枯叶蛱蝶生物学特征及种内分化的分子遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枯叶蛱蝶Kallima inachus (Doyére, 1840),属鳞翅目Lepidoptera,蛱蝶科Nymphalidae,蛱蝶亚科Nymphalinae,斑蛱蝶族Hypolimn(i枯叶蛱蝶族Kallimini),枯叶蛱蝶属Kallima Doubleday。世界著名的拟态蝴蝶,具有很高的经济、文化和科学研究价值。前人主要按照分布区划分了6个亚种,目前对其生物学生态学特性了解不多。由于生境丧失或退化,许多地方的种群正在迅速下降。
     研究表明,在四川峨眉,枯叶蛱蝶实验种群一年发生3代,以第1和第2代为主,以滞育成虫越冬。第1代雌成虫和8月中旬前羽化的第2代雌成虫的大部分个体参与当年繁殖,少部分进入生殖滞育。第3代雌成虫和8月中旬后羽化的第2代雌成虫的绝大多数进入生殖滞育。最后,三个世代中的滞育个体汇聚成越冬成虫群体。成虫的羽化、取食、求偶、交配和产卵等活动都在白天进行,且与阳光和气温有密切关系。在野外,成虫的主要补充营养为自阔叶树树干虫蛀伤口中流出的树液和半腐烂的水果,有时也汲食动物粪尿。实验条件下,成虫汲食新鲜果汁、发酵水果、蜂糖水溶液、动物粪便和尿液等。雄成虫的求偶行为属于典型的“等候型”,在求偶时段有强烈的领域性。在不遭受天敌捕食的条件下,繁殖雌成虫的平均寿命为36.67~58.94天,滞育雌成虫的平均寿命可达316.24天。雌成虫将大部分卵分散产在寄主附近较高位置的其他物体上,幼虫孵化后吐丝下坠到地面寄主上。蛛网黏结和气流带走导致实验种群中大量的初孵化幼虫死亡。低龄幼虫对寄主的搜索能力不强,野外寄主植物的集中分布对种群生存至关重要。在正常食料条件下,幼虫的龄数是五龄。在食物失水情况下,部分个体增加1次脱皮。幼虫分散栖息,有假死习性,1~3龄期是最容易受到天敌攻击的阶段。越冬雌成虫在3月上、中旬开始产卵后,种群的平均年龄开始下降。从5月下旬至9月上旬前,雌成虫群体中繁殖个体占据大部分,其数量在8月中下旬达到高峰。此后,滞育雌成虫比例逐渐上升,在9月中旬后占据主导地位。2006~2007年间,第1代雌成虫滞育率为8.43~16.11%,第2代的雌成虫滞育率为56.79~78.79%;第3代的雌成虫几乎全部进入滞育。从季节变化来分析,春季滞育率较低,夏季、秋季和冬节滞育率逐渐增高。
     在室内采叶饲养条件下,阶段死亡率主要发生在幼虫1~2龄期,其次是3~4~﹡龄和5~6龄期,4~5~﹡龄阶段幼虫死亡率极低。在田间放养条件下,蚂蚁捕食是卵死亡的主要原因。蜘蛛捕食是幼虫死亡的主要原因,其次是蝽象捕食,幼虫疾病很少。幼虫期死亡主要发生在1~2龄阶段,其次是在3~4~﹡龄和4~5~﹡龄阶段。蜘蛛对幼虫的捕食率在年际间较为稳定,而蝽象对幼虫的捕食则年际变化大。各代的存活率曲线均属于典型的Ⅲ型,雨水能减轻捕食性天敌的危害。对于当年繁殖的雌成虫而言,多种大型蜘蛛是主要的捕食性天敌,滞育雌成虫则遭到鼠类的捕食。实验种群各代的性比均接近1:1,各代雌成虫的产卵量受到天气和天敌捕食的影响,存在较大差异。单雌产卵量约350~480粒/雌,卵的孵化率约90%。枯叶蛱蝶具有高繁殖力、高死亡率的r对策类生物的特点。而早期成虫的滞育是枯叶蛱蝶的一种两头下注的重要生活史对策。
     不同地理种群成虫在前翅顶角向前外方的突出长度、翅膀宽度和外缘互补角的大小等方面存在差异,可作为鉴别亚种的依据之一。综合形态观测、AFLP分子标记、COⅡ和Cyt b基因片段序列分析的结果,基本支持目前对于枯叶蛱蝶各亚种的划分:①中华亚种Kallima inachus chinensis Swinhoe,包括了长江流域的四川峨眉、重庆江津、湖南东安和江西宜丰,以及福建永泰等地种群;②海南亚种K. i. alicia Joicey & Talbot,分布于海南岛;③西藏墨脱种群可能属于指名亚种Kallima inachus inachus (Doyére);④清迈种群属于暹罗亚种K. i. siamensis Fruhstorfer;⑤日本冲绳种群属于日本亚种K. i. eucerca Fruhstorfer, 1898;⑥基本支持对台湾亚种K. i. formosana Fruhstorfer, 1912的划分。同时,研究结果支持将云南南部的景洪和元江种群划为一个单独的亚种——滇南亚种。在分布于南方热带地区的各亚种之间,仅从翅膀形态上很难进行区分。
     枯叶蛱蝶地理种群间的遗传分化程度是很高的,部分种群之间已经达到或超过许多近缘种之间的分化水平,有的可能已处于新种形成的边缘。根据COⅡ和Cyt b基因片段序列分析,推测枯叶蛱蝶可能起源于中南半岛一带,首先向西传播到印度,向北传播到云南和广西南部,向东传播到海南岛。在南方热带地区内各个方向的传播可能在第四纪初或更早之前就已经开始,而进入广西的种群逐渐向北和东北方向传播,到达长江流域各地、福建、台湾和日本冲绳建立现今种群却是较晚的事件。
     基于COⅡ和Cyt b基因片段序列差异,各地理种群可以归入两个大组:西藏、泰国、云南和海南等种群可归入“南方种群组”,长江流域、福建、台湾和日本种群可归入“北方种群组”。“南方种群组”内部相互之间以及它们与北方各种群间的序列差异均很大,而北方种群组内部种群间差异较小或很小。
     同时,从两个基因序列变异情况看,它们的进化速度适中,适用于枯叶蛱蝶乃至其他蝴蝶的种群分化和亚种界定分析。但对于分歧时间较短的种群分化研究,则Cyt b略强于COⅡ。研究结果有力地证明了分子标记方法,尤其是线粒体基因序列测定在蝴蝶种下分类中的作用。
     第四纪冰期和间冰期的反复交替、冷凉暖湿的多重气候旋回与新构造运动的综合作用,对现今枯叶蛱蝶分布区的形成产生了巨大影响。从四川峨眉到日本冲绳的整个北方种群组内的遗传分化程度很低,其原因可能主要有3点:①建立者效应;②定居时间较晚;③相对顺畅的基因交流。
Kallima inachus (Doyére, 1840) (Lepidoptera: Nymphalidae), famous for its mimicry and camouflaging coloration, is of high value in economy, culture and scientific research. Even though it has been divided into 6 subspecies according to the geographic areas of different populations, it’s hard to distinguish them from the external morphology. In addition, the knowledge on its population biology is also lack. The population sizes in many places have decreased, because of habitat loss or quality decline in recent years.
