离子交换低温水热合成高纯微纳米CeO_2
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次采用离子交换低温水热法合成了不同粒径及不同形貌的氧化铈前体。经过离子交换纤维的预交换度、尿素浓度、合成温度、合成时间等因素的调变可获得不同粒径分布的以纳米片和微米棒为特征形貌的氧化铈前体。较小粒径的氧化铈前体可以通过适当降低离子交换纤维的预交换度和适度提高反应温度而获得;一定粒度微米棒组合成的花状团簇结构可通过特征实验条件的控制获得。
     离子交换低温水热法中离子交换纤维的加入对棒状结构氧化铈前体的形成和生长具有导向作用。沉淀剂尿素的用量、离子交换纤维的预交换度、合成温度、合成时间对产物形貌和粒度的影响是通过影响离子交换纤维表面Ce(OH)2+基团和CO32-离子的扩散和迁移能力实现的。
     离子交换低温水热法合成的氧化铈前体为斜方结构的Ce2O(CO3)2·H20单晶,TG结果显示,离子交换低温水热法合成的氧化铈前体中已经有大量氧化铈生成,其可能以无定型状态高分散于Ce2O(CO3)2·H20晶体中。合成的氧化铈前体经400-500℃焙烧后可得到立方多晶结构的CeO2,其结晶良好,并能够保持前体的基本形貌特征。
     离子交换水热法中晶粒的形成、生长速度与预交换度、尿素的浓度、温度等条件有关,离子交换纤维在一定条件下成为晶粒生长的模板,控制成核和生长过程,实现了低温双控合成不同形貌纳米材料:体系中的杂质离子通过交换反应在离子交换纤维上富集,无需对产品进行洗涤。整个合成过程节能并环境友好,为高纯纳米材料的合成开辟了一条新途径。
In this paper, different morphology and different partical size of precursors of cerium oxide were synthesized for the first time by low-temperature hydrothermal and ion exchange method. After modulating factors of the ion exchange fiber pre-exchange degrees, the concentration of urea, synthesis temperature and time, cerium oxide precursors with different particle size distribution and nanometer slice and micron stick for feature morphology were obtained. Smaller diameter of cerium oxide precursor can obtain by appropriately reducing pre-exchange degree of ion exchange fiber and moderately increasing reaction temperature; certain particle size of flower shape clusters self-assembly by micron sticks can be obtained under the feature synthesized condition.
     Additive ion exchange fiber plays the leading role in the formation and growth of rodlike cerium oxide precursor in ion exchange and low-temperature hydrothermal method. The influence of the amount of urea, the ion exchange fiber pre-exchange degrees, synthesis temperature and synthesis time on the morphology and size of product realized by affecting the capacity of diffusion and migration of Ce(OH)2+ and CO32- on the surface of ion exchange fiber.
     The cerium oxide precursor prepared by ion-exchange and low-temperature hydrothermal is orthorhombic structure mono-crystal Ce2O(CO3)2·H2O, according to the results of TG, abundant cerium oxide consist in cerium oxide precursor, which probable highly dispersed in Ce2O(CO3)2·H2O crystal with no finalize the design condition, after roasting at 400 to 500℃obtained cubic pleomorphic CeO2, well crystallization, and can keep the basic morphological features of precursor.
     The formation and growth rate of grains prepared by ion-exchange hydrothermal method are related to the pre-exchange degrees, the concentration of urea, the temperature conditions, ion exchange fiber become grain growth template under certain conditions, controlling the nucleation and growth process, realized synthesizing different morphology nanomaterials at the low-temperature dual control; impurity ions of system enriched in fiber through ion exchange reaction and have no need to wash. The whole synthesis process is environment friendly and energy saving, opening a new way for the synthesis of high purity of nanomaterials.
