2-羟基-14-萘醌光系统II抑制剂和三唑杀菌剂环境定量构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用定量结构-活性关系(quantitative structure-activity relationship, QSAR)方法开展的环境定量构效关系研究,是对环境中日益增多的各种化学品进行环境效应评价的重要手段。在有机污染化学和生态毒理学研究中,环境定量构效关系研究具有两个基本的功能:探求化学品的环境效应作用机制,为降低化学品对环境的风险提供理论指导;对未知化学品的环境行为和生态毒性进行预测、评价和筛选。因此理想的定量构效关系模型应该既具有较高的预测能力,又能够对化学品的环境效应作用机制做出合理的阐述。
     本论文以2-羟基-3-烷基-1,4-萘醌植物光系统II(photosystem II, PSII)抑制剂和三唑类杀菌剂为研究对象,通过QSAR研究方法,定量研究了萘醌类化合物的PSII抑制作用机制、活性位点以及三唑类杀菌剂对水生生物的生物致毒机制与活性位点和可能导致的环境效应,研究结果将有助于今后构建能应用于农药环境风险分析的环境定量构效关系模式并开展农药环境效应评价。
     利用二维定量构效关系(two-dimensional quantitative structure- activity relationship,2D-QSAR)和全息定量构效关系(holographical quantitative structure-activity relationship,HQSAR)法对23个2-羟基-3-烷基-1,4-萘醌化合物的PSII抑制活性进行了研究。并以此为基础,分别利用比较分子场分析(comparative molecular field analysis,CoMFA)和比较分子相似性指数分析(comparative molecular similarity indicesanalysis,CoMSIA)两种三维定量构效关系(three-dimensional quantitative structure-activity relationship,3D-QSAR)方法,对PSII抑制活性进行了研究。所建QSAR模型具有较高的拟合程度和预测能力,能够合理解释该类化合物PSII抑制作用机制。与2D-QSAR相比,HQSAR和3D-QSAR模型具有更高的拟合度和预测能力。QSAR研究表明,该类化合物对PSII抑制可能分为两步:首先化合物从水相迁移到生物相,穿过细胞膜到达作用靶点;接着3-烷基可能与D1蛋白非极性基团发生疏水作用,同时羰基氧原子与D1蛋白氨基酸残基发生氢键作用,从而替代质体醌,阻碍了植物光合作用过程中的电子传递,对PSII产生抑制作用。而3D-QSAR研究进一步指出,3-烷基取代基的形状/大小以及疏水性能够综合影响该类化合物穿透细胞膜的能力,并且4-羰基氧原子更易形成氢键。3-烷基和4-羰基很可能是该类抑制剂与D1蛋白的活性反应中心。为研究三唑类杀菌剂进入水环境后的水生生态毒性,并且为农药的QSAR研究提供基础数据,利用静态实验法分别测定了17种三唑类杀菌剂的48小时大型溞急性运动抑制毒性(EC_(50)(48h))和96小时斑马鱼急性毒性(LC_(50)(96h)),并对该类农药对水生生态安全的影响进行了初步评价。
     利用2D-QSAR、CoMFA和CoMSIA两种3D-QSAR方法,对三唑类杀菌剂对斑马鱼和大型溞急性毒性进行研究≦SAR模型具有较高的拟合程度和预测能力,能够合理解释该类化合物对斑马鱼和大型溞的生物致毒机制。与2D-QSAR相比,3D-QSAR模型具有更高的拟合度和预测能力。2D-QSAR研究表明,该类化合物对斑马鱼和大型溞产生毒性效应可能为化合物首先穿过细胞膜在生物体内积聚,由疏水性参数(ClogP)和分子拓扑指数(ShpC和Dia)控制,化合物具有一定麻醉毒性;接着与生物大分子间发生电子交换,或亲核取代反应等,可用电性参数(E_(LUMO)、QC1和EQN1)描述,化合物具有反应性毒性并且高于麻醉作用。而3D-QSAR研究进一步表明,三唑环N1原子可能提供电子与细胞色素P450(cytochrome P450,CYP450)卟啉环活性中心亚铁原子形成配位键;苯环和烷基取代基可能与CYP450芳香受体部分发生疏水叠合,阻碍CYP450正常生理功能,从而对斑马鱼和大型溞产生毒性,这可能是该类化合物众多致毒机理中的一种。经过对2D-QSAR和3D-QSAR研究结果比较发现,三唑类杀菌剂对大型溞和斑马鱼的致毒机制类似,并且三唑环、苯环对位以及与硅原子相连的烷基可能是该类化合物与斑马鱼和大型溞生物大分子的活性反应中心。
     为验证3D-QSAR研究中三唑类杀菌剂对斑马鱼致毒机制的推测,并从分子水平预测该类农药对水生生物的影响与潜在的环境效应,以多效唑为例,测定了不同浓度多效唑对斑马鱼肝脏超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalse,CAT)活性的影响。结果表明,SOD和CAT对多效唑的响应机制可能是由于CYP450酶系与污染物发生结合,阻碍了CYP450正常的催化氧化循环过程,使得活性氧(reactive oxygen species, ROS)生成量增加,从而影响了SOD和CAT活性。
Environmental QSAR studies are the important means to evaluate the environmental effects caused by more and more chemicals existing in the environment. In the researches of organic chemistry about pollutants and ecotoxicology, environmental QSAR studies play two roles. One is to analyse the mechanism of environmental effects to offer the theoretical guidance of pollutants’environmental risk’s decreasing. The other is to predict, evaluate and screen of environmental behavior and eco-toxicity of unknown compounds. So, the ideal QSAR models not only have high predictive ability, but also can explain the mechanisms of environmental effects reasonably.
     In this paper, 2-hrdroxy-3-alkyl-1,4-naphthoquinones as inhibitors to PSII and triazole fungicides were regarded as research objects. The inhibitory mechanism and active sites of naphthoquinones to PSII, the toxic mechanism and active sites of triazoles to aquatic organisms and the environmental effects induced by triazoles were studied by using QSAR technique. The objective of the paper is to establish the environmental QSAR pattern to analyse and evaluate the environmental risk and effect of pesticides.
     2D-QSAR and HQSAR methods were used to study the PSII inhibitory activity of 23 2-hydroxy-3-alkyl-1,4-naphthoquinone derivatives. Based on it, 3D-QSAR including CoMFA and CoMSIA were employed to study the inhibitory activity. The QSAR models having the high fitting degrees and predictive abilities could interpret the PSII inhibitory mechanism reasonably. Compared with 2D-QSAR, HQSAR and 3D-QSAR models had the higher predictive abilities. The results showed that the inhibitory process might include two steps. Firstly, the inhibitors migrated from water to biological phase, arrived at the target through the membrane. Secondly, the inhibitors were possible to combine with the target via 3-alkyl’s hydrophobic interaction with the non-polar groups of D1 and acyl-oxygen’s H-bond interaction with the amino acid residues of D1. Thus, naphthoquinones competed with QB to block the electron’s transfer process of plant photosynthesis. 3D-QSAR results showed that the shape, size and hydrophobicity of 3-alkyl could affect the ability of compound through the membrane, and the 4-alcyl-oxygen could combine with D1 using H-bond easily. 3-alkyl and 4-carbonyl were probably the active sites of inhibitory reaction.
     BTo analyse the aquatic ecological toxicity of 17 triazole fungicides and provide the data for QSAR study, the acute immobilization test for the crustacean (Daphnia magna) at 48h (expressed as EC_(50)(48h)) and acute toxicity for the zebrafish (Danio rerio) at 96h (expressed as LC_(50)(96h)) were determined by static system. At the same time, the infections of traizoles to the safety of aquatic ecology were basically assessed.
     2D-QSAR and 3D-QSAR methods including CoMFA and CoMSIA were used to study the toxicities of triazoles to D. magna and D. rerio. The QSAR models having the high fitting degrees and predictive abilities could interpret the mechanism of toxicity to D. magna and D. rerio reasonably. Compared with 2D-QSAR, 3D-QSAR models had the higher predictive abilities. 2D-QSAR results showed that the pollutants firstly might accumulate in organisms through the membrane. The process could be controlled by the hydrophobic parameters (ClogP) and molecular topological indices (ShpC and Dia). The pollutants might have the anaesthetic effect. Then, the pollutants could change the electron or nucleophilically displace with the biological macromolecules which could be affected by the electrical parameters. The pollutants might also have the reactive toxicity, higher than the anaesthetic toxicity. Moreover, 3D-QSAR studies indicated that the nitrogen atom in triazole ring might provide the lone pair electrons to form coordinate bond with the iron atom in the active center of CYP450 porphyrin ring. Phenyl and alkyl groups could form the hydrophobic interaction with the aromatic receptor of CYP450 and block the normal physiological function of CYP450. Therefore, triazole fungicides are toxic to D. magna and D. rerio. Comparing the results of 2D-QSAR and 3D-QSAR studies, one phenomenon that the toxic mechanisms of triazoles to D. magna were similar to D. rerio was found. Additionally, triazole ring, para positions of benzene ring and the substituted group linked with silicon atom were probably the active sites of toxic reaction.