     In our study at Emeishan City, Sichuan Province, P. R. China, the experimental population has 3 generations in a year, overwintering by diapause adults. While most females of 1st generation and 2nd generation emerging before mid August go on with their propagation in the year, a few of the females emerging in this period and those emerging after mid August enters reproduction diapause. In fact, the adult overwintering population consists of individuals of 3 generations.
     All the activities of adults, such as emerging, feeding, copulating and laying eggs, happen in daytime, closely correlated with sunlight and temperature. In natural habitats, adults take in mainly the sap flowing out of the wounds in trunks or stems of broadleaf trees and rotted fruits, as well as fecaluria of animals sometimes. In the experimental garden, they also take in fresh fruit juice and honey solution. The males show strong territoriality while they are waiting for a female for copulating. If not be preyed by predators, the female adults in diapause could live more than 316 days, while non-diapause females could only live about 36-59 days. Most oftenly, females would rather like to lay most of their eggs dispersedly on the objects around the host plants, such as tree trunks, leaves of shrubs and weeds, only about one third of ova were layed on the upper surface of host leaves. Larva, hatching from the ovum on a higher position, secret a silk drop down onto the ground or right on the leaves of host plants. In that case, a very weak airflow would make the lava deviate from the host plant and some lavae were sticked by spider nets. If host plants are not aboundant in wild, it will be very difficult for 1st to 2nd instar larvae search for host plants.
     In condition of excellent foliages of food, the larvae have 5 instars. If the food leaves lost water in high temperature, some of the larvae would experience 6 instars. The larvae would like to live singly on the undersides of host plant leaves throuh 1st to 3rd instars, or on the downward stems and ground near the host through 4th to 5th instar. Encountering a predator, the larvae usually come to mimic death. Anyway, larvae of 1st to 3rd instar are much likely attacked by predators.
     In early or mid March, the females after winter begin to lay their eggs, and the average age of experimental population decrease guadually. From late May to early September, most of the female adults in the population go on with their reproduction. After that, the proportion of diapause female rise rapidly. In 2006-2007, while about 8.43~16.11% of female adults in the 1st generations enter diapause, the ratios of female adults in the 2nd and 3rd generations entering diapause are 56.79~78.79% and almost 100% respectively.
     Raised indoors with foliages cutted down from the plants, the majority of mortality is that of the 1st to 3rd instar larvae, with far fewer 4th instar larvae getting to death. The last instar larvae seem to be more susceptible to deseases, which are not important to the mortality of the whole generations. When raised dispersally in the field, the main mortality of larvae occurred in the period from 1st to 2nd also, but with many 3rd to 4th instar larvae lost, caused mainly by predators, such as spiders and pentatomid bugs. A typeⅢsurvivorship curve was available in any generation of the experimental population. Most of the adult loss was caused by big spiders, and mice preyed adults overwintering severely.
     The sex ratio in each generation of experimental population was approximate to 1:1. About 350 to 480 ova were layed by each female adult, with a hatching rate about 90%. As a r-strategist, the high productive capability compensates its high death, therefore, population can be existed and multiplied.
     The length of protrude at the apex and the width of the forewing, in addition with the outer range corner of forewing vary significantly among geographical populations, and these can be used to identify subspecies of Kallima inachus. But it’s not enough. After combining the data taken from the morphology, AFLP, and the sequences of two gene segment, COⅡand Cyt b, we found it’s acceptable to divide the species into 7 subspecies. Firstly, the 6 subspeies identified by previous researchers were proved to be correct. These subspecies are:
     1. Kallima inachus chinensis Swinhoe, including populations in Sichuan, Chongqing, Hunan, Jiangxi and Fujian provinces.
     2. K. i. alicia Joicey & Talbot, including the population in Hainan Island.
     3. K. i. eucerca Fruhstorfer, including the population in Ryukyu Islands.
     4. K. i. inachus (Doyére), maybe, including the population at Motuo County in Tibet.
     5. K. i. siamensis Fruhstorfer, including the population at Qiangmai, Thailand
     6. K. i. formosana Fruhstorfer, including the population in Taiwan Province.
     Further more, the study suggest strongly that the population at Jinghong in Yunnan Province should be a subspecies different from any of the frontal ones and this new subspecies should include Yuanjiang population nearby.
     Generally, the genetic differentiations among some geographical populations of Kallima inachus are so severe that the levels of variation exceed those among species in other insect taxa. We guess some populations seem to be at the edge of forming new species of the genera. We also guess that Kallima inachus might have originated in Indo-China peninsula millions of years ago, and dispersed north to Yangtze River basin, Taiwan Island and Ryukyu Islands afterwards. Some of the individuals might have gone northwest to India, and some dispersed to Hainan Island during Pleistocene glacial eppoches.
     Based on the sequence differentiation of COⅡand Cyt b, the geographical populations studied in this research could be devided into two groups. Populations in Thibet, Thailand, Yunnan and Hainan belong to the southern group, while populations in Yangtze River Basin, Fujian, Taiwan and Ryukyu Islands should belong to the northern group.
引文
[1].李昌廉大自然的舞姬——蝴蝶.昆明:云南科技出版社. 1994.
    [2].王之屏蝶色彩的应用.北京:中国纺织出版社. 1994.
    [3]. New, T.R., Pyle, R.M., Thomas, J.A. Butterfly Conservation Management. Annual Reviews in Entomology, 1995, 40(1): 57-83.
    [4].周尧(主编),中国蝶类志(修订本). 1998,河南科学技术出版社:郑州.
    [5]. Igarashi, S. On the life history of Teinopalpus imperialis Hope in northen India and its phylogenetic position in the Papilionidea. Tyo Ga, 1987, 38: 115-151.
    [6]. Igarashi, S. Life history of Teinopalpus aureus in Vietnam in comparison with that of T. imperialis. Butterflies, 2001, 30: 4-24.