引文
[1]Beecroftll, Ober C K. Nanocomposite materials for optical application. Chem Mater.1997, (6): 1302
    [2]Wang Y. Henon N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size efforts and photophysical properties. J Phys Chem.1991,95(2):525
    [3]Kuo L Y, Shen P Y. Shape dependent coalescence and preferred orientation of CeO2 nanocrystallites. Materials Science and Engineering.2000, A277:258
    [4]洪维民,田蓉屏.超细粉末的制备方法及应用.稀有金属.1995,19(5):384
    [5]Rodriguez J A, MA S, LIU P, et al. Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction. Science.2007,318(5857):1757-1760
    [6]Pan C S, Zhang D S, Shi L Y. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes and nanorods. Journal of Solid State Chemistry.2008,181(6):1298-1306
    [7]Mo Kkelbost T, Kaus I, Grande T, et al. Combustion synthesis and characterization of nanocrystalline CeO2-based powders. Chemistry of Materials.2004,16(25):5489-5494
    [8]Ziolo R F, Giannel IS E P, Weinstein B A, et al. Mat rix2mediated synthesis of nanocrystalline gamma-Fe2O3 —A new optically transparent magnetic material. Science.1992,257 (5067):219-223
    [9]WAN G M L, WANGCH, WAN G W. Synthesis of CdS nanocomposites using macroporous ion-exchange resins. Materials Chemistry and Physics.2007,104(1):162-165
    [10]Tosheva L, VAL TCHEV V, STERTE J. Silicalite-1 containing microspheres prepared using Shape-directing macro-templates. Microporous and Mesoporous Materials.2000,35-36:621-629
    [11]李小忠,王连军,赵铭等.离子交换法制备纳米CeO2晶体.稀有金属.2006,30(2):189-192
    [12]Xu H R, Zhou H Y, Zhu G S, et al. Synthesisof tin-doped indium oxide nanoparticles by an Ion-exchange and hydrothermal process. Materials Letters.2006,60(7):983-985
    [13]张万忠,乔学亮,陈建国等.纳米材料的表面修饰与应用.化工进展.2004,23(10):1067
    [14]谢丽英,柳召刚.纳米氧化铈粉体的制备技术研究进展.中国稀土学报.2007,28(2):70-76
    [15]王乾.纳米氧化铈/锌复合材料制备及其性能研究.常州轻工职业技术学院学报.2006,4:10-13、18
    [16]袁春华.二氧化铈纳米粒子的制备方法评述.无机盐工业.2007,39(5):10-11
    [17]侯文华,徐林,邱金等.采用不同方法制备Ce02超细粒子-Ⅰ:溶胶-凝胶法.南京大学学报(自然科学版).1999,35(4):486-489
    [18]董相廷,胡耀,张伟等.聚乙二醇凝胶法制备CeO2纳米晶.长春光学精密机械学院学报.1999,22(4):1-4.
    [19]董相廷,李铭,张伟等.沉淀法制备CeO2纳米晶与表征.中国稀土学报.2001,19(1):24-26
    [20]高岚,屈一新.共沸精馏法制备氧化铈纳米粉体及其煅烧动力学.硅酸盐学报.2005,33(9):1157-1160
    [21]侯文华,陈立刚.采用不同方法制备CeO2超细粒子-Ⅱ:冻脱水法.南京大学学报(自然科学版).2000,36(1):100-103
    [22]Masanori Hirano, Toshio Miwa, Michio Inagak. Low-temperaturedirect synthesis of nanoparticle of fluorite-type ceria-zirconiasolid solutionsby "forced co-hydrolysis" at 100℃. Journal of Solid State Chemistry.2001,158:112-117
    [23]Matina Thammachart, Vissanu Meeyoo. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique:CO oxidation. CatalysisToday.2001.68:53-61
    [24]Jackie Y Ying, Andreas Tschope. Redox activity of nonstoichio-metric cerium oxide based nanocrystalline catalysts. Journal of catalysis.1995,157:42-50
    [25]沈兴海,高宏成.纳米微粒的微乳液制备法.化学通报.1995,(11):6-9
    [26]石硕,鲁润华.W/O微乳液中CeO2超细粒子的制备.化学通报.1998,(12):51-53.
    [27]张丽娟,王国良,索继栓等.氧化铈纳米微粒的制备及其在金属钒钝化中的应用.化学研究.2000,11(4):24-2
    [28]孙晶,董相廷,李昌立等.CeO2纳米粒子的油酸包覆研究.长春光学精密机械学院学报.2001,24(4):23-26
    [29]李欢军,李前树.一种制备均匀的单分散CeO2纳米微粒的新方法.分子群学学报.2000,169(4):239-241
    [30]王彬,吴介达,李雄平等.纳米氧化铈粉体的制备与表征.精细化工.2004,21(12):881-883,893
    [31]李小忠,王连军等.离子交换法制备纳米CeO2晶体.稀有金属.2006,30:189-192
    [32]Laachir A, Perrichon V, Badri A, et al. Reduction of CeO2 by hydrogen. J Chem Soc Faraday Trans.1991,87:1601
    [33]Tschiipe A, Birringer R. Oxyreduction studies on nanostructured cerium oxide. Nanostructed Materials.1997,9:591-594