     In order to validate the conjecture about the mechanism of triazoles on D. rerio in 3D-QSAR study and forecast the infection and potential environmental effects of triazoles to aquatic organisms on molecular level. The activities of SOD and CAT in the livers of zebrafish exposed to the various concentrations of paclobutrazole were measured, paclobutrazole as an example. The results indicated that the responses of SOD and CAT’s activities to triazoles were likely to be because of the interaction between CYP450 and triazoles which resulted in the interruption of natural cyclic catalytic reactions and then, the ROS increasing and the activities of SOD and CAT affected.
引文
[1] Cronin, M.T.D., Dearden, J.C. QSAR in toxicology. 1. Prediction of aquatic toxicity[J]. Quantitative Structure-Activity Relationships, 1995, 14(1): 1-7.
    [2] Du, Q.S., Mezey, P.G., Chou, K.C. Heuristic molecular lipophilicity potential (HMLP): A 2D-QSAR study to LADH of molecular family pyrazole and derivatives[J]. Journal of Computational Chemistry, 2005, 26(5): 461-470.
    [3] Hansch, C., Fujita,T.ρ–σ–πAnalysis. A method for the correlation of biolohgical activity and chemical structure[J]. Journal of American Chemical Society, 1964, 86(8): 1616–1626.
    [4] o ki , M., Sablji , A. Herbicidal selectivity of (E)-3-(2,4-dichlorophenoxy)acrylates: QSAR study with molecular connectivity indices[J]. Pesticide Science, 1993, 39(3): 245-250.
    [5] Laszlo, T., Beteringhe, A. QSAR studies related to toxicity of aromatic compounds on Tetrahymena Pyriformis[J]. QSAR & Combinatorial Science, 2006, 25(10): 944-951.
    [6] Roy, K., Ghosh, G. QSTR with extended topochemical atom indices. 10. Modeling of toxicity of organic chemicals to humans using different chemometric tools[J]. Chemical Biology & Drug Design, 2008, 72(5): 383-394.
    [7] Cronin, M.T.D., Zhao, Y.H., Yu. R.L. PH-dependence and QSAR analysis of the toxicity of phenols and anilines to Daphnia magna[J]. Environmental Toxicology, 2000, 15(2): 140-148.
    [8] Marrero-Ponce, Y., Khan, M.T.H., Martín, G.M.C. et al. Prediction of tyrosinase inhibition activity using atom-based bilinear indices[J]. ChemMedChem, 2007, 2(4): 449-478.
    [9] Faucon, J.C., Bureau, R., Faisant, J. et al. Prediction of the daphnia acute toxicity from heterogeneous data[J]. Chemosphere, 2001, 44(3): 407-422.
    [10] Fang, Y.P., Feng, Y., Li, M.L. Optimal QSAR analysis of the carcinogenic activity of aromatic and heteroaromatic amines[J]. QSAR & Combinatorial Science, 2008, 27(5): 543-554.
    [11] Chan, K., Jensen, N., O'Brien, P.J. Structure-activity relationships for thiol reactivity and rat or human hepatocyte toxicity induced by substituted p-benzoquinone compounds[J]. Journal of Applied Toxicology, 2008, 28(5): 608-620.
    [12] Benigni, R., Passerini, L., Rodomonte, A. Structure-activity relationships for the mutagenicity and carcinogenicity of simple andα-βunsaturated aldehydes[J]. Environmental and Molecular Mutagenesis, 2003, 42(3): 136-143.
    [13]李华,张华北.3-吡啶基醚类化合物的分子全息QSAR研究[J].化学学报,2005,63(11):1018-1022.
    [14] Honorio, K.M., Garratt, R.C., Andricopulo, A.D. Hologram quantitative structure–activity relationships for a series of farnesoid X receptor activators[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(12): 3119-3125.
    [15] Moda, T.L., Montanari, C.A., Andricopulo, A.D. Hologram QSAR model for the prediction of human oral bioavailability[J]. Bioorganic & Medicinal Chemistry, 2007, 15(24): 7738–7745.
    [16]董铭心,周梅,戴秋云.A型肉毒毒素抑制剂的分子全息定量构效关系研究[J].生物技术通讯,2007,18(4):625-627.
    [17] Vrta?nik, M., Voda, K. HQSAR and CoMFA approaches in predicting reactivity of halogenated compounds with hydroxyl radicals[J]. Chemosphere, 2003, 52(10): 1689–1699.
    [18]戴玄吏,王晓栋,黄宏等.应用分子全息QSAR技术预测硝基芳烃的遗传毒性[J].环境科学学报,2003,23(5):674-678.
    [19]王晓栋,肖乾芬,崔世海等.分子全息QSAR预测环境污染物的雌激素活性[J].中国科学B辑化学,2005,35(1):58-63.
    [20]于红霞,徐铁莲,王连生.取代苯类化合物的二维全息定量结构-活性相关研究[J].上海环境科学,2003,22(12):958-961.
    [21]陈达,印春生,戴玄吏等.部分酯类化合物对四膜虫毒性的全息QSAR分析[J].环境科学与技术,2004,27(1):3-4,63.
    [22]黄宏,杨红,樊伟等.分子全息QSAR方法预测苯衍生物对蝌蚪的急性毒性[J].环境科学,2005,26(3):25-28.
    [23]朱少敏.苯的衍生物的HQSAR研究[J].南京师大学报(自然科学版),2005,28(2):67-70.
    [24]崔世海,刘树深,王晓栋等.雌二醇衍生物的HQSAR研究[J].科学通报,2003,48(3):239-242.
    [25] Wade, R.C, in Kubinyi, H. (Ed) 3D-QSAR in drug design: Theory methods and applications, Leiden: ESCOM, 1993, 486-505.
    [26] Puntambekar, D.S., Giridhar, R., Yadav, M.R. Understanding the antitumor activity of novel tricyclicpiperazinyl derivatives as farnesyltransferase inhibitors using CoMFA and CoMSIA[J]. European Journal of Medicinal Chemistry, 2006, 41(11): 1279-1292.
    [27] Ravichandran, V., Kumar, B.R.P., Sankar, S. et al. Predicting anti-HIV activity of 1,3,4- thiazolidinone derivatives: 3D-QSAR approach[J]. European Journal of Medicinal Chemistry, 2008, in press, doi:10.1016/j.ejmech.2008.05.036.
    [28] López-Vallejo, F., Medina-Franco, J.L., Hernández-Campos, A. et al. Molecular modeling of some 1H-benzimidazole derivatives with biological activity against Entamoeba histolytica: A comparative molecular field analysis study[J]. Bioorganic & Medicinal Chemistry, 2007, 15(2): 1117-1126.
    [29]班树荣,牛聪伟,陈文彬等.拟南芥乙酰羟基酸合成酶与磺酰脲的相互作用以及CoMFA研究[J].高等学校化学学报,2007,28(3):543-547.
    [30]陈海峰,董喜城,谷妍.抗小麦赤霉病类含氟农药的3D-QSAR[J].化学学报,2000,58(9):1074-1078.
    [31]杨光富,刘华银,杨秀凤等.以ALS为靶标的新除草剂的分子设计合成及生物活性-磺酰脲类和三唑并嘧啶-2-磺酰胺类ALS抑制剂的比较分子力场分析[J].中国科学(B辑),2000,30(2):160-166.
    [32] Kargul, J., Maghlaoui, K., Murray, J.W. et al. Purification, crystallization and X-ray diffraction analyses of the T. elongates PSII core dimer with strontium replacing calcium in the oxygen- evolving complex[J]. Biochimica et Biophysica Acta,2007, 1767(6): 404–413.
    [33] Han, X.F., Liu, Y.X., Liu, Y. et al. Binding model and 3D-QSAR of 3-(2-chloropyrid-5- ylmethyl- amino)-2-cyanoacrylates as PSII electron transport inhibitor[J]. Chinese Journal of Chemistry,2007, 25(8): 1135-1138.
    [34] Xu, M., Zhang, A.Q., Han, S.K. et al. Studies of 3D-quantitative structure-activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA[J]. Chemosphere, 2002, 48(7): 707-715.
    [35] Liu, Y., Chen, J.N., Zhao, J.S. et al. Three-dimensional quantitative structure activity relationship (3D-QSAR) analysis for in vitro toxicity of chlorophenols to HepG2 cells[J]. Chemosphere, 2005, 60 (6): 791-795.