    [7]. Igarashi, S. On the life history of Bhutanitis lidderdalei Atkinson in Bhutan (Lepidoptera, Papilionidae). Tyo to Ga, 1989, 40( 1): 1-21.
    [8]. Igarashi, S. Life history of Bhutanitis mansfieldi in comparison with those of related species. Butterflies, 2003: 20-39.
    [9]. Sibatani, A. Decline and conservation of butterflies in Japan. Journal of Research on the Lepidoptera, 1990, 29: 305-315.
    [10]. Blair, R.B., Launer, A.E. Butterfly diversity and human land use: Species assemblages along an urban grandient. Biological Conservation, 1997, 80(1): 113-125.
    [11]. Thomas, J.A. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proceedings: Biological Sciences, 2001, 268(1478): 1791-1796.
    [12]. Heath, J., Pollard, E., Thomas, J.A., eds. Atlas of Butterflies in Britain and Ireland. Viking, Harmondsworth. 1984.
    [13]. Thomas, C.D. Spatial and temporal variability in a butterfly population. Oecologia, 1991, 87(4): 577-580.
    [14]. Van Swaay, C.A.M. An assessment of the changes in butterfly abundance in The Netherlands during the 20 th century. Biological Conservation, 1990, 52(4): 287-302.
    [15]. Malcolm, S.B., Eds, M.P.Z. Biology and Conservation of the Monarch Butterfly. 1993.
    [16].袁德成,买国庆,薛大勇.中华虎凤蝶栖息地、生物学和保护现状.生物多样性, 1998, 6(2): 105-115.
    [17].赵力.大邑县原始林景区蝶类野外考察.四川动物, 1992, 11(2): 33-34.
    [18].顾茂彬.试论海南省蝴蝶保护与可持续性利用的关系.生物多样性, 2003, 11(1): 86-90.
    [19]. Szymanski, J., Shuey, J.A., Oberhauser, K. Population Structure of the Endangered Mitchell's Satyr, Neonympha mitchellii mitchellii (French): Implications for Conservation. The American Midland Naturalist, 2004, 152(2): 304-322.
    [20]. Losey, J.E., Rayor, L.S., Carter, M.E. Transgenic pollen harms monarch larvae. Mol. Breed, 1997, 3:169-176.
    [21]. Sears, M.K., Hellmich, R.L., Stanley-Horn, D.E. Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. Proceedings of the National Academy of Sciences, 2001, 98(21): 11937.
    [22]. Schtickzelle, N., Choutt, J., Goffart, P. Metapopulation dynamics and conservation of the marsh fritillary butterfly: Population viability analysis and management options for a critically endangered species in Western Europe. Biological Conservation, 2005, 126(4): 569-581.
    [23]. Hoyle, M., James, M. Global Warming, Human Population Pressure, and Viability of the World's Smallest Butterfly. Conservation Biology, 2005, 19(4): 1113-1124.
    [24]. Shir?zu, T., Nakanishi, A. A Revision of the Genus Kallima Doubleday (Lepidoptera, Nymphalidae). Ty? to Ga, 1984, 34(3): 97-110.
    [25]. Igarashi, S., Fukuda, H., eds. The Life Histories of Asian Butterflies(Ⅰ). Tokyo: Tokai Daigaku Shuppankai. 1997.
    [26].白水隆原色台湾蝶类大图鉴(第9版).东京:保育社. 1982.
    [27]. Leech, J.H., ed. Butterflies from China, Japan and Core. London R. H. Porter. 1892.
    [28].王洪建,高岚.甘肃白水江自然保护区的蝶类.兰州大学学报(自然科学版), 1994, 30(1): 87-95.
    [29].王缉健.广西森林蝶类名录.广西林业科学, 1994, 23(1): 12-18.
    [30].应雪萍,张永普.北雁荡山、西天目山蝶类调查研究.温州师范学院学报(自然科学版), 1994(6): 70-74.
    [31].丁冬荪.江西武夷山自然保护区蝶类区系结构及垂直分布.昆虫学报, 1996, 39(4): 393-407.
    [32].李昌廉.云南蝴蝶区系及其区划的研究.昆虫分类学报, 1996, 18(2): 150-156.
    [33].陈锡昌.南岭国家自然保护区鳞翅目蝶类考察初报.昆虫天敌, 1997, 19(1): 26-40.
    [34].李树恒,侯江.重庆市四面山蝶类区系研究.西南农业大学学报, 2004, 26(4): 405-408.
    [35].刘桦,熊恩国,游兰韶.湖南省及自然保护区蝶类资源记述及保护利用研究.作物研究(1999年昆虫专辑), 1999(1): 1-49.
    [36].覃勇荣.十万大山蝶类初报.河池师专学报(理科), 1996, 16(2): 38-43.
    [37].刘文萍,邓合黎,李树恒.三峡库区蝶类调查报告.西南农业大学学报, 2000, 22(6): 501-506,509.
    [38].诸立新.皖南山区蝶类资源和可持续利用.四川动物, 2001, 20(1): 25-26.
    [39].王松,李允东,鲍方印.皇甫山蝶类资源及区系的研究.生物学杂志, 2001, 18(1): 24-26.
    [40].王梅松,何学友.福州国家森林公园蝶类名录(Ⅰ).华东昆虫学报, 2001, 10(2): 29-34.
    [41].潘志崇,张永靖,谢志浩.宁波天童森林公园蝶类资源及区系组成.动物学杂志, 2002, 37(5): 49-53.
    [42].李崇清,董飞.习水国家级自然保护区鳞翅目蝶类分布初报.贵州林业科技, 2004, 32(3): 8-13.
    [43].朱巽,旷建军,唐海波.南岳蝶类初步调查.西北林学院学报, 2004, 19(1): 77-81.
    [44]. Wynter-Blyth, M.A. Butterflies of the Indian region. Bombay: Bombay Natural History Society. 1957.
    [45]. Ek-Amnuay, P., ed. Butterflies of Thailand. Bangkok: Baan lae Suan. 2006.
    [46].猪又敏男, ed.原色蝶类检索图鉴.东京:北隆馆. 2006.
    [47].伍杏芳, ed.岭南绿洲蝴蝶.广州学术期刊出版社. 1988.
    [48].李传隆,朱宝云, eds.中国蝴蝶图谱.上海:上海远东出版社. 1992.
    [49].杨平世,徐堉峰.台湾特有亚种—枯叶蝶(Kallima inachus formasana Fruhst?rfer)之幼生期形态及生活史.中华昆虫, 1990(10): 395-399.
