钢厂冷轧废酸再生中氧化铁粉的提纯与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,软磁功率铁氧体材料进一步向高频、高磁导率和低损耗发展,电子元器件的小型化、片式化、轻型化是大势所趋。软磁功率铁氧体原料中氧化铁的质量百分比约为70%,所以要制造高档软磁功率铁氧体材料,氧化铁原料必须满足相应的性能要求。生产高等级软磁铁氧体材料所需要的原材料氧化铁的纯度也越来越高。目前,软磁铁氧体材料制造企业所需要的氧化铁原料,主要来自钢铁厂冷轧酸洗盐酸再生过程中喷雾焙烧所产生的氧化铁粉。在氧化铁粉生产过程中往往会引入铝、硅、硫、锰、镁、钾、钠、磷、铬、镍、铜、磷等元素,某些钢铁产品的生产过程中还会引入硼、钙、钛、铌、钒等元素。本文将主要对酸再生氧化铁粉提纯的相关技术、氧化铁粉的质量检测技术、MnZn铁氧体材料中B元素微量掺杂和氧化铁粉及MnZn铁氧体材料的穆斯堡尔谱进行研究。
     本文研究了酸洗废液絮凝剂除硅的相关影响因素。对絮凝剂溶液浓度、絮凝剂溶液使用量、絮凝反应温度、搅拌速率及搅拌时间等进行了试验,确定了较为合适的絮凝除硅工艺条件。此外,还研究了除硅过程的动力学,求得的表观活化能表明,该过程由物理因素控制。上述研究为进一步水洗制备高纯氧化铁粉创造了条件。
     对除硅后的酸再生氧化铁粉水洗提纯技术进行了研究,对水洗工艺的研磨方式、料水比及搅拌时间、压滤机及滤布选择、烘干方式等进行了试验,确定了合适的水洗工艺条件。氧化铁产品质量达到GB/T 24244-2009《铁氧体用氧化铁》标准中一级品,即YHT1的要求,氧化铁粉的Fe203含量达到99.40%以上。利用水洗后的氧化铁粉制备了MnZn铁氧体试验材料,主要磁性能指标表明其质量不亚于进口的高质量氧化铁粉。
     本文还对氧化铁粉中氯、铝、硅、硫、钙、锰、硼、钛、镁、钾、钠、磷、铬、镍和铜等微量元素含量的测试方法进行了研究。详细探讨了各种因素对最终测试结果的影响,得出了合理的测试条件,分别建立了离子色谱法测定氧化铁粉中氯化物及ICP-AES法测定氧化铁粉中铝、硅、硫、钙、锰、硼、钛、镁、钾、钠、磷、铬、镍和铜等含量的分析方法。
     对MnZn铁氧体的晶体结构及其金属离子分布情况进行了分析,确定了MnZn铁氧体制备所使用的方法。根据生产实际,本试验选择了普通干法工艺来制备MnZn铁氧体。详细研究了B掺杂对MnZn铁氧体性能的影响,根据对不同B元素掺杂含量对MnZn铁氧体样品磁性能及微观结构影响的研究,表明当B掺杂含量低于10μg/g时,MnZn铁氧体材料的功率损耗、磁导率及密度较好,显微结构为适宜的细晶粒结构;当B掺杂含量高于15μg/g时,则导致MnZn铁氧体材料的密度下降,磁性能急剧恶化,微观结构表现为巨晶。通过理论计算,得出不同H3BO3掺杂水平下,相应的MnZn铁氧体粉体颗粒上原子覆盖层,分析了不同原子覆盖层对MnZn铁氧体粉体微观结构及晶粒尺寸的影响。
     对冷轧钢板厂应用鲁特纳法工艺生产的进口和国产两类酸洗氧化铁粉样品进行了穆斯堡尔谱分析研究。两类样品具有相近的穆斯堡尔谱及参数,穆斯堡尔谱的四极分裂都较小,表明氧化铁粉铁周围的电场对称性较好。氧化铁粉和MnZn铁氧体材料的穆斯堡尔谱及参数表明,相比于主要原料氧化铁,MnZn铁氧体中的磁性相Fe周围的配位环境已经改变,并且随着MnZn铁氧体中锰含量比例的降低,二线谱的比例显著增加。不论是MnZn铁氧体A还是MnZn铁氧体B,经热处理后,它们的穆斯堡尔谱双峰的面积都有所减小,均出现了两套以上的六线子谱,且它们的超精细场相差较大,说明锰和锌在样品中的分布在微观上是不均匀的。
     在对酸再生氧化铁粉提纯及应用技术研究的基础上,完成了GB/T 24244-2009《铁氧体用氧化铁》国家标准的制定工作。标准的技术指标先进合理,适用性和前瞻性强,将有利地促进我国铁氧体用氧化铁生产和使用技术的进步。
In recent years, soft magnetic ferrite materials have been devoleping in the field of their functional properties such as high-frequency, high permeability and low loss. Therefore, miniaturization and light-duty of the electric components is a significant developing trend. The mass percentage of iron oxides is about 70% in the soft magnetic ferrite materials, and the raw material of iron oxides must meet the corresponding performance requirements. In order to product high-grade soft magnetic ferrite materials, the purity of iron oxides in the raw materials is required higher and higher. At present, the raw materials of iron oxide needed for the production of high-grade soft ferrite materials are mainly from iron oxide powders by spray roasting of the regeneration hydrochloric acids in cold-rolled steel plants. During iron oxide powder production process, these elements such as aluminum, silicon, sulfur, manganese, magnesium, potassium, sodium, phosphorus, chromium, nickel, copper and phosphorus are imported. Simultaneously, boron, calcium, titanium, niobium, vanadium and other elements are also introduced in the product process of some steel products. This thesis will focus on these studies on the relative purification technology of iron oxide powders from regeneration acids, the quality test technology of the iron oxide powders and the Mossbauer analysis of iron oxide powders and MnZn ferrite materials contaning a trace of B.
