geochemistry, petrogenesis, and metallogenesis ofthe Panzhihua gabbroic layered intrusion and associated Fe-Ti-V-oxide deposits, SichuanProvince, SW China. Journal of Petrology, 2005, 46: 2253-2280.
    Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP zircon geochronological and geochemicalevidence for Neo-Proterozoic arc-related magmatism along the western of the Yangtze Block,
    ZhouS Mou Fth, YChaninga Z. E Xar, tSh oanngd XP lYan, eetta rayl. SMciaegnmcea tLice tNteir Cs,u 2 (0P0G2bE.) 1 s9u6lf: i5d1e–d e6p7o.sits in China. In: CabriL J. (Ed.). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation ofPlatinum-Group Elements, Canadian Inst. Mining, Metal. Petrol. Spec., 2002, 54: 619- 636.
    Zhou Y, Bohor B F, Ren Y. Trace element geochemistry of altered volcanic ash layers (tonsteins)in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces,China. International Journal of Coal Geology, 2000, 44: 305–324.
    Zhu B Q, Hu Y G, Zhang Z W, et al. Discovery of the copper deposits with features of theKeweenawan type in the border area of Yunnan and Guizhou Provinces. Science in ChinaSeries D:Earth Sciences, 2003a, 46, 60–72.
    Zhu D, Luo T Y, Gao Z M, et al. Differentiation of the Emeishan Flood Basalts at the base andthroughout the crust of southwest China. International Geology Review, 2003b, 45: 471–477.
    陈卫锋,陈培荣,黄宏业,等.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学D辑,37(7):873-893.
    陈卫锋,陈培荣,黄宏业,等.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学D辑, 2007,37(7):873-893.
    范蔚茗,王岳军,彭头平,等.桂西晚古生代玄武岩Ar-Ar和UPb年代学及其对峨眉山玄武岩省喷发时代的约束.科学通报,2004, 49:1892-1900.
    方华,姚家栋,何大贵.论岩浆深渊分异在硫化铜镍矿床成岩成矿作用中的意义——以四川力马河硫化铜镍矿床为例.地质学报, 1985,59(2):141-154.
    贺世杰,郭锋.地幔柱的识别和演化研究述评.地球科学进展.2003,3: 433-439.
    侯渭,谢洪森,周文戈.地幔地层及其在全球物质演化中的意义.地学前缘,2005,12(1):37-41.
    侯增谦,卢记仁,汪云亮,等.峨眉火成岩省:结构、成因与特色.地质论评,1999,45 (增刊):885-891.
    侯增谦,卢记仁,汪云亮,等.峨眉火成岩省:结构、成因与特色.地质论评,1999,45(增刊): 885-891.
    胡瑞忠,陶琰,钟宏,等.地幔柱成矿系统:以峨眉山地幔柱为例.地学前缘,2005,12: 42-54.
    黄开年, Opdyke N D, Kent D V,等.二叠纪峨眉山玄武岩的一些古地磁新结果.科学通报,1986, 31: 1192–1201.
    来雅文,陈博,肖国拾,等.黔西玄武岩铂、钯地球化学特征与存在状态.世界地质,2007,26(3): 304-308.
    李德惠,茅燕石.四川攀西地区含钒钛磁铁矿层状侵入体的韵律层及形成机理.矿物岩石,1982,1:29-41.
    李宏博,张招崇,吕林素.峨眉大火成岩省基性岩墙群几何学研究及对地幔柱中心的指示意义.岩石学报,2010,26(10):3143-3152.
    李上森.地幔柱构造.国外前寒武纪地质,1995,1:73-76.
    李莹.攀西地区力马河镁铁-超镁铁质岩体的岩石学和地球化学研究.硕士学位论文.北京:中国地质大学,2010.
    林建英.中国西南三省二叠纪玄武岩系的时空分布及其地质特征,科学通报,1985,12:929-933.
    刘秉光,黄开年.峨眉山玄武岩与裂谷作用.地质科学成果选集(第1集).北京:文物出版社,1982,208-212.
    卢记仁,张光弟,张承信,等.攀西层状岩体及钒钛磁铁矿床成因模式.矿床地质,1988,7(2):3-11.
    卢记仁.峨眉地幔柱的动力学特征.地球学报,1996,17(4):424-438.
    骆耀南.攀枝花地区辛阶含钛铬铁矿的层状超镁铁-镁铁岩岩体的矿化特征.地球化学,1981,10: 66-74.
    马新华.中国东南部的晚元古界和裂陷活动带.华东地质学院学报,1986,9(1):1-21.
    马言胜,陶琰,朱飞霖,等.金宝山铂-钯矿和力马河镍矿的硫同位素组成特征及地质意义.矿物岩石地球化学通报,2009,28(2):123-127.