    [50].徐堉峰, ed.台湾蝶图鉴.南投:凤凰谷鸟园. 1999.
    [51].李俊延,王效岳, eds.台湾蝶类图说(四).台北:台湾省立博物馆. 1997.
    [52].杨萍,漆波,邓合黎.枯叶蛱蝶的生物学特性及饲养.西南农业大学学报, 2005, 27(1): 44-49.
    [53].陈洁君,王义飞,雷光春.栖息地质量对两种网蛱蝶集合种群结构和分布的影响.昆虫学报, 2004, 47(1): 59-66.
    [54]. Saunders, D.A., Hobbs, R.J., Margules, C.R. Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology, 1991, 5(1): 18-32.
    [55]. Wilcove, D.S., McLellan, C.H., Dobson, A.P., Habitat fragmentation in the Temperate zone in Conservation Biology, The Science of Scarcity and Diversity, Michael Soule, ed. 1986, Sinauer Associates, Inc., Sunderland, Massachusetts.
    [56]. Ehrlich, P.R. The population biology of the butterfly, Euphydryas editha. II. The structure of the Jasper Ridge colony. Evolution, 1965, 19(3): 327-336.
    [57]. Ehrlich, P.R. Population biology of checkerspot butterflies and the preservation of global biodiversity. Oikos, 1992, 63(1): 6-12.
    [58]. Ehrlich, P.R., Hanski, I. On the Wings of Checkerspots: A Model System for Population Biology: Oxford University Press, USA. 2004.
    [59]. Hanski, I., Thomas, C.D. Metapopulation dynamics and conservation: A spatially explicit model applied to butterflies. Biological Conservation, 1994, 68(2): 167-180.
    [60]. Thomas, C.D., Bodsworth, E.J., Wilson, R.J. Ecological and evolutionary processes at expanding range margins. Nature, 2001, 411(4837): 577-581.
    [61]. Saccheri, I., Kuussaari, M., Kankare, M. Inbreeding and extinction in a butterfly metapopulation. Nature, 1998, 392(6675): 491-494.
    [62]. Arnold, R.A. Ecological studies of six endangered butterflies(Lepidoptera, Lycaenidae): Island biogeography, patch dynamics, and the design of habitat preserves. 1983.
    [63]. Pollard, E., Yates, T.J. Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme: Chapman & Hall. 1993.
    [64]. Thomas, C.D. Specializations and polyphagy of Plebejus argus (Lepidoptera: Lycaenidae) in North Wales. Ecological Entomology, 1985, 10(3): 325-340.
    [65]. Cullenward, M.J., Ehrlich, P.R., White, R.R. The ecology and population genetics of an alpine checkerspot butterfly, Euphydryas anicia. Oecologia, 1979, 38(1): 1-12.
    [66]. Harrison, S. Long-Distance Dispersal and Colonization in the Bay Checkerspot Butterfly, Euphydryas Editha Bayensis. Ecology, 1989, 70(5): 1236-1243.
    [67]. Vandewoestijne, S., Martin, T., Liégeois, S. Dispersal, landscape occupancy and population structure in the butterfly Melanargia galathea. Basic and Applied Ecology, 2004, 5(6): 581-591.
    [68]. Vandewoestijne, S., Baguette, M. Genetic population structure of the vulnerable bog fritillary butterfly. Hereditas, 2004, 141(3): 199-206.
    [69]. Warren, M.S., Thomas, J.A. Butterfly responses to coppicing. Ecology and Management of Coppice Woodlands, 1992: 249–270.
    [70]. Hanski, I., Singer, M.C. Extinction-Colonization Dynamics and Host-Plant Choice in Butterfly Metapopulations. The American Naturalist, 2001, 158(4): 341-353.
    [71]. Morris, R.F., Miller, C.A. The development of life tables for the spruce budworm. Can. J. Zool, 1954, 32: 283-301.
    [72]. Moore, S.D. Patterns of Juvenile Mortality Within an Oligophagous Insect Population. Ecology, 1989, 70(6): 1726-1737.
    [73]. Matsumoto, K. Population change and immature mortality process of Luehdorfia japonica (Lepidoptera: Papilionidae) feeding on an unusual host plant, Asarum caulescens Maxim.(Aristolochiaceae). Entomological Science, 2003, 6(3): 143-149.
    [74]. Hayes, J.L. Egg distribution and survivorship in the pierid butterfly, Colias alexandra. Oecologia, 1985, 66(4): 495-498.
    [75]. Blau, W.S. The Effect of Environmental Disturbance on a Tropical Butterfly Population. Ecology, 1980, 61(5): 1005-1012.
    [76].刘文华,王义飞,徐汝梅.两种共存网蛱蝶幼期的生命表研究.昆虫学报2006 49(4): 656-663.
    [77]. Tan, C.C., Li, J.C. Inheritance of the Elytral Color Patterns of the Lady-Bird Beetle, Harmonia axyridis Pallas. American Naturalist, 1934, 68(716): 252.
    [78]. Tan, C.C. Mosaic dominance in the inheritance of color patterns in the lady-bird beetle, Harmonia axyridis. Genetics, 1946, 31(2): 195-210.
    [79]. Bowers, M.D. Population differences in larval hostplant use in the checkerspot butterfly, Euphydryas chalcedona. Entomologia Experimentalis et Applicata, 1986, 40(1): 61-69.
    [80]. Lushai, G., Fjellsted, W., Marcovitch, O. Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biological Conservation, 2000, 94(1): 43-50.
    [81].刘春林,游兰韶,罗庆怀.中国棉田和稻田茧蜂近缘种的RAPD分子标记研究.动物分类学报, 2003, 28(4): 568-572.
    [82].张建珍,马恩波,郭亚平.网翅蝗科四种蝗虫的RAPD多态性研究.动物分类学报, 2004, 29(2): 212-217.
    [83]. Weller, S.J., Pashley, D.P. In Search of Butterfly Origins. Molecular Phylogenetics and Evolution, 1995, 4(3): 235-246.
    [84]. Scoble, M.J. In search of butterfly origins: morphology and molecules. Trends in Ecology &Evolution, 1996, 11(7): 274-275.
    [85]. Brower, A.V.Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(14): 6491-6495.
    [86]. Keyghobadi, N., Roland, J., Strobeck, C. Influence of landscape on the population genetic structure of the alpine butterfly Parnass smintheus (Papilionidae). Molecular Ecology, 1999, 8(9): 1481~1495.
    [87]. Harper, G.L., Maclean, N., Goulson, D. Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Molecular Ecology, 2003, 12(12): 3349-3357.