     The influencing factors related to the removing silicon of acid washing waste liquors by the flocculation were investigated. These included the concentration of flocculant solutions, the loading of flocculant solutions, the reaction temperature, the stirring rate and the stirring time. Through these experiments, the feasible technical conditions of removing silicon were confirmed. The removal ratio of silicon was up to 83%, which ensured the high purity of iron oxide powders. In addition, the kinetics of removing silicon process was also investigated. The calculated apparent active energy indicated that the process was controlled by physical factors. The above investigations provided the conditions for the preparation of iron oxide powders with high purity by further water washing.
     The water washing technology of iron oxide powders from the regeneration acid liquors with the removal of silicon was studied. The investigations included the grinding mothed, the ratio of raw material and water, the stirring time, the selection of filtration equipments and the drying method. Through these investigations, the feasible technical conditions of water washing were confirmed. According to the standard GB/T 24244-2009 (iron oxide powders as the raw materials of ferrite materials), the product of iron oxide powders reached to the first level (the standard of YHT1). And the content of Fe2O3 in iron oxide powders was above 99.40%. MnZn ferrite samples were also prepared using iron oxide powders by water washing as the raw materials. The main magnetic properties of the sample showed that its quality was superior to that of the imported iron oxide powder.
     The testing and analysis methods on the contents of chlorine, aluminum, silicon, sulfur, calcium, manganese, boron, titanium, magnesium, potassium, sodium, phosphorus, chromium, nickel, copper and other trace elements in iron oxide were studed. Various influencing factors on the final results were discussed in detail. From the results of the above discussions, the reasonable test conditions were obtained. The ion chromatography and ICP-AES method could be separately used to determine the content of chloride and the contents of aluminum, silicon, sulfur, calcium, manganese, boron, titanium, magnesium, potassium, sodium, phosphorus, chromium, nickel and copper in iron oxide powders.