    毛景文,李红艳,王登红,等.华南地区中生代多金属矿床形成与地幔柱关系.矿物岩石地球化学通报,1998,17(2):130-132.
    梅厚钧,1963,西南暗色岩建造概况
    盛金章.中国的二叠系.北京:科学出版社,1962.
    宋谢炎,侯增谦,曹志敏,等.峨眉山大火成岩省的岩石地球化学特征及时限.地质学报,2001,75(4):498-507.
    宋谢炎,侯增谦,汪云亮,等.晚古生代—早中生代扬子板块西缘的构造岩浆活动.地质论评,1999,45(增刊):868-871.
    宋谢炎,张成江,胡瑞忠,等.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系.矿物岩石,2005,25:35-44.
    陶琰,胡瑞忠,漆亮,等.四川力马河镁铁-超镁铁质岩体的地球化学特征及成岩成矿分析.岩石学报,2007,23(11):2785-2800.
    陶琰,胡瑞忠,屈文俊,等.力马河镍矿Re-Os同位素研究.地质学报,2008,82(9):1292-1304.
    汪云亮,侯增谦,修淑芝,等.峨眉火成岩省地幔柱热异常初探.地质论评,1999,45 (增刊):876-879.
    王登红.地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨.地学前缘,2001,8(3):67-72.
    王荃,刘雪亚.扬子陆块的漂移与冈瓦纳古陆的早期活动——显生宙全球动力活动的一个重要趋势.长春地质学院学报,1979,1:1-7.
    王荃,刘雪亚.中国的蛇绿岩带与板块构造.长春地质学院学报,1981,1:72-81.
    王少怀.地幔柱假说及其地质意义.地质找矿论丛,2005,20(增刊):1-6.
    肖龙,徐义刚,梅厚钧,等.云南保山卧牛寺组玄武岩成因:地幔柱活动的产物?.岩石矿物学杂志,2003,22(1):20-28.
    肖龙,徐义刚,梅厚钧,等.云南宾川地区峨眉山玄武岩地球化学特征:岩石类型及随时间演化规律.地质科学,2003,38(4):478-494.
    徐义刚,钟孙霖.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学, 2001, 30:1–9.
    徐义刚,地幔柱构造、大火成岩省及其地质效应.地学前缘,2002,9(4):341-253.
    徐义刚,何斌,黄小龙,等.地幔柱大辩论及如何验证地幔柱假说.地学前缘,2007,14(2):1-9.
    严再飞,黄智龙,许成,等.峨眉山二滩玄武岩地球化学特征.矿物岩石,2006,26(3):77-84.
    姚家栋.西昌地区硫化铜(铂)镍矿床成因.重庆:重庆出版社,1988.
    姚培慧.中国铁矿志.北京:冶金工业出版社, 1993, 638–641.
    张鸿翔,徐志方,马英军,等.大陆溢流玄武岩的地球化学特征及起源.地球科学,2001,26(3):261-268.
    张学书,范柱国,秦德先,等.金平地区二叠纪玄武岩地球化学特征.昆明理工大学学报(理工版),2005,30(4):13-18.
    张云湘,骆耀南,杨崇喜,等.攀西裂谷.北京:地质出版社,1988.
    张招崇,John J M,王福生,等.峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据.岩石学报,2006,22(6):1538-1552.
    张招崇,Mahoney J J,王福生,等.峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据.岩石学报,2006,22(6):1538-1552.
    张招崇,李莹,赵莉,等.攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束.岩石学报,2007,23(10):2339-2352.
    赵海玲,狄永军,李凯明,等.大火成岩省及地幔动力学.岩石矿物学杂志,2001,20(79):307-312.
    周姚秀.利用古地磁资料初探中国大陆的形成.地球物理地球化学勘查研究所所刊,1985,第1期.
    朱炳泉,常向阳,胡耀国,等.滇—黔边境鲁甸沿河铜矿床的发现与峨眉山大火成岩省找矿新思路.地球科学进展,2002,17(6):912-917.
    朱炳泉.大陆溢流玄武岩成矿体系与基韦诺型铜矿床.地质地球化学,2003,31(2): 1-8.
    朱炳泉.关于峨眉山溢流玄武岩省资源勘查的几个问题.中国地质,2003,30(4):406-412.
    朱士飞,秦勇,钱壮志,等.宾川-丽江地区二叠纪玄武岩岩石地球化学特征及其成因.地球科学与环境学报,2008,30(2):130-138.
    朱士飞,秦勇,钱壮志,等.云南省宾川-丽江地区二叠纪玄武岩岩石地球化学特征及其构造背景研究.矿物岩石,2008,28(1):64-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700