    [88].姚洪渭,叶恭银,胡萃.温度对中华虎凤蝶幼虫生存与生长发育的影响.昆虫知识, 1999, 36(4): 199-202.
    [89]. Zabeau, M., Vos, P., Selective restriction fragment amplification: a general method for DNA fingerprinting. 1993, EP Patent 0,534,858.
    [90].张民照,康乐. AFLP标记的特点及其在昆虫学研究中的应用.昆虫学报, 2002, 45(4): 538-543.
    [91]. Roos, M.H., Hoekstra, R., Plas, M.E. Polymorphic DNA markers in the genome of parasitic nematodes. J Helminthol, 1998, 72(4): 291-4.
    [92]. Tan, Y.D., Wan, C., Zhu, Y. An Amplified Fragment Length Polymorphism Map of the Silkworm. Genetics, 2001, 157(3): 1277-1284.
    [93].万春玲,谭远德.利用AFLP标记构建家蚕分子连锁图谱.中国农业科学, 2001, 34(3): 338-341.
    [94]. McMichael, M., Prowell, D.P. Differences in Amplified Fragment-Length Polymorphisms in Fall Armyworm (Lepidoptera: Noctuidae) Host Strains. Annals of the Entomological Society of America, 1999, 92(2): 175-181.
    [95]. Cervera, M.T., Cabezas, J.A., Simón, B. Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bulletin of Entomological Research, 2007, 90(5): 391-396.
    [96]. Semblat, J.P., Wajnberg, E., Dalmasso, A. High-resolution DNA fingerprinting of parthenogenetic root-knot nematodes using AFLP analysis. Molecular Ecology, 1998, 7(1): 119-125.
    [97]. Katiyar, S.K., Chandel, G., Tan, Y. Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Genome, 2000, 43(2): 322-332.
    [98].张丽萍,张友军,张文吉. B型烟粉虱抗噻虫嗪品系的遗传分化.昆虫学报, 2004, 47(6): 754-759.
    [99]. Gompert, Z., Nice, C.C., Fordyce, J.A. Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Molecular Ecology, 2006, 15(7): 1759-1768.
    [100]. Jiggins, C.D., Mavarez, J., Beltran, M. A Genetic Linkage Map of the Mimetic Butterfly Heliconius melpomene. Genetics, 2005, 171(2): 557-570.
    [101]. Tobler, A., Kapan, D., Flanagan, N.S. First-generation linkage map of the warningly colored butterfly Heliconius erato. Heredity, 2005, 94: 408-417.
    [102]. Kocher, T.D., Thomas, W.K., Meyer, A. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci US A, 1989, 86(16): 6196-200.
    [103]. Simon, C., Frati, F., Beckenbach, A. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am, 1994, 87(6): 651-701.
    [104]. Wahlberg, N., Oliveira, R., Scott, J.A. Phylogenetic relationships of Phyciodes butterfly species (Lepidoptera: Nymphalidae): complex mtDNA variation and species delimitations. Systematic Entomology, 2003, 28(2): 257-274.
    [105].王戎疆,万宏,龙玉.利用线粒体CoⅡ基因序列对中国尾蛱蝶属系统分化的研究(鳞翅目:蛱蝶科).昆虫学报, 2004, 47(2): 243-247.
    [106].吴冬霞,郝家胜,朱国萍.基于线粒体Cyt b基因的线蛱蝶亚科的系统育.动物学研究, 2007, 28(1): 1-8.
    [107].陈娜,朱国萍,郝家胜.基于线粒体16S rDNA序列探讨蛱蝶科(鳞翅目,蝶亚目)主要分类群的系统发生关系.动物学报, 2007, 53(1): 106-115.
    [108].张敏,曹天文,张睿.基于线粒体COⅠ基因的闪蛱蝶亚科系统发育关系研究.遗传学报, 2007, 34(9): 812-823.
    [109].王戎疆,万宏,雷光春.我国不同地区二尾蛱蝶线粒体细胞色素氧化酶Ⅱ的DNA序列差异.北京大学学报:自然科学版, 2003, 39(6): 775-779.
    [110].童国榜,羊向东.云贵高原晚新生代孢粉植物群与环境变迁.海洋地质与第四纪地质, 1994, 14(3): 91-104.
    [111]. Hewitt, G.M. Some genetic consequences of ice ages, and their role, in divergence and speciation. Biological Journal of the Linnean Society, 1996, 58(3): 247-276.
    [112]. Davies, N., Bermingham, E. The historical biogeography of two caribbean butterflies (Lepidoptera: Heliconiidae) as inferred from genetic variation at multiple loci. Evolution, 2002, 56(3): 573-589.
    [113]. Fordyce, J.A., Nice, C.C. Contemporary patterns in a historical context: phylogeographic history of the pipevine swallowtail, Battus philenor (Papilionidae). Evolution, 2003, 57(5): 1089-1099.
    [114]. Aagaard, K., Hindar, K., Pullin, A.S. Phylogenetic relationships in brown argus butterflies (Lepidoptera: Lycaenidae: Aricia) from northwestern Europe. Biological Journal of the Linnean Society, 2002, 75(1): 27-37.
    [115].李钟武,陈治荣.横断山区第四纪冰期的划分与对比.地质论评, 1991, 37(2): 125-132.
    [116].杨达源.中国东部第四纪冰期气候与环境的基本特征.海洋地质与第四纪地质, 1990, 10(1): 71-79.
    [117].景才瑞.论中国第四纪冰期与间冰期.成都理工学院学报, 1999, 26(1).
    [118].赵良政.中国东部第四纪冰期之我见.地质论评, 1991, 37(1): 24-33.
    [119].孙殿卿.中国第四纪亚冰期划分之商讨.第四纪研究, 1989, 1: 3-23.
    [120].孙殿卿,何培元.近20年来中国第四纪冰川研究的进展.地球科学——中国地质大学学报, 1994, 19(6): 838-844.
    [121].周秉根.第四纪冰期华中山地海拔高度与冰川作用关系分析.华中师范大学学报:自然科学版, 1993, 27(2): 248-251.
    [122].李吉均,张林源,邓养鑫, eds.论庐山冰川遗迹真伪.北京:科学出版社. 1985.
    [123].李吉均,舒强,周尚哲.中国第四纪冰川研究的回顾与展望.冰川冻土, 2004, 26(3): 235-243.
    [124].施雅风.庐山真的有第四纪冰川吗?自然辩证法通讯, 1981, 3(2): 41-44.
    [125].易朝路,崔之久,熊黑钢.中国第四纪冰期数值年表初步划分.第四纪研究, 2005, 25(5): 609-619.