     The preparation routes of MnZn ferrite materials were confirmed by the analysis of their crystalline structures and metal distributions. According to the actural production experiences, the technical process of ordinary drying method was used to prepare MnZn ferrite materials. The effects of the addition of B on the maganetic properties and microstructures of MnZn ferrite materials were investigated in detail. Below 10μg/g, the maganetic properties (power loss, initial permeability and density) of the samples were excellent and the microstructures of the samples presented fine crystals. Above 15μg/g, the maganetic properties of the samples decreased and the microsturctures of the samples presented giant crystals. Thruogh the theoretic calculation, the resuts on the atomic covering-layer on the MnZn ferrite particles at different additions of B were obtained. At the same time, the effects of different atomic covering-layer on the microsturctures and crystal sizes of MnZn ferrite materials were analyzed.
     The properties of imported and domestic iron oxide powders were analyzed by the Mossbauer. The results showed that the two kinds of samples presented the similar Mossbauer spectra and parameters and the Mossbauer quadrupole splitting value of the two samples were relatively small, which suggested that the symmetry of the electric field around iron oxide powders was good. The Mossbauer spectra and parameters suggested that the coordination environment around magnetic phase of Fe in MnZn ferrite materials was different from that in original iron oxide powders, and a high-proportion of doublet spectra was observed with a decreasing concentration of Mn in MnZn ferrite materials. For MnZn ferrite A or MnZn ferrites B, after the heat-treatment, their double peak areas were all reduced, both presented more than two Sextet sub-spectrums, and their differences in super-fine field were relatively large. These indicated that the distributions of Mn and Zn in the microsturctures were inhomogeneous in MnZn ferrite samples.
     Based on the researches on purification and application of iron oxide powers from regenerated hydrochloric acids in cold rolling, the national standard GB/T 24244-2009 (iron oxide powders as the raw materials of ferrite materials) were established. Its technical indexed were advanced and reasonable. In addition, it was a precursor for a strong applicability, and could advantageously promote the development of the production technology of ferrite materials from iron oxides in our country.
引文
[1]朱立,孙本良.钢材酸洗技术.北京:化学工业出版社.2007,P.1-2
    [2]杨兴亮,李宏,沈新玉.马钢氧化铁粉综合评析.鞍钢技术.2005,336(6):2-14