    [36]刘新会,骆文茹,王连生.苯砜基乙酸酯类化合物发光菌毒性效应的CoMFA研究[J].环境化学,2005,24(1):36-40.
    [37] Nair, P.C., Sobhia, M.E. Comparative QSTR studies for predicting mutagenicity of nitro compounds[J]. Journal of Molecular Graphics and Modelling, 2008, 26(6): 916-934.
    [38] Organisation for economic co-operation and development, OECD Principles for the validation, for regulatory purpose, of (quantitative) structure-activity relationship models, 37th Joint Meeting of the Chemicals Committee and Working Party on Chemicals, Pesticides and Biotechnology, 2004.
    [39] Jaworska, J., Comber, M., Auer, C. et al. Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints[J]. Environmental Health Perspectives, 2003, 111(10): 1358-1360.
    [40] Carrieri, A., Muraglia, M.F., Corbo, F. et al. 2D and 3D-QSAR of Tocainide and Mexiletine analogues acting as Nav1.4 channel blockers[J]. European Journal of Medicinal Chemistry, 2008, in press, doi:10.1016/j.ejmech.2008.10.005
    [41] Pasha, F.A., Muddassar, M., Cho, S.J. et al. 3D and quantum QSAR of non-benzodiazepine compounds[J]. European Journal of Medicinal Chemistry, 2008, 43(11): 2361-2372.
    [42]周卫红,文欣,孙命等.光系统II抑制剂的三维构效关系和相关性研究[J].计算机与应用化学,2000,17(1):9-10.
    [43] Velthuys, B.R. Mechannisms of electron flow in photosystem II and toward photosystem I[J]. Annual Review of Plant Physiology, 1980, 31: 545-567.
    [44] Andreasson, L.E., Vannagrd, T. Electron transport in photosystem I and II[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1988, 39: 379-411.
    [45] Gardner, G. Azidoatrazine: Photoaffinity label for the site of triazine herbicide action in chloroplasts[J]. Science, 1981, 211(4485): 937-940.
    [46] Oettmeier, W., Masson, K., Soll, H.J. et al. Herbicide binding at photosystemⅡ: A new azido-triazinone photoaffinity label[J]. Biochimica et Biophysica Acta, 1984, 767(3): 590-595.
    [47]余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1992,199-203.
    [48]戴云玲,严国光等.光合作用原初过程[M].北京:科学出版社,北京,1987,140.
    [49] Trebst, A., Hilp, U., Draber, W. Response in the inhibitor efficiency of substituted phenols on ps II activity in six mutants of the D1 protein subunit in Chlamydomonas reinhardtii[J]. Phytochemistry, 1993, 33(5): 969-977.
    [50]喻爱明,杨华铮,刘华银等.基于D1蛋白结构的光合作用抑制剂化合物库的组合合成[J].中国科学(B辑),1998,28(4):337-341.
    [51]刘华银,沙印林,陆荣健等.生物合理设计光系统II抑制剂研究-Ⅰ.豌豆D1蛋白与氰基丙烯酸酯类及脲类抑制剂的复合物结构的研究[J].科学通报,1998,43(4):397-401.
    [52] Oettmeier, W., Masson, K., Donner, A. Anthraquinone inhibitors of photosystem II electron transport[J]. FEBS Letters, 1988, 231(1): 259-262.
    [53] Jewess, P.J., Higgins, J., Berry, K.J. et al. Herbicidal action of 2-hydroxy-3-alkyl-1,4- naphtho- quinones[J]. Pest Management Science, 2002, 58(3): 234-242.
    [54] Tandon, V.K., Chhor, R.B., Singh, R.V. et al. Design, synthesis and evaluation of novel 1,4- naphthoquinone derivatives as antifungal and anticancer agents[J]. Bioorganic Medicinal Chemistry Letters, 2004, 14(5): 1079-1083.
    [55] Min, B.S., Miyashiro, H., Hattori, M. Inhibitory effects of quinones on RNase H activity associated with HIV-1 reverse transcriptase[J]. Phytotherapy Research, 2002, 16(1): S57-S62.
    [56] Jin, Y.R., Ryu, C.K., Moon C.K. et al. Inhibitory effects of J78, a newly synthesized 1,4- naphthoquinone derivative, on experimental thrombosis and platelet aggregation[J]. Pharmacology, 2004, 70(4): 195-200.
    [57] Kayser, O., Kiderlen, A.F., Croft, S.L. Natural products as antiparasitic drugs[J]. Parasitology Research, 2003, 90(2): S55-S62.
    [58] Jewess, P.J., Chamberlain, K., Boogaard, A.B. et al. Insecticidal 2-hydroxy-3-alkyl-1,4-naphtho- quinones: Correlation of inhibition of ubiquinol cytochrome c oxidoreductase (complex III) with insecticidal activity[J].Pest Management Science, 2002, 58(3): 243-247.
    [59] Chelossi, E., Faimali, M. Comparative assessment of antimicrobial efficacy of new potential biocides for treatment of cooling and ballast waters[J]. Science of the Total Environment, 2006, 356(1-3): 1-10.
    [60] Suganuma, H. Development of production process of a new pesticide from 1,4-naphthoquinone[J]. Journal of Synthetic Organic Chemistry, Japan, 2001, 59(1): 23-32.
    [61] Medina, L.F.C., Stefani, V., Brandelli, A. Use of 1,4-naphthoquinones for control of Erwinia carotovora[J]. Canadian Journal of Microbiology, 2004, 50(11): 951-956.
    [62] Feitosa dos Santos, A., Aline L Ferraz, P., Ventura Pinto, A. et al. Molluscicidal activity of 2-hydroxy-3-alkyl-1,4-naphthoquinones and derivatives[J]. International Journal for Parasitology, 2000, 30(11): 1199-1202.
    [63] Munday, R., Smith, B.L., Fowke, E.A. Haemolytic activity and nephrotoxicity of 2-hydroxy-1,4- naphthoquinone in rats[J]. Journal of Applied Toxicology, 2006, 11(2): 85-90.
    [64] Munday, R., Smith, B.L., Munday, C.M. Structure-activity relationships in the haemolytic activity and nephrotoxicity of derivatives of 1,2- and 1,4-naphthoquinone[J]. Journal of Applied Toxicology, 2007, 27(3): 262-269.
    [65] Munday, R., Smith, B.L., Munday, C.M. Comparative toxicity of 2-hydroxy-3-alkyl-1,4- naphthoquinones in rats[J]. Chemico-Biological Interactions, 1995, 98(2): 185-192.
    [66] Kirkland, D., Marzin, D. An assessment of the genotoxicity of 2-hydroxyl-1, 4-naphthoquinone, the natural dye ingredient of Henna[J]. Mutation Research, 2003, 537(2): 183-199.
    [67] Ollinger, K., Brunmark, A. Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes[J]. Journal of Biological Chemistry, 1991, 266(32): 21496-21503.
    [68] Da Costa Medina, L.F., Macagnan Viau, C., Jaqueline Moura, D. et al. Genotoxicity of amino- hydroxynaphthoquinones in bacteria, yeast, and Chinese hamster lung fibroblast cells[J]. MutationResearch/Genetic Toxicology and Environmental Mutagenesis, 2008, 650(2): 140-149.
    [69]唐除痴等.农药化学[M].天津:南开大学出版社,1998,418-421.
    [70]许良忠.三唑类P450-14DM抑制剂的合成、表征及生物活性研究[学位论文].中国海洋大学,2004.
    [71] Paraíba, L.C. Pesticide bioconcentration modelling for fruit trees[J]. Chemosphere, 2007, 66(8): 1468-1475.
    [72]陈莉,戴荣彩,陈家梅等.戊唑醇在苹果和土壤中的残留动态[J].农药,2007,46(3):194-196.
    [73] González-Rodríguez, R.M., Rial-Otero, R., Cancho-Grande, B. et al. Determination of 23 pesticide residues in leafy vegetables using gas chromatography–ion trap mass spectrometry and analyte protectants[J]. Journal of Chromatography A, 2008, 1196–1197: 100-109.
    [74] Soler, C., James, K.J., Picó, Y. Capabilities of different liquid chromatography tandem mass spectrometry systems in determining pesticide residues in food: Application to estimate their daily intake[J]. Journal of Chromatography A, 2007, 1157(1-2): 73-84.
    [75] Kumar, V., Ravindranath, S.D., Shanker, A. Fate of hexaconazole residues in tea and its behavior during brewing process[J].Chemical Health and Safety, 2004, 11(1): 21-25.
    [76] Tr?sken, E.R., Bittner, N., V?lkel, W. Quantitation of 13 azole fungicides in wine samples by liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1083(1-2): 113-119.