    [126].杨振京,徐建明.孢粉-植被-气候关系研究进展.植物生态学报, 2002, 26(增刊): 73-81.
    [127].童国榜,郑宏瑞,杨振京.中国4Ma来孢粉植物群气候的多重旋回模型.海洋地质与第四纪地质, 1995, 15(4): 81-96.
    [128].郑卓.潮汕平原近五万年来的孢粉植物群与古气候.微体古生物学报, 1991, 8(4): 461-480.
    [129].吴能友,姚伯初,陈俊仁.湛江田洋玛珥湖孢粉组合与古气候变化.广东地质, 2002, 17(3): 21-32.
    [130].则雄,藤.根据日本中部琵琶湖深井孢粉资料重建第四纪古植被和古气候及全球古气候对比.古生物学报, 2003, 42(1): 138-147.
    [131].童国榜,张俊牌,范淑贤.中国第四纪孢粉植物群的分布.海洋地质与第四纪地质, 1992, 12(3): 45-56.
    [132]. Nichols, R.A., Hewitt, G.M. The genetic consequences of long distance dispersal during colonization. Heredity, 1994, 72(3): 312-317.
    [133]. Groombridge, B., Global Biodiversity: Status of the Earth’s Living Resource (12.4. 1). 1992, Chapman & Hall, London.
    [134]. New, T.R., Collins, N.M. Swallowtail Butterflies: An Action Plan for Their Conservation: World Conservation Union. 1991.
    [135]. Pavlicek-van Beek, T., Ovaa, A.H., van der Made, J.G. Future of butterflies in Europe. Agricultural University, Wageningen, 1992, 336.
    [136]. Thomas, J.A. The conservation of butterflies in temperate countries: Past efforts and lessons for the future. SYMP. R. Entomol. Soc. Lond. 1984., 1984.
    [137]. Warren, M.S. A review of butterfly conservation in central southern Britain: II. Site management and habitat selection of key species. Biological Conservation, 1993, 64(1): 37-49.
    [138]. Caughley, G. Directions in conservation biology. Journal of Animal Ecology, 1994, 63(2): 215-244.
    [139].马祖飞,李典谟.竞争指数及其在小红珠绢蝶保护生物学研究中的应用.生态学报, 2002, 22(10): 1695-1698.
    [140]. Parsons, M.J. The world’s largest butterfly endangered: the ecology, status and conservation of Ornithoptera alexandrae (Lepidoptera: Papilionidae). Trop. Lepidoptera, 1992, 3: 33–60.
    [141]. Warren, M.S. The successful conservation of an endangered species, the heath fritillary butterfly Mellicta athalia, in Britain. Biological Conservation, 1991, 55(1): 37-56.
    [142]. Brower, L.P., Malcolm, S.B. Endangered phenomena. Wings, 1989, 14(2): 3-9.
    [143]. Duffey, E. Ecological studies on the large copper butterfly Lycaena dispar Haw. batavus Obth. at Woodwalton Fen National Nature Reserve, Huntingdonshire. Journal of Applied Ecology, 1968, 5(1): 69-96.
    [144]. Dempster, J.P., King, M.L., Lakhani, K.H. The status of the swallowtail butterfly in Britain. Ecological Entomology, 1976, 1(2): 71-84.
    [145]. Thomas, C.D. Extinction, Colonization, and Metapopulations: Environmental Tracking by Rare Species. Conservation Biology, 1994, 8(2): 373-378.
    [146]. Pyle, R., Bentzien, M., Opler, P. Insect Conservation. Annual Reviews in Entomology, 1981, 26(1): 233-258.
    [147].刘光华,曾玲.碎斑青凤蝶及鹤顶粉蝶幼期形态描述及生物学特性研究初报.仲恺农业技术学院学报, 1999, 12(4): 43-46.
    [148].陈汉林,王根寿.八字纹青凤蝶生物学特性的研究.浙江林业科技, 1997, 17(006): 22-24.
    [149].方健惠,田椰,孙天鑫.巴黎翠凤蝶、红基美凤蝶生物学特性初步观察.甘肃林业科技, 2005, 30(1): 13-15.
    [150].杨萍,邓合黎,漆波.巴黎翠凤蝶Papilio paris Linnaeus生物学与养殖.西南农业大学学报, 2005, 27(5): 657-660.
    [151].卢东升.信阳碧凤蝶人工饲养初步观察.信阳师范学院学报(自然科学版), 1997(2): 67-69.
    [152].杨萍,邓合黎,漆波.碧凤蝶养殖生物学研究.西南农业大学学报, 2004, 26(6): 789-792.
    [153].袁荣才,袁雨.长白山区金凤蝶的研究.农业与技术, 2000, 20(1): 36-38.
    [154].袁荣才,李晓光.长白山区柑桔凤蝶的研究.吉林农业科学, 1997(4): 80-83.
    [155].卢东升.信阳地区柑橘凤蝶生物学特性.昆虫知识, 1999(5): 286-288.
    [156].袁荣才,周剑峰.长白山区绿带翠凤蝶研究初报.吉林农业科学, 1996(2): 92-95.
    [157].袁荣才,罗淼.长白山区丝带凤蝶的研究.农业与技术, 1998, 18(3): 37-42.
    [158].陈泽坦.珐蛱蝶母生树上的一种新害虫.植物保护, 2002, 28(5): 59~60.
    [159].陈志兵,裴恩乐.玉带凤蝶的饲养和繁殖研究.上海农学院学报, 1998, 16(3): 204-208.
    [160].吴平辉,杨萍,刘琼.玉带凤蝶生物学特性研究.重庆林业科技, 2006(2): 18-19, 17.
    [161].潜祖琪,童雪松.黑紫蛱蝶生物学特性的研究.华东昆虫学报, 1999, 8(1): 62-65.
    [162].潜祖琪,童雪松.黑紫蛱蝶与大紫蛱蝶幼期形态区别.昆虫知识, 1999, 36(1): 34-35.
    [163].吴伟,蔡村旺,陈静.红锯蛱蝶生物学特性研究.西南林学院学报, 2003, 23(4): 54-57.
    [164].杨萍,邓合黎,漆波.红锯蛱蝶Cethosia biblis (Drury)的生物学研究.西南农业大学学报, 2006, 28(4): 549-552.
    [165].张军生,滕.康.红线蛱蝶生物学特性初步研究.内蒙古林业科技, 2002, 20-22(1).
    [166].袁荣才,张富满.虎凤蝶临江亚种研究初报.吉林农业科学, 1995(2): 37-39.
    [167].方健惠,李秀山.嘉翠蛱蝶的生物学特性初步观察.昆虫知识, 2004, 41(06): 592-593.