    [3]R. M. Hudson, C. J. Warning.Pickling hot-rolled steel strip.Metal Finishing.1984, (3): 39-46
    [4]S. Bhattacharyya. Steel industry pickling waste and its impact on environment. U.S Environ. Prot. Agency. Det. Res.1981, P.293-305
    [5]A. C. Elliot.Regeneration of steel works hydrochloric acid pickle liquor. Effluent and Water Treatment Journal.1970,10(7):385-390
    [6]W. K. Marcotte. Regeneration of hydrochloric acid waste pickle liquor using fluidized bed reactor system.Iron Control Hydrometall.1986, P.507-519
    [7]高成章,田孜强.对酸洗工艺段酸洗介质的分析比较.一重技术.1996,69(3):80-81
    [8]揭超,解付兵,毛建军等.钢材酸洗废液制取高纯Fez03工艺研究.矿冶工程.2003,23(2):49-52
    [9]邵峰,李晓清,钱琼辉.锰锌铁氧体用氧化铁的性能要求.磁性材料及器件.2004,35(4):42-43
    [10]Manfred Zenger. New developments in the field of soft magnetic ferrites. Journal of Magnetism and Magnetic Materials.1992,112(1-3):372-376
    [11]洪运涛,乔梁,刘新华.Ruthner-喷雾焙烧法废盐酸再生技术在冷轧中的应用.现代化工.25(1):48-50
    [12]方泽民,王如意.酸再生技术及软磁铁氧体磁性材料的开发.武钢技术.40(5):6-9
    [13]李华彬,何安西,蔡斌等.酸再生工艺参数对氧化铁粉质量的影响.钢铁钒钛.1999,20(1):49-53
    [14]G. M.莱温等著,戚辰生等译.钢铁企业污水污染水体的防治.北京:冶金工业出版社.1984,P.109-154
    [15]林宣精.当今废盐酸再生工艺的评析[J].化工环保.1998,18(4):208-215
    [16][蒋希明.宝钢氧化铁现状及发展.磁性材料及器件.2007,38(3):10-12
    [17]V. S. T. Ciminelli, A. Dias, H. C. Braga. Simultaneous production of impurity-free water and magnetite from steel pickling liquors by microwave-hyrtothermal processing. Hydro- metallurgy.2006,84:37-42
    [18]Anupam Singhal, Satya Prakash, V.K. Tewari.Trials on sludge of lime treated spent liquor of pickling unit for use in the cement concrete and its leaching characteristics. Building and Environment.2007,42:196-202
    [19]周红民,刘跃进,熊双喜.国内合成氧化铁颜料生产技术概况及发展趋势.化学世界.2000,41(8):395-398
    [20]孙德慧,张吉良.氧化铁红制备工艺进展.贵州化工.2000,25(3):7-9
    [21]黄天源.国内氧化铁颜料的发展趋势.中国涂料.1998,4:9-10
    [22]谭刚,邹月飞,宗毅.氧化铁红颜料的表面处理.涂料工业.1987,2:11-12
    [23]Tom kendall. Inorganic colored pigments-iron oxides looking for a rosy future.Industrial Minerals.1994, Feb.:24-33
    [24]王周敏,冯业铭,王永忠等.用硫铁矿烧渣生产氧化铁黄新工艺.矿业世界.1996,14(15):49-52
    [25]郑水林,张清辉,李杨.超细氧化铁红颜料的表面改性研究.矿冶.2003,12(2):69-73
    [26]钟俊源,钟俐敏.铁氧体用原料氧化铁在我国的变迁和发展及氯的来源、存在形态和变化.浅议超高纯氧化铁红的制取.磁性材料及器件.2003,34(5):42-46
    [27]T. Masao, T.Katashi, Y. Fumiaki, et al. Production processes of iron oxides for soft ferrites. Journal of Materials Engineering.1991,13(4):135-140
    [28]康振晋,赵若珍.利用硫铁矿渣制氧化铁颜料.延边大学学报(自然科学版).1996,22(3):34-37
    [29]宋周周,温普红.以硫酸渣为原料制备铁红工艺研究.宝鸡文理学院学报(自然科学版).1995(1):17-20
    [30]李华伟,刘全军,周兴龙等.硫铁矿烧渣制备铁系产品研究进展.国外金属矿选矿.2003,8:15-18
    [31]张顺利,马同森,吴志申等.硫铁矿烧渣制备氧化铁黄和氧化铁红.化学研究.1999,10(1):47-50
    [32]徐旺生,占寿祥,宣爱国等.硫铁矿烧渣制备高纯软磁氧化铁工艺研究.化工矿物与加工.2001(9):11-13