    [77]刘国柱,徐应明,黄永春等.氟环唑在苹果及土壤中的残留动态研究[J].现代科学仪器,2007,1:61-63.
    [78] Wang, Z.H., Yang, T., Qin, D.M. et al. Determination and dynamics of difenoconazole residues in Chinese cabbage and soil[J]. Chinese Chemical Letters, 2008, 19(8): 969-972.
    [79] Bermúdez-Couso, A., Arias-Estévez, M., Nóvoa-Mu?oz, J.C. et al. Seasonal distributions of fungicides in soils and sediments of a small river basin partially devoted to vineyards[J]. Water Research, 2007, 41(19): 4515-4525.
    [80] Natangelo, M., Tavazzi, S., Fanelli, R. et al. Analysis of some pesticides in water samples using solid-phase microextraction–gas chromatography with different mass spectrometric techniques[J]. Journal of Chromatography A, 1999, 859(2): 193-201.
    [81] Zhou, Q.X., Xiao, J.P., Ding, Y.J. Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid-phase extraction cartridge[J]. Analytica Chimica Acta, 2007, 602(2): 223-228.
    [82] Sampedro, M.C., Martín, O., De Armentia, C.L. et al. Solid-phase microextraction for the determination of systemic and non-volatile pesticides in river water using gas chromatography with nitrogen–phosphorous and electron-capture detection[J]. Journal of Chromatography A, 2000, 893(2): 347-358.
    [83] Jeannot, R., Sabik, H., Sauvard, E. et al. Application of liquid chromatography with mass spectrometry combined with photodiode array detection and tandem mass spectrometry for monitoring pesticides in surface waters[J]. Journal of Chromatography A, 2000, 879(1): 51-71.
    [84] Allen, A.R., Macphail, R.C. Bitertanol, a triazole fungicide, increases operant responding but not motor activity[J]. Neurotoxicology and Teratology, 1993, 15(4): 237-242.
    [85] Groppelli, S., Pennati, R., Bernardi, F. et al. Teratogenic effects of two antifungal triazoles, triadimefon and triadimenol, on Xenopus laevis development: Craniofacial defects[J]. Aquatic Toxicology, 2005, 73(4): 370-381.
    [86] Reeves, R., Thiruchelvam, M., Richfield, E.K. et al. The effect of developmental exposure to the fungicide triadimefon on behavioral sensitization to triadimefon during adulthood[J]. Toxicology and Applied Pharmacology, 2004, 200(1): 54-63.
    [87] Crofton, K.M. A structure-activity relationship for the neurotoxicity of triazole fungicides[J]. Toxicology Letters, 1996, 84(3): 155-159.
    [88] http://baike.baidu.com/view/331688.htm
    [89] Levine, S.L., Oris, J.T., Denison, M.S. Modulation of CYP1A expression in rainbow trout by a technical grade formulation of propiconazole[J]. Environmental Toxicology and Chemistry, 1999,18(11): 2565-2573.
    [90] Hinfray, N., Porcher, J., Brion, F. Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2006, 144(3): 252-262.
    [91] Tully, D.B., Bao, W.J., Goetz, A.K. et al. Gene expression profiling in liver and testis of rats to characterize the toxicity of triazole fungicides[J]. Toxicology and Applied Pharmacology, 2006, 215(3): 260–273.
    [92] Vinggaard, A.M., Hnida, C., Breinholt, V. et al. Screening of selected pesticides for inhibition of CYP19 aromatase activity In Vitro[J].Toxicology in Vitro, 2000, 14(3): 227-234.
    [93] Chan, P.K., Lu, S.Y., Liao, J.W. et al. Induction and inhibition of cytochrome P450-dependent monooxygenases of rats by fungicide bitertanol[J]. Food and Chemical Toxicology, 2006, 44(12):2047-2057.
    [94] Rockett, J.C., Narotsky, M.G., Thompsona, K.E. et al. Effect of conazole fungicides on reproductive development in the female rat[J]. Reproductive Toxicology, 2006, 22(4): 647-658.
    [95] Hester, S.D., Nesnow, S. Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide[J]. Toxicology Applied Pharmacology, 2008, 227(3): 357-369.
    [96] Monod, G., Rime, H., Bobe, J. et al. Agonistic effect of imidazole and triazole fungicides on in vitro oocyte maturation in rainbow trout (Oncorhynchus mykiss)[J]. Marine Environmental Research, 2004, 58(2-5): 143-146.
    [97] Hartel, A., Didier, A., Pfaffl, M.W. et al. Characterisation of gene expression patterns in 22RV1 cells for determination of environmental androgenic/antiandrogenic compounds[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2003, 84(2-3): 231-238.
    [98] Broccia, E.M.L., Renzo, F.D., Giavini, E. Antifungal triazoles induce malformations in vitro[J]. Reproductive Toxicology, 2001, 15(4): 421-427.
    [99] Menegola, E., Broccia, M.L., Renzo, F.D. et al. Study on the common teratogenic pathway elicited by the fungicides triazole-derivatives[J]. Toxicology in Vitro, 2005, 19(6): 737-748.
    [100]Sanderson, J.T., Boerma, J., Lansbergen, G.W.A. et al. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinomacells[J].Toxicology and Applied Pharmacology, 2002, 182(1): 44-54.
    [101]Tr?sken, E.R., Straube, E., Lutz, W.K. et al. Quantitation of lanosterol and its major metabolite FF-MAS in an inhibition assay of CYP51 by azoles with atmospheric pressure photoionization based LC-MS/MS[J]. Journal of the American Society for Mass Spectrometry, 2004, 15(8): 1216-1221.
    [102]Schoeny, R., Cody, T., Warshawsky, D. et al. Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species[J]. Mutation Research, 1988, 197(2): 289-302.
    [103]Vaishampayan, A. Powerful mutagenicity of a bipyridylium herbicide in a nitrogen-fixing blue-green alga Nostoc muscorum[J]. Mutation Research, 1984, 138(1): 39-46.
    [104]García, M.T., Campos, E., Ribosa, I. Biodegradability and ecotoxicity of amine oxide based surfactants[J]. Chemosphere, 2007, 69(10): 1574-1578.
    [105]Roy, K., Ghosh, G. QSTR with extended topochemical atom indices. 3. Toxicity of nitrobenzenes to tetrahymena pyriformis[J]. QSAR & Combinatorial Science, 2004, 23(2-3): 99-108.
    [106]Environmental Protection Agency. Water Quality Criteria[M]. Washington: National Academy of Sciences, 1972.
    [107]Heinlaan, M., Ivask, A., Blinova, I. et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus [J].Chemosphere , 2008, 71(1): 1308-1316.
    [108]Nakari, T., Huhtala, S. Comparison of toxicity of congener-153 of PCB, PBB, and PBDE to Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2008, 71(2): 514-518.
    [109]Flaherty, C.M., Dodson, S.I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction[J]. Chemosphere, 2005, 61(2): 200-207.
    [110]Barbosa, I.R., Nogueira, A.J.A., Soares, A.M.V.M. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2008, 71(3): 757-764.
    [111]刘晓玲,罗义,周启星.环境中两种沐浴露污染对大型蚤的生态毒性效应[J].环境科学学报,2008,28(6):1173-1177.
    [112]Strum, A., Hansen, P.D. Altered cholinesterase and monooxygenase levels in daphnia magna and chironomus riparius exposed to environmental pollutants[J]. Ecotoxicology and Environmental Safety, 1999, 42 (1): 9-15.
    [113]Den Besten, P.J., Tuk, C.W. Relation between responses in the neutral red retention test and the comet assay and life history parameters of daphnia magna[J]. Marine Environmental Research, 2000, 50 (1-5): 513-516.
    [114]Reimers, M.J., Flockton, A.R., Tanguay, R.L. Ethanol- and acetaldehyde-mediated developmental toxicity in Zebrafish[J]. Neurotoxicology and Teratology, 2004, 26(6): 769-781.
    [115]Deneer, J.W., Sinnige, T.L., Seinen, W. et al. Quantitative structure-activity relationships for the toxicity and bioconcentration factor of nitrobenzene derivatives towards the guppy (Poecilia reticulata)[J]. Chemosphere, 2005, 159(4): 467-471.
    [116]Mukhi, S., Pan, X.P., Cobb, G.P. et al. Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval Zebrafish (Danio rerio)[J]. Chemosphere, 2005, 61(2): 178-185.
    [117]?i?man, T., Geyiko?lu, F. The teratogenic effects of polychlorinated naphthalenes (PCNs) on earlydevelopment of the Zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2008, 25(1): 83-88.