    [168].陈永佳,陈锡昌.金裳凤蝶与裳凤蝶的生物学观察.昆虫天敌, 1997, 19(2): 55-58.
    [169].应霞玲,曾玲,黄寿山.金扇凤蝶和红纹凤蝶生物学特性观察.武夷科学, 2002, 18(134-137).
    [170].黄光斗,晏坤乾,周伟.裳凤蝶污斑亚种的生物学特征.昆虫知识, 2002, 39(3): 224-226.
    [171].张智勇,李梓辉,刘良源.金裳凤蝶生物学特性初步观察.江西林业科技, 1992(2): 20-21.
    [172].杨世璋,林琳,张岚.红珠凤蝶小斑亚种的生物学研究.西南农业大学学报(自然科学版), 2006, 28(5): 841-845.
    [173].周成理,史军义,易传辉.枯叶蛱蝶Kallima inachus的生物学研究.四川动物, 2005, 24(4): 445-450.
    [174].佘德松,冯福娟.木兰青凤蝶生物学特性的初步研究.福建林业科技, 2003(2): 47-49.
    [175].潜祖琪,童雪松.铁木剑凤蝶的生物学习性观察.昆虫知识, 1998, 35(5): 267-269.
    [176].王梅松,何学友,杨希.统帅青凤蝶生物学特性的初步研究.福建林业科技, 2000(2): 55-57.
    [177].童雪松,潜祖琪.中华虎凤蝶的生态研究.丽水农业科技, 1991(1): 18-21.
    [178].胡萃,吴晓晶,王选民.珍稀濒危昆虫——中华虎凤蝶的生物学.昆虫学报, 1992, 35(2): 195-199.
    [179].许雪峰,孙希达,楼信权.中华虎凤蝶生物学特性的研究.宁德师专学报(自然科学版), 1998(3): 179-180.
    [180].张潮巨,陈顺立.中国宽尾凤蝶的研究.福建林学院学报, 1991, 11(1): 59-66.
    [181].陈秀龙,陈李红,李苏萍.鱼尾竹环蝶生物学特性与防治.中国森林病虫, 2004(3).
    [182].王金平,卢东升.信阳麝凤蝶人工饲养初步观察.信阳师范学院学报(自然科学版), 1998, 11(3): 278-280.
    [183].陈志兵,裴恩乐,段华荣.麝凤蝶形态观察及生物学特性.昆虫知识, 2002, 39(2): 141-143.
    [184].陈尚文.椰眼蝶生物学特性初步研究.昆虫知识, 1998(5).
    [185].赵梅君,王甬胤,胡佳耀.黄尖襟粉蝶的生物学特性.昆虫知识, 2006(4): 04.
    [186].李朝晖,华春,虞蔚岩.南京地区黄尖襟粉蝶的生物学特性研究.江苏农业科学, 2008(1): 85-87.
    [187].周春玲,蒋国芳.广西金斑喙凤蝶生物学特性初步观察及其保护.广西科学院学报, 1996, 12(1): 24-26.
    [188].曾菊平,周善义,罗保庭.金斑喙凤蝶广西亚种生活史研究.广西科学, 2007, 14(3): 323-326.
    [189].杨萍,吴平辉,刘琼.异型紫斑蝶Euploea mulciber (Cramer)生物学特性.重庆林业科技, 2006(4): 12-13.
    [190].杨大荣.西双版纳片断热带雨林蝶类群落结构与多样性研究.昆虫学报, 1998, 41(1): 48-55.
    [191].陈振宁,曾阳.青海祁连地区不同生境类型蝶类多样性研究.生物多样性, 2001, 9(2): 109-114.
    [192].应霞玲,陈若霞.宁波地区蝴蝶群落结构及多样性初步研究.上海交通大学学报:农业科学版, 2003, 21(1): 54-57.
    [193].李秀山,张雅林,骆有庆.长尾麝凤蝶生活史、生命表、生境及保护.生态学报, 2006, 26(10): 3184-3197.
    [194].陈志兵,顾凌云,裴恩乐.麝凤蝶的发育起点温度和有效积温.昆虫知识, 2004(5).
    [195].荣秀兰,周兴苗,雷朝亮.苎麻赤蛱蝶生物学特性和有效积温的研究.华中农业大学学报, 2005, 24(2): 143-146.
    [196].张岚,林琳,陈冰勇.黄钩蛱蝶蛹的发育起点温度及有效积温的初步研究.农业与技术, 2006(3).
    [197].陈兴永,陈海东,温瑞珍.玉带凤蝶羽化时间的控制.昆虫知识, 2003, 40(3): 268-269.
    [198].陈思源.玉带凤蝶人工饲料初步研究.华南农业大学学报, 1999(1): 1,13-16.
    [199].胡萃,叶恭银,袁德成.珍贵濒危蝴蝶—中华虎凤蝶幼虫的取食行为.浙江大学学报(农业与生命科学版), 1997, 23(3): 229-233.
    [200].胡萃,叶恭银.珍稀濒危昆虫——中华虎凤蝶的半纯饲料.浙江农业大学学报, 1992, 18(2): 1-6.
    [201].陈永久,张亚平.中国5种珍稀绢蝶非损伤性取样的mtDNA序列及系统进化.遗传学报, 1999, 26(3): 203-207.
    [202].曹天文,张敏,张建珍.大紫蛱蝶三个地理种群的RAPD遗传多样性分析.动物分类学报, 2005, 30(1): 1-9.
    [203].诸立新,吴孝兵,晏鹏.基于COⅠ基因部分序列对尾凤蝶属(鳞翅目,凤蝶科)四种蝴蝶分子系统关系及相关问题的探讨.动物分类学报, 2006, 31(1): 25-30.
    [204].时号,张婧,蒋国芳.线粒体基因和核基因在蝶类分子系统学中的研究进展.广西科学, 2006, 13(2): 156-160.
    [205].苏成勇,朱国萍,郝家胜.凤蝶亚科(凤蝶科,鳞翅目) 16S rRNA基因的分子系统发生分析.动物分类学报, 2007: 2.
    [206].汪永俊,孙巧云.中华虎凤蝶的饲养技术及其保护园的建立.江苏林业科技, 1998, 25(3): 39-43.
    [207].张远林.甘肃省绢蝶资源及保护对策.甘肃林业科技, 2001, 26(3): 53-55.
    [208].李树恒.重庆市珍稀蝶类及保护对策.四川动物, 2003, 2(2): 61-63.
    [209].袁荣才.孔雀蛱蝶研究初报.吉林农业科学, 1993(3): 36-38.