    [33]童云,胡文远.利用硫铁矿烧渣制备高纯氧化铁的研究.西南科技大学学报.2005,20(4):13-16
    [34]王汉栋,张永宏,赵建国.利用废硫酸和铁矿粉生产氧化铁.应用化工.2002,31(4):30-31
    [35]王承宗,代昶,谷敏.攀钢冷轧酸再生机组控制系统及运行分析.四川化工.1999,5:62-64
    [36]张春青.宝钢冷轧厂酸再生工艺简介及设备特点.工业加热.2004,33(4):56-58
    [37]冯炜浅议超高纯氧化铁红的制取.宝钢技术.2005,3:69-72
    [38]丁绪淮.工业结晶[M].北京:化学工业出版社.1985,P.2-4
    [39]王文亮.结晶化学[M].北京:人民教育出版社.1961,P.38-40
    [40]J.W. Mellor. A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol, Ⅷ, 1933
    [41]周志刚.铁氧体磁性材料[M].北京:科学技术出版社.1981,P.123-125
    [42]孙来九.精细无机化工工艺学[M].西北工业大学出版社.1993,78-80
    [43]E. W. Gorter. Saturation Magnetization and Crystal Chemistry and Ferrimagne-tic Oxide[J]. philips. Res. Rep.1954, Vol.9:295-320
    [44]Albert G. Guy.Introduction to Material Sciece[M]. Techbooks.1972,388-390
    [45]D. J. Epstein,B.Frackiewicz.Some properties of Quenched Magnesium Ferrites[J]. Journal of applied physics.1958, Vol.29, P.376-377
    [46]EPCOS网上产品目录,http://www.epcos.com.2004
    [47]PHILIPS网上产品目录,http://www.ferroxcube.com.2004
    [48]FDK网上产品目录,http://www.fdk.co.jp.2004
    [49]TDK网上产品目录,http://www.tdk.co.jp.2004
    [50]E. Roess, I.Hanke, E. Moser.MnZn ferrite with initial permeability of over 20000 and their structure.Z.Angew.Phys..1964,17(7):504-508
    [51]E. Roess.Magnetic properties and microstructure of high permeability MnZn ferrites. Ferrites Proceeding of the International Conference.1966:105-108
    [52]松良尾夫,望月武史,佐佐木勇等.MnZnフエラィトの低损失化.日本应用磁气协会志.1971,4(2):429-432
    [53]安原克志.日本应用磁气协会志.1995,19(2):417-420
    [54]电子行业标准,SJ/T10383-93《软磁铁氧体用氧化铁》
    [55]电子行业标准,SJ/T 11075-1996《铁氧体原材料化学分析方法》
    [56]化工行业标准,HG/T 2574-94《工业氧化铁》
    [57]JIS K 1462-1981 Iron (Ⅲ) oxide for ferrite
    [58]电子行业标准,SJ/T 10215《磁性氧化物粉末密度测定松装密度的测定--振动漏斗法》
    [59]ISO 9277-1995 Determination of the specific surface area of solids by gas adsorption using the BET method
    [60]朱子平,李蕾.离子色谱法测定氧化铁粉中的氯化物.化学分析计量.2004,13(5):39-40
    [61]杨丽荣,顾继红,杨颖等.ICP-AES法测定氧化铁粉中的酸溶铝.鞍钢技术.2003,4:38-42
    [62]刘琰,程坚平,李海栋.氧化铁粉中氯离子含量的测定.金属制品.2005,31(4):26-28
    [63]曹宏燕,闻向东.杨芸ICP-AES法测定氧化铁粉中的硅、铝、钙、孟和硫酸根.2002年中国机械工程学会年会.P.202-204
    [64]Z. Vassilios, K. Marcel. Design principles for spray-roasted iron oxides for the manufa-cturing of ferrites.Power Technology.2006,161(3):169-174
    [65]V. T. Zaspalis, E. Kikkinides, M.Kolenbrander, R. Mauczok. Method for the morpholo-gyical characterization of powder raw materials for the manufactureing of ceramics. J.Mater. Process. Technol.2003,142(1):267-274
    [66]苏桦,张怀武,唐晓莉等.Bi2O3-MoO3复合掺杂对NiCuZn铁氧体烧结特性和磁性能的影响[J].磁性材料及元器件.2003,34(3):7-8
    [67]王江超,赵特技,张怀武.Mo03和CaCO3掺杂对MnZn铁氧体磁性能的影响[J].磁性材料及元器件.2006,37(3):40-42