    [118]Feng, T., Li, Z.B., Guo, X.Q. et al. Effects of trichlorfon and sodium dodecyl sulphate on antioxidant defense system and acetylcholinesterase of Tilapia nilotica in vitro[J]. Pesticide Biochemistry and Physiology, 2008, 92(3): 107-113.
    [119]Rico, E.P., Rosemberg, D.B., Dias, R.D. et al. Ethanol alters acetylcholinesterase activity and gene expression in zebrafish brain[J]. Toxicology Letters, 2007, 174(1-3): 25-30.
    [120]Monteiro, D.A., Rantin, F.T., Kalinin, A.L. The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinx?, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR(R) (methyl parathion)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009, 149(1): 40-49.
    [121]Liu, Y., Wang, J.S., Wei, Y.H. et al. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver[J]. Aquatic Toxicology, 2008, 89(4): 242-250.;
    [122]Sun, Y.Y., Yu, H.X., Zhang, J.F. et al. Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure[J]. Chemosphere, 2006, 63(8): 1319-1327.
    [123]Yang, F.X., Xu, Y., Hui, Y. Reproductive effects of prenatal exposure to nonylphenol on zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2006, 142(1-2): 77-84.
    [124]Dave, G., Andersson, K., Berglind, R. et al. Toxicity of eight solvent extraction chemicals and of cadmium to water fleas, Daphnia Magna, Rainbow trout, Salmo Gairdneri, and Zebrafish, Brachydanio Rerio[J].Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1981, 69(1): 83-98.
    [125]Neuwoehner, J., Reineke, A.K., Hollender, J. et al. Ecotoxicity of quinoline and hydroxylated derivatives and their occurrence in groundwater of a tar-contaminated field site[J].Ecotoxicology and Environmental Safety, 2008, in press, doi:10.1016/j.ecoenv.2008.04.012 .
    [126]Isidori, M., Nardelli, A., Pascarella, L. et al. Toxic and genotoxic impact of fibrates and their photoproducts on non-target organisms[J]. Environment International, 2007, 33(5): 635-641.
    [1]齐丽宁,杨霞,任志琴等.除草剂生物活性测定[J].天津师大学报(自然科学版),1999,19(4):6-11.
    [2] Cao, H.Y., Li, Z.G., Sun, H.K.et.al.Crystal structure of ethoxyethy13-(2-chloro-5-pyridylmethyl- amino)-2-cyano-4-methylpent-2-enoate[J].Chinese Journal of Structural Chemistry, 2002, 21(3): 241-244.
    [3] James, W.M., James, B. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel[J]. Journal of Structural Biology, 2007, 159(2): 228-237.
    [4] Tyystj?rvi, E. Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster[J]. Coordination Chemistry Reviews, 2008, 252(3-4): 361-376.
    [5] Oettmeier, W., Dierig, C., Masson, K. QSAR of 1,4-naphthoquinones as Inhibitors of photosystem II electron transport[J]. Quantitative Structure-Activity Relationships,1986, 5(2): 50-54.
    [6] o ki , M., Sablji , A. QSAR study of 4-hydroxypyridine derivatives as inhibitors of the Hill reaction[J]. Pesticide Science, 1995, 45(2): 133-141.
    [7] Han, X.F., Liu, Y.X., Liu, Y. et al. Binding model and 3D-QSAR of 3-(2-chloropyrid-5-ylmethyl- amino)-2-cyanoacrylates as PSII electron transport inhibitor[J]. Chinese Journal of Chemistry, 2007, 25(8): 1135-1138.
    [8] Jewess, P.J., Higgins, J., Berry, K.J. et al. Herbicidal action of 2-hydroxy-3-alkyl-1,4-naphtha- quinones[J].Pest Management Science, 2002, 58(3): 234-242.
    [9]丁峰,宋文华,胡卫萱等.均三嗪类除草剂的QSAR研究[J].天津理工大学学报,2005,21(6):41-43.
    [10]丁峰,冯炘,胡卫萱等.三嗪类化合物发光菌毒性QSAR研究[J].天津师范大学学报(自然科学版),2005,25(4):16-18.
    [11] Furusjo, E., Svenson, A., Rahmberg, M. et al. The importance of outlier detection and training set selection for reliable environmental QSAR predictions[J]. Chemosphere, 2006, 63(1): 99-108.
    [12] Walker, J.D. Applications of QSARs in toxicology: A US Government perspective[J]. Journal of Molecular Structure (Theochem), 2003, 622(7): 167-184.
    [13] Bearden, A.P., Schultz, T.W. Structure–activity relationships for Pimephales and Tetrahymena: A mechanism of action approach[J]. Environmental Toxicology and Chemistry, 1997, 16(6): 1311–1317.
    [14] Ertan, T., Yildiz, I., Tekiner-Gulbas, B. et al. Synthesis, biological evaluation and 2D-QSAR analysis of benzoxazoles as antimicrobial agents[J]. European Journal of Medicinal Chemistry, 2008, in press, doi: 10.1016/j.ejmech.2008.04.001.
    [15] Prasanna, S., Manivannan,E., Chaturvedi, S.C. Quantitative structure–activity relationship analysis of a series of 2,3-diaryl benzopyran analogues as novel selective cyclooxygenase-2 inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(15): 4005-4011.
    [16]丁峰,宋文华,胡卫萱等. 1-取代-2-氨基苯并咪唑化合物QSAR研究[J].农业环境科学学报,2005,24(4):705-707.
    [17]宋文华,丁峰,胡卫萱等.磺酰脲类除草剂定量结构—生物降解性关系(QSBR)研究[J].计算机与应用化学,2005,22(2):121-124.
    [18] Lien, E.J., Ren, S.J., Bui, H.H. et al. Quantitative structure-activity relationship analysis of phenolic antioxidants[J]. Free Radical Biology and Medicine, 1999, 26(3-4): 285-294.
    [19] Alves, C.N., Pinheiro, J.C., Camargo, A.J. et al. A structure–activity relationship study of HEPT- analog compounds with anti-HIV activity[J]. Journal of Molecular Structure: Theochem, 2000, 530(1-2): 39-47.
    [20]丁峰,宋文华,岳俊杰等.氯喹酸酯类化合物除草活性定量构效关系研究[J].南开大学学报(自然科学版),2007,40(4):28-31.
    [21] Nendza, M., Dittrich, B., Wenzel, A. et al. Predictive QSAR models for estimating ecotoxic hazard of plant-protecting agents: target and non-target toxicity[J]. Science of the Total Environment, 1991, 109-110: 527-535.
    [22]吴文娟,赖瑢,郑康成等.抗癌性吲哚喹唑啉衍生物的定量构效关系[J].物理化学学报,2005,21(1):28-32.
    [23]崔世海,刘树深,王晓栋等.雌二醇衍生物的HQSAR研究[J].科学通报,2003,48(3):239-242.
    [24] Fuerst, E.P., Norman, M.A. Interaction of herbicides with photosynthetic electron transport[J]. Weed Science, 1991, 39(3): 458-464.
    [25]王晓栋,肖乾芬,崔世海等.分子全息QSAR预测环境污染物的雌激素活性[J].中国科学B辑化学,2005,35(1):58-63.
    [26]戴玄吏,王晓栋,黄宏等.应用分子全息QSAR技术预测硝基芳烃的遗传毒性[J].环境科学学报,2003,23(5):674-678.
    [27] Zhang, B., Zou, L., Wei, Z.W. et al. Study of chiral separation for 5-arylhydantoins based on CoMFA and HQSAR models[J]. Acta Physico-Chimica Sinica, 2004, 20(10): 1204-1210.
    [28] Tanford, C. How protein chemists learned about the hydrobic factor[J]. Protein Science, 1997, 6(6): 1358-1366.
    [29] Zhang, Y.H., Yue, Y.Y., Li, J.Z. et al. Studies on the interaction of caffeic acid with human serum albumin in membrane mimetic environments[J]. Journal of photochemistry and photobiology, Biology B, 2008, 90(3): 141-151.
    [30] Cramer, R.D., Burce, J.D., Patterson, D.E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR study[J]. Quantitative Structure- Activity Relationships, 1988, 7: 18-25.
    [1]盛春泉,张万年,张珉等.新型三唑类抗真菌化合物的三维定量构效关系研究[J].化学学报,2005,63(7):617-624.
    [2] Jewess, P.J., Higgins, J., Berry, K.J. et al. Herbicidal action of 2-hydroxy-3-alkyl-1,4-naphtho- quinones[J]. Pest Management Science, 2002, 58(3): 234-242.
    [3]朱七庆.基于受体或配体结构的分子设计与研究[学位论文].中国协和医科大学,1998.
    [4] Baurin, N., Vangrevelinghe, E., Allory, L.M. et al. 3D-QSAR CoMFA study on imidazolinergic I2 ligands: A significant model through a combined exploration of structural diversity and methodology[J]. Journal of Medicinal Chemistry, 2000, 43(6): 1109-1122.