    [210].周成理,史军义,陈晓鸣.枯叶蛱蝶规模化人工繁育研究.北京林业大学学报, 2006, 28(5): 107-113.
    [211].蔡月仙,廖森泰,吴福泉.金裳凤蝶和裳凤蝶的人工饲养观察.广东农业科学, 2003(5): 51-53.
    [212].刘文华,王义飞,徐汝梅.两种共存网蛱蝶的卵块特征及其雌性成虫对产卵地的选择.应用生态学报, 2006, 17(7): 1254-1258.
    [213]. Smiles, R.L. The taxonomy and phylogeny of the genus Polyura Billberg (Lepidoptera: Nymphalidae). Bulletin of the British Museum (Natural History),(Entomology), 1982, 44: 115-237.
    [214]. Boyce, T.M., Zwick, M.E., Aquadro, C.F. Mitochondrial DNA in the pine weevil size, structure andheterogeneity. Genetics, 1989, 123: 825-836.
    [215]. Russell, J.R., Fuller, J.D., Macaulay, M. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. TAG Theoretical and Applied Genetics, 1997, 95(4): 714-722.
    [216].姜玉锁,刘文忠,张春香.中国境内不同地理型东方蜜蜂遗传多样性的AFLP分析.昆虫学报, 2007, 50(2): 144-152.
    [217].王戎疆,万宏,龙玉.利用线粒体CoⅡ基因序列对中国尾蛱蝶属系统分化的研究(鳞翅目:蛱蝶科).昆虫学报, 2004, 47(2): 243-247.
    [218]. Chen, A.H., Jiang, G.F. Phylogenetic Relationships among 12 Species of Tetrigidae (Orthoptera: Tetrigoidea) Based on Partial Sequences of 12S and 16S Ribosomal RNA. Zool Res, 2004, 25(6): 510-514.
    [219].殷先兵,郝家胜,许丽.基于线粒体ND1和COI基因序列探讨锯眼蝶亚科主要类群的系统发生关系.动物学研究, 2007, 28(5): 477-484.
    [220]. Liu, H., Beckenbach, A.T. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol Phylogenet Evol, 1992, 1(1): 41-52.
    [221]. Brower, A.V.Z., DeSalle, R. Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Molecular Biology, 1998, 7(1): 73-82.
    [222]. Nice, C.C., Shapiro, A.M. Population Genetic Evidence of Restricted Gene Flow Between Host Races in the Butterfly Genus Mitoura (Lepidoptera: Lycaenidae). Annals of the Entomological Society of America, 2001, 94(2): 257-267.
    [223]. Caterino, M.S., Sperling, F.A.H. PapilioPhylogeny Based on Mitochondrial Cytochrome Oxidase I and II Genes. Molecular Phylogenetics and Evolution, 1999, 11(1): 122-137.
    [224]. Long, Y., Wan, H., Yan, F. Glacial Effects on Sequence Divergence of Mitochondrial COII of Polyura eudamippus (Lepidoptera: Nymphalidae) in China. Biochemical Genetics, 2006, 44(7): 359-375.
    [225]. Gray, M.W. Origin and Evolution of Mitochondrial DNA. Annual Reviews in Cell Biology, 1989, 5(1): 25-50.
    [226]. Irwin, D.M., Kocher, T.D., Wilson, A.C. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 1991, 32(2): 128-144.
    [227]. Torres, E., Lees, D.C., Vane-Wright, R.I. Examining Monophyly in a Large Radiation of Madagascan Butterflies (Lepidoptera: Satyrinae: Mycalesina) Based on Mitochondrial DNA Data. Molecular Phylogenetics and Evolution, 2001, 20(3): 460-473.
    [228]. Hills, D.M., Bull, J.J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol, 1993, 42(2): 182-192.
    [229]. Harvey, D.J., ed. Higher classification of the Nymphalidae, Appendix B. The development and evolution of butterfly wing patterns. Washington, DC: Smithsonian Institution Press. 1991, 255–273.
    [230]. Freitas, A., Brown, K. Phylogeny of the Nymphalidae (Lepidoptera). Systematic Biology, 2004, 53(3): 363-383.
    [231]. Wahlberg, N., Brower, A.V.Z., Nylin, S. Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 2005, 86(2): 227-251.
    [232]. Kimball, R.T., Braun, E.L., Zwartjes, P.W. A Molecular Phylogeny of the Pheasants and Partridges Suggests That These Lineages Are Not Monophyletic. Molecular Phylogenetics and Evolution, 1999, 11(1): 38-54.
    [233]. Knight, A., Mindell, D.P. Substitution bias, weighting of DNA sequence evolution, and the phylogenetic position of Fea’s viper. Syst. Biol, 1993, 42(1): 18-31.
    [234]. Sperling, F.A.H., Harrison, R.G. Mitochondrial DNA variation within and between species of the Papilio machaon group of swallowtail butterflies. Evolution, 1994, 48(2): 408-422.
    [235]. Wang, R.J., Wang, Y.F., Chen, J.J. Contrasting movement patterns in two species of chequerspot butterflies, Euphydryas aurinia and Melitaea phoebe, in the same patch network. Ecological Entomology, 2004, 29(3): 367-374.
    [236]. Long, Y., Wan, H., Yan, F. Glacial Effects on Sequence Divergence of Mitochondrial COII of Polyura eudamippus (Lepidoptera: Nymphalidae) in China. Biochemical Genetics, 2006, 44(7): 359-375.
    [237]. Ibrahim, K.M., Nichols, R.A., Hewitt, G.M. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 1996, 77(3): 282-291.
    [238].李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报, 1998, 43(15): 1569-1574.
    [239].徐钦琦.东亚更新世哺乳动物的南迁活动及其与气候的演变关系. in中国古生物学会第13、14届学术年会论文选集. 1986.合肥:安徽科学出版社.
    [240].童国榜,陈云,吴锡浩.中国更新世环境巨变的孢粉植物群记录.地质力学学报, 1999, 5(4): 11-21.
    [241].薛祥煦,张云翔.中国第四纪哺乳动物地理区划.兽类学报, 1994, 14(1): 15-23.
    [242].蔡丽珠.台湾海峡两岸第四纪生物群特征及古地理演变.海洋地质与第四纪地质, 1995, 15(4): 47-56.
    [243].郑卓.中国热带—亚热带地区晚第四纪植被与气候变化.微体古生物学报, 2000, 17(2): 125-146.
    [244].张荣祖.中国第四纪冰期与陆生脊椎动物残留分布.动物学报, 2004, 50(5): 841-849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700