    [68]K. One, S. Fukunaga, Y. Matsuo.MnZn ferrite with MoO3 and other oxide additives [J]. IEEE Trans Magn.1999,35(5):3406-3408
    [69]A.Goldman. Modern Ferrite Technology[M]. Van Nostrand Rein-hold,New York.1990, P.87
    [70]K. Janghorban, H. Shokrollahi. Influence of V2O5 addition on the grain growth and magnetic properties of MnZn high permeability ferrites[J]. Journal of Magnetism and Magnetic Materials.2007,308(2):238-242
    [71]余忠,兰中文,王京梅.添加CaO、V2O5对高频Mnzn铁氧体性能的影响[J].材料研究学报.2004,18(2):176-18
    [72]J. Fan, F. R. Sale. The microstructures, magnetic properties and impedance analysis of Mn-Zn ferrites doped with B2O3[J]. J. Eur. Ceram. Soc..2000,20(16):2743-2751
    [73]A. D. P. Raooa, B. Ramesh, P. R. M. Rao, et al. Magnetic and microstructural properties of Sn/Nb substituted MnZn ferrites[J]. Journal of Alloys and Compounds.1999, 282(1-2):68-237
    [74]黄爱萍,何华辉,冯则坤.掺杂对高导MnZn铁氧体性能的影响[J].华中科技大学学报.2006,34(2):39-41
    [75]李卫,张忠仕,陈文.宽频高磁导率锰锌铁氧体材料的研制[J].磁性材料与器件.2006,37(4):59-61
    [76]J. Fan, F. R. Sale. Influnce of B2O3 on the production of pure,gel-processed Mn-Zn ferrites[J]. J. Phys.1997, Ⅳ(7):81-82
    [77]张小川,王德平,姚爱华等.溶胶凝胶法制备锰锌铁氧体粉体的工艺优化与分析.硅酸盐通报.2008,27(5):28-32
    [78]余忠,兰中文,王京梅等.溶胶-凝胶法制备MnZn铁氧体粉体.功能材料.2000,31(增刊):34-35
    [79]席国喜,路迈西.锰锌铁氧体材料的制备研究新进展.人工晶体学报.2005,34(1):64-168
    [80]吴卫芳.穆斯堡尔谱法及其对物质中Fe的分析应用[J].现代仪器.2000,5:39-43
    [81]金永君.穆斯堡尔谱法及其应用[J].物理与工程.2004,14(5):49-51
    [82]Nagar. Harshada, V. K. Naveen, K. Soumen,B.Sahoo, etc. Mossbauer Spectroscopic investigations of nanophase iron oxides synthesized by thermal plasma route[J]. Materials Characterization.2008,59:1215-1220
    [83]J. G.Stevens. Mossbauer Spectroscopy and Its Chemical Application[J]. Academic Press. 1981,103
    [84]郑隆鳌.钢铁酸洗废液的处理技术评价[J].钢铁研究.1997,94(1):58-62
    [85]高发名,李东春.R型六方铁氧体化学键性质和穆斯堡尔谱位移研究[J].无机材料学报.2001,16(4):683-687
    [86]王丽,刘锦宏,王建波等.高能球磨法和溶液-凝胶法制备的Zn铁氧体纳米颗粒的穆斯堡尔谱研究[J].磁性材料及器件.2003,34(5):15-18
    [87]宋仁杰,陈东旭,胥小萍.提高氧化铁粉质量的探讨.四川冶金.2000,6:2-4
    [88]Gaillard, Pichavant, Michel. Experimental determination of activities of FeO and Fe203 components in hydrous silicic melts under oxidizing conditions. Geochimica Cosmochi-mica Acta.2003,67(22):4389-4409
    [89]M. Tohru, Hirai. Naoe.Recent Development of Iron Oxide for Ferrite and Its Mnufactur-ing Technique from Pickling WasteL iquor of Steel Sheet[J]. Iron and Steel.1993, 79(10):1129-1137
    [90]刘金鹏,魏雨.铁氧体用高纯度活性氧化铁的制备.功能材料.1996,27(3):242-244
    [91]张懿,王颖霞.酸法合成α-FeO(OH)反应动力学研究.物理化学报.1990,6(6):673-678
    [92]陈家荪,张胜建.由钢铁酸洗废液制备高档氧化铁的技术概述.无机盐工业.1995,(3):25-28
    [93]郑树亮,黑恩成.应用胶体化学[M].华东理工大学出版社.1996.P.54-56
    [94]邓淑华,郑文裕.制取高纯氧氯化锆过程中絮凝剂对”二次除硅”的影响[J].稀有金属.2000,24(3):191-194.