    [5] DunnⅢ, W.J., Wold, S., Edlung, U. et al. Multivariate structure - activity relationships between data from a battery of biological tests and an ensemble of structure descriptors: the PLS method [J]. Quantitative Structure-Activity Relationships, 1984, 3(4): 131-137.
    [6] Van de Waterbeemed, H. Chemometric Methods in Molecular Design[M]. Weinheim: VCH Verlagsgesellschaft GmbH, 1995: 309-318.
    [7] Dayan, F.E., Allen, S.N. Predicting the activity of the natural phytotoxic diphenyl ether cyperine using comparative molecular field analysis[J]. Pest Management Science, 2000, 56(8): 717-722.
    [8]杨伟华,冯长君.N,N-二甲基-2-溴苯乙胺类衍生物活性与CoMFA、CoMSIA的研究[J].计算机与应用化学,2007,24(5):688-692.
    [9] Xue, C.X, Cui, S.Y., Liu, M.C. et al. 3D-QSAR studies on antimalarial alkoxylated and hydroxylated chalcones by CoMFA and CoMSIA[J]. European Journal of Medicinal Chemistry, 2004, 39(9): 745-753.
    [10]周原,梅虎,梁桂兆等.取代基物化参数及其在药物定量构效关系中的应用[J].物理化学学报,2006,22(4):486-491.
    [11]周卫红,文欣,孙命等.光系统(PSII)抑制剂的比较分子场研究[J].有机化学,2000,20(4):564-569.
    [12] Zhu, W.L., Chen, G., Hu, L.H. et al. QSAR analyses on ginkgolides and their analogues using CoMFA, CoMSIA, and HQSAR[J]. Bioorganic & Medicinal Chemistry, 2005, 13(2): 313-322.
    [13]姜晖霞,王辉宪,柏连阳.均三氮苯类除草剂的研究[J].计算机与应用化学,2005,22(11):1033-1037.
    [14]吴文娟,赖瑢,郑康成等.抗癌性吲哚喹唑啉衍生物的定量构效关系[J].物理化学学报,2005,21(1):28-32.
    [15]姚斌,陈军,周有骏等.新型四氢萘类抗真菌化合物的三维定量构效关系研究[J].药物实践学杂志,2007,25(4):210-214,234.
    [16] Fuerst, E.P., Norman M.A. Interaction of herbicides with photosynthetic electron transport[J]. Weed Science, 1991, 39(3): 458-464.
    [17]王宝雷,王建国,马翼等.脒类KARI酶抑制剂的分子对接和3D-QSAR研究[J].化学学报,2006,64(13):1373-1378.
    [18]袁江兰,刘晖,康旭等.磷脂酰肌醇3-激酶与其抑制剂芹菜素的分子对接[J].武汉大学学报(理学版),2008,54(2):193-196.
    [19] Elizabeth, S.M., Prasad, V.B. Comparative molecular similarity indices analysis (CoMSIA) studies of 1,2-naphthoquinone derivatives as PTP1B inhibitors[J]. Bioorganic & Medicinal Chemistry, 2005, 13(6): 2331-2338.
    [1] Karaoglanidis, G.S., Karadimos, D.A. Efficacy of strobilurins and mixtures with DMI fungicides in controlling powdery mildew in field-grown sugar beet[J]. Crop Protection, 2006, 25(9): 977-983.
    [2] Gopinath, K., Radhakrishnan, N.V., Jayaraj, J. Effect of propiconazole and difenoconazole on the control of anthracnose of chilli fruits caused by colletotrichum capsici[J]. Crop Protection, 2006, 25(9): 1024-1031.
    [3] Dabkevi?ius, Z., Mikaliūnait?, R. The effect of fungicidal seed treaters on germination of rye ergot (Claviceps purpurea (Fr.) Tul.) sclerotia and on ascocarp formation[J]. Crop Protection, 2006, 25(7): 677-683.
    [4] Reuveni, M. Inhibition of germination and growth of Alternaria alternata and mouldy-core development in red delicious apple fruit by Bromuconazole and Sygnum[J]. Crop Protection, 2006, 25(3): 253-258.
    [5] Allen, T.W., Enebak, S.A., Carey, W.A. Evaluation of fungicides for control of species of Fusarium on longleaf pine seed[J]. Crop Protection, 2004, 23(10): 979-982.
    [6] Symington, C.A. Lethal and sublethal effects of pesticides on the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and its parasitoid Orgilus lepidus Muesebeck (Hymenoptera: Braconidae)[J]. Crop Protection, 2003, 22(3): 513-519.
    [7] Jayasena, K.W., Loughman, R., Majewski, J. Evaluation of fungicides in control of spot-type net blotch on barley[J]. Crop Protection, 2002, 21(1): 63-69.
    [8] Shtienberg, D., Dreishpoun, J. Suppression of alternaria leaf spot in pima cotton by systemic fungicides[J].Crop Protection, 1991, 10(5): 381-385.
    [9] Zamora, T., Pozo, O.J., López, F.J. et al. Determination of tridemorph and other fungicide residues in fruit samples by liquid chromatography–electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2004, 1045(1-2): 137-143.
    [10] Juan-García, A., Picó, Y., Font, G. Capillary electrophoresis for analyzing pesticides in fruits and vegetables using solid-phase extraction and stir-bar sorptive extraction[J].Journal of Chromatography A, 2005, 1073(1-2): 229-236.
    [11] Juan-García, A., Ma?es, J., Font, G. et al. Evaluation of solid-phase extraction and stir-bar sorptive extraction for the determination of fungicide residues at low-μg kg?1 levels in grapes by liquid chromatography–mass spectrometry[J]. Journal of Chromatography A, 2004, 1050(2): 119-127.
    [12] Rueegg, J., Siegfried, W. Residues of difenoconazole and penconazole on apple leaves and grass and soil in an apple orchard in north-eastern Switzerland[J]. Crop Protection, 1996, 15(1): 27-31.
    [13] Balinova, A. Extension of the bioautograph technique for multiresidue determination of fungicide residues in plants and water[J]. Analytica Chimica Acta, 1995, 311(3): 423-427.
    [14] Rand, G.M., Clark. J.R. Hazard/ risk assessment of pyridabenⅡ: Outdoor aquatic toxicity studies and the water effect ratio[J]. Ecotoxicology, 2000, 9(3): 169-177.
    [15] Crofton, K.M. A structure-activity relationship for the neurotoxicity of triazole fungicides[J]. Toxicology Letters, 1996, 84(3):155-159.
    [16] Allen, A.R., Macphail, R.C. Bitertanol, a triazole fungicide, increases operant responding but not motor activity[J]. Neurotoxicology and Teratology, 1993, 15(4):237-242.
    [17] Crofton, K.M., Boncek, V.M., Reiter, L.W. Hyperactivity induced by triadimefon, a triazole fungicide[J]. Fundamental and Applied Toxicology, 1988, 10(3):459-465.
    [18] Groppelli, S., Pennati, R., Bernardi, F. et al. Teratogenic effects of two antifungal triazoles, triadimefon and triadimenol, on Xenopus laevis development: Craniofacial defects[J]. Aquatic Toxicology, 2005, 73(4): 370-381.
    [19] Reeves, R., Thiruchelvam, M., Richfield, E.K. et al. The effect of developmental exposure to the fungicide triadimefon on behavioral sensitization to triadimefon during adulthood[J]. Toxicology and Applied Pharmacology, 2004, 200(1): 54-63.
    [20] Organisation for Economic Co-operation and Development. Guideline for testing of chemicals. Method 201, Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Paris: Environment Health and Safety Publications, 2006.
    [21] Organisation for Economic Co-operation and Development. Guideline for testing of chemicals. Method 202, Daphnia sp., Acute Immobilisation Test. Paris: Environment Health and Safety Publications, 2004.
    [22] Organisation for Economic Co-operation and Development. Draft guidance document on aquatic toxicity testing of difficult substances and mixtures. Series on Testing and Assessment, no.23.Paris: Environmental Health and Safety Publications, 2002.
    [23] Lawrence, C. The husbandry of zebrafish (Danio rerio): a review[J]. Aquaculture, 269(1-4): 1-20.
    [24]蒋燮治,堵南山.中国动物志:节肢动物门、甲壳纲、淡水枝角类[M].北京:科学出版社,1979:101-104.
    [25] Commission of the European Communities,Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No 1488/94 on risk assessment for existing substances. Office for official Publications of the European Communities, Luxembourg, 1996.
    [26] Organisation for Economic Co-operation and Development, Harmonized integrated hazard classification system for human health and environmental effects of chemical substances, the 28th Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, 1998.