    [34]Palmqvist A E C, Johansson E M, Jaras S G, et al. Total oxidation of methane over doped nanophase cerium oxides. Catalysis Letters.1998,56:69-75
    [35]Cambelli P, Gorbo P, Migliardin F. Potentialities and limitations of lean de-NOx catalysts in reducing automative exhaust emissions. Catal Today.2000,59:279-286
    [36]宋晓岚等.纳米CeO2的制备技术及应用.中国稀土学报.2004,(3):55-61、70
    [37]Yu Zhang, Sara Andersson, Mamoun Muhammed. Nanophase catalytic oxides:I. Synthesis of doped cerium oxides as oxygen storage promoters. Applied Catalysis B: Environmental.1995, (6):325-337
    [38]Masatoshi Katsuki, Shaorong Wang, Kenji Yasumo-to, et al. The oxygen transport in Gddoped ceria. Solid State Ionics.2002,154-155:589-595
    [39]Craciun R, Park S, Gorte R J, et al. A novel method for preparing a nodecermets for solid oxide fuel cells. Jurnal of the Electrochemistry Society.1999,146(11):4019-4022
    [40]何炳林,黄文强.离子交换与吸附.上海科技教育出版社.1995
    [41]Dong X T, Qu X G, Hong G Y, et al. Preparation and application in electrochemistry of nanocrystalline CeO2. Chin Sci Bull.1996,41(16):1396-1401
    [42]Matijevic E, Has W P. Preparation of monodispersed colloidal particles of lanthanide compounds: Ⅰ.gadolinium, europium, terbium, samarium, and cerium(Ⅲ). J Colloid Interface Sci.1987, 118:506-511
    [43]吕仪军.离子交换树脂应用进展.四川化工与腐蚀控制.1999,2(6):36-38
    [44]刘喜纲.离子交换树脂在医药方面的应用.承德医学院学报.2004,21(3):243-244
    [45]汪青.离子交换树脂在食品工业中的应用.食品研究与开发.2005,26(4):161-163
    [46]Leavic S. Nitrogen Removal from Fertilizer Waste water by Ion Exchange. Wat. Res. 2000,34(1): 185-190
    [47]何云.连续式离子交换法处理硝铵废水.大氮肥.2000,23(4):264-266
    [48]张丽珍.弱碱离子交换树脂应用于含酚废水的处理.惠州大学学报.2001,21(4):52-56
    [49]武贵桃.离子交换法去除与回收电镀废水中铬酸的实验研究.河北省科学院学报.2000,17(1):43-45
    [50]陈惠国.论电镀废水治理技术发展动态.电镀与环保.2001,21(3):32-35
    [51]刘冰扬,赵建民.离子交换处理含铜废水的实验研究.南京理工大学学报.1995,19(2):184-187
    [52]王瑞祥.离子交换处理含络合铜废水的研究.电镀与涂饰.2002,21(4):36-38
    [53]张全兴.离子交换树脂的应用前景、发展趋势及若干建议.1997年中国化学工业发展指南.北京:化学工业出版社.1996:273
    [54]孙玉凤.全自动去离子水设备的研制.沈阳工业学院学报.2004,23(1):78-80
    [55]周韶箕.离子交换与吸附.1987,5:51-59
    [56]Soldatov, V.S. Sergeev, G.I.. Zh.Prilk. Kllim.1991,64(12): 2506
    [57]周绍箕.离子交换纤维的制备和应用的研究进展.北京服装学院学报.2004,24(4):9-16
    [58]原思国,王毅.兰淑琴.离子交换与吸附.1997,13(1):60-66
    [59]C R Li, M Y Cui, Q T Sun, et aL. Nanostructures and optical properties of hydrothermal synthesized CeOHCO3. Journal of Alloys and Compounds.2010,22503:5
    [60]S F Wang, F Gu, C Z Li, H M Cao, J. Cryst Growth.307(2007)386-394
    [61]C Sun, J Sun, G Xiao, H Zhang, X Qiu, H Li, L Chen, J. Phys. Chem B 110 (2006) 13445-13452
    [62]M L D Santos, R C Lima, C S Riccardi, R L Tranquilin, P R Bueno, J A Varela, E Longo, Mater. Lett 62 (2008) 4509-4511
    [63]G F Zou, H Li, D W Zhang, K Xiong, C Dong, Y T Qian, J. Phys. Chem B 110 (2006) 1632-1637
    [64]Hager M, Holmberg K, Rocha Gonsalves A M, et al. Oxidation of azodyes inoil-in-water microemulsions catalyzed by metalloporphyrins in presence of lipophilic acids. Colloids Surfaces A.2001,183-185:247-257
    [65]Skagerlind P, Jansson M, Hurt K. Surfactant interference on lipase catalylized reactionsin microemulsions. J Chen Tech Biotechnol.1992,54:277-282
    [66]李干佐,任学贞,刘燕等.W/O微乳液中糖化酶的研究.生物化学与生物物理进展.1995,22:50-53
    [67]毕只初,史彦,颜文华等.十六烷基三甲基溴化铵在二氧化硅表面吸附的研究.化学试剂.1997,19(6):331-333
    [68]齐尚奎,冯良波,高玲等.二硫化钼表面氧化机理研究.摩擦学学报.1995,15(1):40-44
    [69]H Masanori, K Etsuro, J. Am. Ceram. Soc.82 (1999) 786-788
    [70]Z H Han, Y Qian, S Yu, K Tang, H Zhao, N Guo, Inorg Chem.39(2000)4380-4382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700