    [95]R,埃克斯.絮凝技术[M].北京:原子能出版社.1981.P.57-59
    [96]李志华.影响絮凝沉降过程的主要因素[J].矿冶工程.1991,11(1):32-36
    [97]吕广明,贺新.高分子聚合物在絮凝过程中作用及机理探讨[J].辽宁化工.1998,27(6):304-306
    [98]季明德.硅酸聚合中盐效应的机理.无机化学学报.1988,12(4):71-75
    [99]傅献彩.沈文霞.姚天杨.物理化学[M].北京:高等教育出版社.1990,P.45
    [100]林海.混凝法在硫酸软骨素废水后处理中的应用.工业水处理.2004,24(2):40-42
    [101]孟祥庆,罗玉长.种分玛瑙填料氢氧化铝粉体的制备.中国粉体技术.2004, 10(Specil.专辑):82-85
    [102]肖守孝,张国旺.湿法研磨重质碳酸钙的研究现状及其发展方向.中国非金属矿工业导刊.2007,62(4):38-40
    [103]周甫铭.超细重质碳酸钙湿法研磨工艺简介.无机盐工业.1999.31(4):20-22
    [104]胡大双,鲁亚明,李珊.分散剂在铁氧体浆料中的分散作用.磁性材料及器件.2009,40(3):64-66
    [105]费贵强,沈一丁,王海花等.改性甲基丙烯酸工具和无分散剂对陶瓷复合料浆流变性及坯体强度的影响[J].复合材料学报.2006,23(5):96-100
    [106]吴阳,彭骏.压滤机的发展趋势.中国煤炭.2000,26(5):22-25
    [107]张振伟,邓永胜,陆颖等.旋转闪蒸干燥的机理.中国有色金属学报.1998,第8卷(增刊2):608-610
    [108]乔森,程巨.旋转闪蒸干燥机在白钨精矿干燥中的应用.中国钼业.2006,30(6):18-19
    [109]刘涌,周维刚.旋转闪蒸干燥机在洗涤剂用4A沸石生产中的应用.化工装备技术.2005,26(5):5-7
    [110]C. F. Yu, Y. G. Li, J. S. Gao, et al. Influence of Boron Content in Iron Oxide on Performance of MnZn Ferrites. Journal of Iron and Steel Research, International.2010, 17(2):59-62
    [111]K. Tom. Inorganic colored pigments-Iron oxides looking for a rosy future[J]. Industrial Minerals.1994,2:24-33
    [112]王艳莉,胡述戈,王丽君等.微波消解溶样方法的试验研究[J].河南冶金.2007,5(1):20-21
    [113]罗倩华,王克娟.微波消解—电感耦合等离子体原子发射光谱法测定硼铁中硼[J].冶金分析.2007.27(8):35-38
    [114]朱小鹣,张志颖.微波消解ICP-AES测定钢中总硼[J].现代科学仪器.2000,2:21-22
    [115]周勇义,谷学新,范国强等.微波消解技术及其在分析化学中的应用[J].冶金分析.2004,24(2):30-36
    [116]王艳泽,张学凯.微波消解—电感偶合等离子体原子发射光谱法测定聚丙稀塑料中的铅镉汞铬[J].冶金分析.2008,28(2):55-58
    [117]沈庆峰,杨显万,刘春侠.软磁铁氧体材料.昆明理工大学学报(理工版).2003,28(2):17-21
    [118]T. Kikuchi, Y. Okazaki, K. Ikeda. Fine Iron Oxide Powder as a Raw Material of Soft Ferrites[R]. JFE Technical Report.2005,6:29
    [119]赵光.中国软磁铁氧体用氧化铁.磁性材料及器件.磁性材料及器件.2002,33(3):28-33
    [120]苏桦,张怀武,唐晓莉.CuO、MoO3和W03掺杂对NiZn铁氧体磁性能的影响.材料研究学报.2005,19(5):549-554
    [121]戴煜辉,尉旭波,苏桦等.P2O5掺杂对高磁导率MnZn铁氧体性能的影响.磁性材料及器件.2005,36(2):29-30
    [122]施新宇,吴东辉,金瑞娣等.柠檬酸盐凝胶法制备γ-氧化铁纳米粒子.无机盐工业.2006,38(12):16-17
    [123]景茂祥,沈湘黔,沈裕军.柠檬酸盐凝胶法制备纳米氧化镍的研究.无机材料学报.2004,19(2):289-294
    [124]徐辉宇,戴志云.超高磁导率软磁铁氧体材料BRL15K的研制.磁性材料及器件.2006,37(4):49-51
    [125]席国喜,路迈西.锰锌铁氧体材料的制备研究新进展[J].人工晶体学报.2005,34(1):164-168