    [27]杨赓,张晓强,钱忠宁等.多效唑对大型蚤的慢性毒性研究[J].现代农药,2003,2(3):22-25.
    [28] British Crop Protection Council. The pesticide manual (eleventh edition) [M]. Farharm: British Crop Protection, 1997: 921-922.
    [29] Sch?fer, R.B., Caquet, T., Siimes, K. et al. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe[J]. Science of The Total Environment, 2007, 382(2-3): 272-285.
    [30] Toropov, A., Benfenati, E. QSAR models for Daphnia toxicity of pesticides based on combinations of topological parameters of molecular structures[J]. Bioorganic & Medicinal Chemistry, 2006, 14(8): 2779-2788.
    [31] Adam, O., Badot, P.M., Degiorgi, F. et al. Mixture toxicity assessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L.)[J]. Ecotoxicology and Environmental Safety, 2008, 72(2): 441-449.
    [32] Athanasopoulos, P.E., Pappas, C.J., Kyriakidis, N.V. Decomposition of myclobutanil and triadimefon in grapes on the vines and during refrigerated storage[J] Food Chemistry, 2003, 82(3): 367-371.
    [33] Knauer, K., Lampert, C., Gonzalez-Valero, J. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action[J]. Chemosphere, 2007, 68(8): 1435-1441.
    [34] Bisson, M., Hontela, A. Cytotoxic and endocrine-disrupting potential of atrazine, diazinon, endosulfan, and mancozeb in adrenocortical steroidogenic cells of rainbow trout exposed in vitro[J].Toxicology and Applied Pharmacology, 2002, 180(2): 110-117.
    [1] Bradbury, S.P. Quantitative structure–activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research[J]. Toxicology Letters, 1995, 79(1-3): 229-237.
    [2]丁峰,宋文华,胡卫萱等.1-取代-2-氨基苯并咪唑化合物QSAR研究[J].农业环境科学学报,2005,24(4):705-707.
    [3] Didziapetris, R., Lanevskij, K., Japertas, P. Trainable QSAR model of Ames genotoxicity[J]. Toxicology Letters, 2008, 180(1): 152-153.
    [4] Marchini, S., Passerini, L., Cesareo, D. et al. Herbicidal triazines: acute toxicity on daphnia, fish, and plants and analysis of its relationships with structural factors[J]. Ecotoxicology and Environmental Safety, 1988, 16(2): 148-157.
    [5] Guilhermino, L., Diamantiono, T., Sliva. M.C. et al. Acute toxicity test with daphnia magna: An alternative to mammals in the prescreening of chemical toxicity[J]. Ecotoxicology and Environmental Safety, 2000, 46 (3): 357-362.
    [6] Organisation for Economic Co-operation and Development. Guideline for testing of chemicals. Method 203, Fish, Acute Toxicity Test. Paris: Environment Health and Safety Publications, 1992.
    [7] Organisation for Economic Co-operation and Development. Guideline for testing of chemicals. Method 202, Daphnia sp., Acute Immobilisation Test. Paris: Environment Health and Safety Publications, 2004.
    [8] Perkins, R., Fang, H., Tong, W. et al. Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology[J]. Environmental Toxicology and Chemistry, 2003, 22(8): 1666-1679.
    [9]王遵尧,韩香云,王连生.二噁英、有机磷和直链脂肪醇的毒性与分子体积的关系[J].科学通报,2004,49(12):1134-1138.
    [10] Dixit, A., Saxena, A.K. QSAR analysis of PPAR-γagonists as anti-diabetic agents[J]. European Journal of Medicinal Chemistry, 2008, 43(1): 73-80.
    [11]廖宜勇.取代苯类及部分氮杂环类化合物的QSAR研究[学位论文].南京大学,1996.
    [12] Verhaar, H.J.W., Van Leeuwen, C.J., Hermens, J.L.M. Classifying environmental pollutants [J]. Chemosphere, 1992, 25(4): 471-491.
    [13] Van Wezel, A.P., Opperhuizen, A. Narcosis due to environmental pollutants in aquatic organisms: Residue-based toxicity, mechanisms, and membrane burdens[J]. Critical Reviews In Toxicology, 1995, 25(3): 255-279.
    [14]袁星,陆光华,赵元慧.苯胺及苯酚类对水生生物毒性的QSAR研究[J].化学通报,2001,3(4):235.
    [15]赵元慧,杨绍贵.松花江中取代苯酚和苯胺类的生物降解性及QSBR研究[J].中国环境科学学报,2002,22(1):45-50.
    [16] Altenburger, R., Walter, H., Grote, M. What contributes to the combined effect of a complex mixture? [J]. Environmental Science and Technology, 2004, 38(23): 6353-6362.
    [17] Marzio, W.D., Saenz, M.E. QSARs for aromatic hydrocarbons at several trophic levels[J]. Environmental Toxicology, 2006, 21(2): 118-124.
    [18] Knauer, K., Lampert, C., Gonzalez-Valero, J. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action[J]. Chemosphere, 2007, 68(8): 1435-1441.
    [19] Moulton, M.P., Schlutz, T.W. Structure-activity relationships of selected pyridines II: Principal components analysis[J]. Chemosphere, 1986, 151: 59-67.
    [20] Veith, G.D., Call, D.J., Brooke, L.T. Strucrure-toxicity relationships for the fathead minnow[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(6): 743-748.
    [21] Damborsky, J., Schultz, T.W. Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols[J]. Chemosphere, 1997, 34(2): 429-446.
    [22] Soffers, A.E.M.F., Boersma, M.G., Vaes, W.H.J. et al. Computer modeling-based QSARs for analyzing experimental data on biotransformation and toxicity[J]. Toxicology in Vitro. 2001, 15(4-5): 539-551.
    [23] Neuwoehner, J., Reineke, A.K., Hollender, J. et al. Ecotoxicity of quinoline and hydroxylated derivatives and their occurrence in groundwater of a tar-contaminated field site[J]. Ecotoxicology and Environmental Safety, 2008, in press, doi:10.1016/j.ecoenv.2008.04.012 .
    [24] Zhao, Y.H., Cronin, M.T.D., Dearden, J.C. Quantitative structure–activity relationships of chemicals acting by non-polar narcosis-theoretical considerations[J]. Quantitative Structure- Activity Relationships, 1998, 17(2): 131-138.
    [25] Zhang, L., Zhou, P.J., Yang, F. et al. Computer based QSARs for predicting mixture toxicity of benzene and its derivatives[J]. Chemosphere, 2007, 67(2): 396-401.
    [26] Parvez, S., Venkataraman, C., Mukherji, S. Toxicity assessment of organic pollutants: Reliability of bioluminescence inhibition assay and univariate QSAR models using freshly prepared Vibrio fischeri[J]. Toxicology in Vitro, 2008, 22(7): 1806-1813.
    [27] Lin, Z.F., Niu, X.J., Wu, C.D. et al. Prediction of the toxicological joint effects between cyanogenic toxicants and aldehydes to Photobacterium phosphoreum[J]. QSAR & CombinatorialScience, 2005, 24(3): 354-363.
    [28] Liu, X.H., Wang, B., Huang, Z. et al. Acute toxicity and quantitative structure–activity relationships ofα-branched phenylsulfonyl acetates to Daphnia magna[J]. Chemosphere, 2003, 50(3): 403-408.
    [29] Schlutz, T.W., Applehans, F.M., Riggin, G.W. Structure-activity relationships of selected pyridines III. LogKow analysis[J]. Ecotoxicology and Environmental Safety, 1987, 13(1): 76-83.
    [1] Suh, M.E., Kang, M.J., Park, S.Y. The 3-D QSAR study of anticancer 1-N-substituted imidazo- and pyrrolo-quinoline-4, 9-dione derivatives by CoMFA and CoMSIA[J]. Bioorganic & Medicinal Chemistry, 2001, 9(11): 2987-2991.
    [2] Samuel, P.M., Devos, D., Raveendra, D. et al. 3-D QSAR studies on new dibenzyltin(IV) anticancer agents by comparative molecular field analysis (CoMFA)[J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12(1): 61-64.
    [3] Hou, T., Xu, X. A new molecular simulation software package– Peking University Drug Design System (PKUDDS) for structure-based drug design[J]. Journal of Molecular Graphics and Modeling, 2001, 19(5): 455-465.
    [4]王宝雷,马宁,王建国等.新磺酰脲类化合物除草活性的3D-QSAR分析[J].物理化学学报,2004,20(6):577-581.
    [5]杨光富,丁宇,杨华铮等.新型黄烷酮类衍生物的合成、杀菌活性及定量构效关系研究[J].高等学校化学学报,2004,25(1):71- 75.