    [126]王长振,谭维,周甘宇等.锰锌铁氧体粉制备技术综述[J].中国锰业.2002,20(3):37-41
    [127]G. Vaidyanathan, R. Arulmurugan, S. D. Likhite. Effect of preparation on magnetic properties of Mn-Zn fettite[J]. Indian journal of engineering and materials sciences. 2004,11(4):289-294
    [128]许定胜,胡邦成.高纯氧化铁中杂质元素对锰锌铁氧体性能的影响.中国锰业.1996,14(4):28-30
    [129]M. F. Yan, D. W. Johnson.Impurity induced exaggerated grain growth in MnZn ferrites. J. Amer. Ceram. Soc.1978,61(7):342-349
    [130]K. Hirota, O. Inoue. Sodium doped MnZn ferrites-microstructure and properties.Ceram. Bull..1987,66(12):1755-1758
    [131]王朝明,兰中文,余忠.预烧温度对高磁导率MnZn铁氧体结构和磁性能的影响[J].功能材料.2006,37(4):552-554
    [132]黄永杰.磁性材料[M].成都:电子科技大学出版社.1994,P.246
    [133]张金升,尹衍升,张银燕等.一种强有力的表征手段——穆斯堡尔谱学.现代仪器.2003(6):33-36
    [134]吴卫芳.穆斯堡尔谱仪及其对物质中Fe的分析应用.现代仪器.2000(5):39-43
    [135]李太君.一种多功能磁性材料的穆斯堡尔谱线研究.海南大学学报自然科学版.1995,13(4):294-298
    [136]马如璋,徐英庭.穆斯堡尔谱学.科学出版社.1998,P.24-27
    [137]夏元复,陈懿.穆斯堡尔谱学基础和应用.科学出版社.1984,P.34-35
    [138]李国栋.当代磁学的广阔视野.金属材料研究.1988,P.12
    [139]徐海斌.穆斯堡尔效应及分析在磁性材料研制中的应用.江苏冶金.2004,32(3):23-25
    [140]何海英,寇昕莉,李建功.钙钛矿型铋铁氧体纳米微粒的弱铁磁性[J].过程工程学报.2(4):314-318
    [141]李海波,郑伟涛α-Fe2O3超微粒的57Fe穆斯堡尔谱[J].吉林大学自然科学学报.1994,4:71-74
    [142]S. J. Stewart, S. J. A. Figueroa, M. B. Sturla, et al. Magnetic ZnFe2O4 nanoferrites studied by X-ray magnetic circular dichroism and Mossbauer spectroscopy[J]. Physica B.2007,389:155-158
    [143]M. J. Nasr Isfahani, M.Myndyk. A Mossbauer effect investigation of the formation of MnZn nanoferrite phas[J]. Journal of Alloys and Compounds.2009,470:434-437
    [144]C. Upadhyay, H. C. Verma.Mossbauer studies of nanosize Mn1-xZnxFe2O4. Journal of Alloys and Compounds.2001,326:94-97
    [145]贾建业.黄铁矿的穆斯堡尔谱特征及其机理分析[J].西北地质.1996.17(3):46-52
    [146]N. Burriesci, A. Nannetti, M. Petrera, et al. Comparison of structural and magnetic properties of Zn/Mn ferrites prepared by wet-chemical and ceramic methods.Materials Chemistry.1977,2(4):241-251.
    [147]U. Konig, G Chol. J. Appl Cryslallogr.1968,1:124
    [148]S. Dasgupta, K. B. Kim, J. Ellrich, et al. J. Alloys and Compounds.2006.424:13-20
    [149]GB/T 24244-2009《铁氧体用氧化铁》

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700