    [6]柳爱平,陆爱军,黄明智等.含硫(氧)肟醚化合物杀虫活性三维定量构效关系研究[J].高等学校化学学报,2005,26(3):464- 466.
    [7]刘红艳,刘树深.部分苯酚化合物对梨形四膜虫毒性的三维定量构效关系[J].桂林工业学报,2006,26(4):538-542.
    [8]郭亦然,张燕玲,艾路等.化合物毒性及三维结构参数的定量构效关系研究[J].现代生物医学进展,2006,6(4):22-24.
    [9] Liu, X.H., Yang, Z.F., Wang, L.S. Three-dimensional quantitative structure–activity relationship study for phenylsulfonyl carboxylates using CoMFA and CoMSIA[J]. Chemosphere, 2003, 53(8): 945-952.
    [10]张爱茜,徐满,戴勇等.含硫芳香族化合物发光菌毒性的3D-QSAR研究[J].南京大学学报(自然科学),2001,37(6):691-696.
    [11]徐满,张爱茜,韩朔睽等.取代硝基苯类化合物的3D-QSAR研究[J].科学通报,2001,46(19):1614-1617.
    [12] Briens, F., Bureau, R., Rault, S. et al. Applicability of CoMFA in ecotoxicology: A critical study on chlorophenols[J]. Ecotoxicology and Environmental Safety, 1995, 31(1): 37-48.
    [13] Yang, W.H., Feng, C.J., Mu, L.L. Study on QSAR of chlorophenol compounds with comparative molecular field analysis[J]. Computers and Applied Chemistry, 2006, 23(12): 1209-1214.
    [14]方浩,卢景芬,张礼和等.苯氧烷胺类α1-肾上腺素受体拮抗剂三维定量构效关系[J].科学通报,2000,45(15):1630-1634.
    [15]习保民,赵文娜,邹建卫等.a1-AR拮抗剂DDPH类似物的比较分子力场分析[J].结构化学,2004,23(8):962-968.
    [16] Carballeira, J.D.,álvarez, E., Campillo, M. et al. Diplogelasinospora grovesii IMI 171018, a new whole cell biocatalyst for the stereoselective reduction of ketones[J]. Tetrahedron Asymmetry, 2004, 15(6): 951-962.
    [17] DunnⅢ, W.J., Wold, S., Edlung, U. et al. Multivariate structure - activity relationships between data from a battery of biological tests and an ensemble of structure descriptors: the PLS method[J]. Quantitative Structure-Activity Relationships, 1984, 3(4): 131-137.
    [18] Van de Waterbeemed, H. Chemometric methods in molecular design[M]. Weinheim: VCH Verlagsgesellschaft GmbH, 1995, 309-318.
    [19]骆金香,杨春龙. Cis-丙环唑的制备及其晶体结构的研究[J].农药学学报,2006, 8(1):20-24.
    [20] Todoroki, Y., Kobayashi, K., Yoneyama, H. et al. Structure–activity relationship of uniconazole, a potent inhibitor of ABA 8′-hydroxylase, with a focus on hydrophilic functional groups andconformation[J]. Bioorganic & Medicinal Chemistry, 2008, 16(6): 3141-3152.
    [21]盛春泉,张万年,张珉等.新型三唑类抗真菌化合物的三维定量构效关系研究[J].化学学报,2005,63(7):617-624.
    [22] Zhu, W.L., Chen, G., Hu, L.H. et al. QSAR analyses on ginkgolides and their analogues using CoMFA, CoMSIA, and HQSAR[J]. Bioorganic & Medicinal Chemistry, 2005, 13(2): 313-322.
    [23] Xu, M., Zhang, A.Q., Han, S.K. et al. Studies of 3D-quantitative structure–activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA[J]. Chemosphere, 2002, 48(7): 707-715.
    [24] Zhu, Y.Q., Lei, M., Lu, A.J. et al. 3D-QSAR studies of boron-containing dipeptides as proteasome inhibitors with CoMFA and CoMSIA methods[J]. European Journal of Medicinal Chemistry, 2008, in press, doi:10.1016/j.ejmech.2008.07.019.
    [25] Doddareddy, M.R., Cho, Y.S., Koh, H.Y. et al. CoMFA and CoMSIA 3D QSAR analysis on N1-arylsulfonylindole compounds as 5-HT6 antagonists[J]. Bioorganic & Medicinal Chemistry, 2004, 12(15): 3977-3985.
    [26]刘德立,张山,赵莉.细胞色素P450与农药相互作用及其机理研究[J].华中师范大学学报(自然科学版),2005,39(4):518-524.
    [27]徐铮,曹永兵,姜远英.麦角甾醇生物合成途径中的抗真菌药作用靶酶[J].国外医药抗生素分册,2001,22(5):193-197.
    [28]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001,9-10.
    [29]许良忠.三唑类P450-14DM抑制剂的合成、表征及生物活性研究[学位论文].中国海洋大学,2004.
    [30] Chan, P.K., Lu, S.Y., Liao, J.W. et al. Induction and inhibition of cytochrome P450-dependent monooxygenases of rats by fungicide bitertanol[J]. Food and Chemical Toxicology, 2006, 44(12): 2047-2057.
    [31] Hinfray, N., Porcher, J., Brion, F. Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2006, 144(3): 252-262.
    [32] Vinggaard, A.M., Hnida, C., Breinholt, V. et al. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro[J]. Toxicology in Vitro, 2000, 14(3): 227-234.
    [33]张培志,吴军,龚钰秋等.三唑酮氯化锌配合物的合成和晶体结构研究[J].无机化学学报,2003,19(7):753-756.
    [34]季海涛,张万年,周有骏.抗真菌药物作用靶酶羊毛甾醇14α去甲基化酶研究[J].生物化学与生物物理进展,1999,26(2):108-113.
    [35] Cedergreen, N., Kamper, A., Streibig, J.C., Is prochloraz a potent synergist across aquatic species? A study on bacteria, daphnia, algae and higher plants[J]. Aquatic Toxicology, 2006, 78(3): 243-252.
    [36] Akkanen, J., Kukkonen, J.V.K., Biotransformation and bioconcentration of pyrene in Daphnia magna[J]. Aquatic Toxicology, 2003, 64(1): 53-61.
    [1]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001,9-10.
    [2]王心如.基础毒理学(第4版)[M].北京:人民卫生出版社,2003,66.
    [3]胡一鸿,牛健康.超氧化物歧化酶研究进展[J].生物学教学,2005,30(1):2-4.
    [4] DiGiulo, R.T. Biochemical response in aquatic animals: a review of determination oxidative stress [J]. Environmental Toxicology and Chemistry, 1989, 8: 1103-1123.
    [5] Jemec, A., Drobne, D., Ti?ler, T. et al. The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 144(4): 303-309.
    [6] Langiano, V.C., Martinez, C.B.R. Toxicity and effects of a glyphosate-based herbicide on the neotropical fish Prochilodus lineatus[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 147(2): 222-231.
    [7] Organisation for Economic Co-operation and Development. Guideline for testing of chemicals.Method 203, Fish, Acute Toxicity Test. Paris: Environment Health and Safety Publications, 1992.
    [8] Devrima, E., Ergudera, I.B., Ozbekb, H. et al. High-cholesterol diet increases xanthine oxidase and decreases nitric oxide synthase activities in erythrocytes from rats[J]. Nutrition Research, 2008, 28(3): 212–215.
    [9] Lü, Z.M., Sang, L.Y., Li, Z.M et al. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution[J]. Ecotoxicology and Environmental Safety, 2009, 72(1):136-143.
    [10] Gillardin, V., Silvestre, F., Divoy, C. et al. Effects of aroclor 1254 on oxidative stress in developing Xenopus laevis tadpoles[J]. Ecotoxicology and Environmental Safety, 2009, 72(2): 546-551.
    [11]胡玲,林玉锁.呋喃丹对赤子爱胜蚓体内蛋白含量、SOD和TChE活性的影响,安徽农业科学[J]. 2006,34(13):3165-3167.
    [12] Sun, F.H., Zhou, Q.X. Oxidative stress biomarkers of the polychaete Nereis diversicolor exposed to cadmium and petroleum hydrocarbons[J]. Ecotoxicology and Environmental Safety, 2008, 70(1): 106-114.
    [13]丁爱侠,王春琳.三唑磷蓄积对日本蟳体内保护酶的影响[J].南方水产,2006,2(2):56-60.
    [14]唐学玺,张培玉.蒽对黑鲪超氧化物歧化酶活性的影响[J].水产学报,2000, 24(3):217 -220.
    [15]谢文平,马广智.氯氰菊酯对草鱼鳃和肝组织超氧化物歧化酶(SOD)活性的影响[J].水产科学,2003, 22(6):5-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700