基于OSG的计算可视化仿真关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算可视化仿真是新兴起的一种技术,它的主要思想是将计算机科学计算和三维视景仿真相结合以实现优势互补的目的,不仅最大程度的利用了计算机科学计算的精度和可靠性,又给予了观察者最直接最真实的显示效果,还具有很强的交互性和易操作性。
     但是计算可视化仿真又有其不可避免的问题,众所周知,计算机科学计算如有限元分析力学的结果繁杂、数据量巨大,而视景仿真必须是可交互的、实时的,如何提高可视化显示海量数据的效率,无损或少损地反映计算机科学计算数据场是计算可视化仿真的重中之重。
     本文以OSG可视化函数库为平台,在win32平台下结合vs03开发了一套较为完整的塔架力学仿真可视化系统,在这个系统利用塔架结构数据以及相应的ANSYS桁架应力计算数据渲染出了一个可交互的塔架仿真图像,可以依靠它进行塔架设计的观察和塔架应力结构的观察,程序主要实现的算法有:基于Flyweight设计模式的塔架结构绘制算法;光照,阴影算法在塔架仿真中的应用;科学计算物理场拾取表现算法以及基于纹理映射的三维仿真算法。
     这个系统基本实现了三维塔架结构自动生成、应力云图可视化的功能需求,并具有比较强的实用性和很大的扩展潜力,这个技术甚至可以扩展到更普遍的领域,如军事演习仿真、影视业、电子娱乐业等等。
Visualization Simulation in Scientific Computing is a new technique, it’s main idea is combine scientific computing of computer with 3D visualization simulation, the technique not only has the well accuracy and reliability of scientific computing of computer but also has very directly and reality display, it’s interaction is very well too. However, Visualization Simulation in Scientific Computing has some inevitably problem, the computing result of scientific computing of computer like finite element method is very complex and huge in data size, but simulation must be interactive and Real-time, the most important in Visualization Simulation in Scientific Computing is increasing efficiency of mass data display, reflect the valuable scientific computing of computer data lossless.
     The page Developed a power transmission tower design system in window system with vs03 and OSG, the main algorithm of the system are as follow, displaying the tower quickly with Flyweight design pattern, use lighting, shadow, material to enhance display effect, use texture to reflect data of mechanics.
     This system meet the need of mechanics of tower display, has good practicability and well extensional potential, what’s more, it can extension to wider range like simulation of sham battle, movie, Electronic entertainment and so on.
引文
[1] Michael Friendly. "Milestones in the history of thematic cartography, statistical graphics, and data visualization". 24,2009.
    [2]周传德.科学计算可视化理论及智能虚拟显示系统的研究[D].重庆大学博士论文.2006:12
    [3]阮少卿,唐国安.一种三维有限元应力分析的可视化方法[J].Journal of Image and Graphics. Sept 1999.
    [4]朱广堂,杨文兵,王乘,刘小虎.输塔架设计分析软件研制开发[D].华中理工大学学报.2000
    [5]范彦斌,杨彭基.有限元分析计算结果的计算机图形可视化显示.[J]
    [6]杨石兴.OpenSceneGraph程序设计[M].
    [7] OSG中文网. http://wiki.osgchina.org/.
    [8]周昌玉.贺小华,有限元分析的基本方法及工程应用[M].化学工业出版社
    [9] Jarke J.van Wijk*. Image Based Flow Visualization for Curved Surfaces , Technische Universiteit Eindhoven.Proceedings of the 14th IEEE Visualization Conference 2003.
    [10] Daniel Weiskopf, Frederik Schramm, Gordon Erlebacher, Thomas Ertl. Particle and Texture Based Spatiotemporal Visualization of Time-Dependent Vector Fields. Proceedings of the IEEE Visualization 2005 October.
    [11]刘苗苗, UML在嵌入式软件开发中的研究与应用[D].中国海洋大学硕士论文.
    [12]阮玉瑭,基于ANSYS某机枪有限元分析[D].南京理工大学硕士论文.
    [13] OSG官方网站[EB/OL].www.openscenegraph.org.
    [14]肖永辉.城市景观三维建模与可视化技术的研究[D].解放军信息工程大学硕士论文.2006:4:20.
    [15]芦欣.基于3DS MAX和OpenGL实现飞行仿真的软件研发[D].内蒙古大学硕士论文.2007:5
    [16]许移庆,冀东.风力发电机组塔架仿真和分析[M].能源研究与信息.2006:22(2):85-88,107
    [17]夏正春,李黎,梁政平,段松涛.输电塔在线路断线作用下的动力响应[A].振动与冲击.2007,26(11):45—49
    [18]陆佳政,刘纯,陈红冬,胡波涛.500kv输电塔线覆冰有限元计算[A].高电压技术.2007.33(10):167-169
    [19]龚靖,贾瑞庆,薄壁钢管输电塔架风载响应研究[M].东北电力学院学报.1998.
    [20]冯云巍,杜新喜.输电塔架结构CAD系统的研制与开发[M].科技论坛.2005,19
    [21]冯云巍,杜新喜.基于ObjectARX的输电塔架CAD系统开发[M].软件天地
    [22]程菊明,赵秋雨,刘连芳.基于OSG的规则多面体重构和纹理映射技术[M].计算机工程与设计.2008.29(4):1016-1018
    [23]王斌,王文平,雍俊海,孙家广.基于半规则纹理合成的流场可视化技术[M].计算机辅助设计与图形学学报.2005.8(8):1678-1685
    [24]刘旸.智能高速水面艇三维视景可视化仿真研究[D].哈尔滨工程大学硕士论文.2007:5
    [25]黄夏荣.无人机飞行视景仿真平台的设计与实现[D].南京理工大学硕士论文.2007:6
    [26]郭欣.腕部的三维有限元模拟及腕管综合症的生物力学研究[D].四川大学硕士论文.2007:4
    [27]李小青.基于MAX脚本和OSG的树木可视化算法研究与实现[D].北京林业大学硕士论文.2006:6
    [28]肖永辉.城市景观三维建模与可视化技术的研究[D].解放军信息工程大学硕士论文.2006:4:20
    [29] OpenGL编程指南(第四版)[M].人民邮电出版社
    [30] M.S. Floater and K. Hormann,“Surface Parameterization: A Tutorial and Survey,”Advances in Multiresolution for Geometric Modelling, Math. and Visualization, N.A. Dodgson, M.S. Floater, and M.A. Sabin, eds., pp. 157-186, Springer, 2005.
    [31] G.-S. Li, X. Tricoche, and C. Hansen,“GPUFLIC: Interactive and Accurate Dense Visualization of Unsteady Flows,”Proc. Euro-graphics/IEEE-VGTC Symp. Visualizations (EuroVis’06), pp. 29-34,
    [32] Guo-Shi Li, Xavier Tricoche,“Flow Charts: Visualization of Vector Fields onArbitrary Surfaces,”IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS. (VIS’08), pp. 1067-1080, 2008.
    [33] John Kessenich ,The OpenGL Shading Language
    [34] T. Guan, L.J. Li, and C. Wang,“Registration Using Multiplanar Structures for Augmented Reality Systems,”ASME Transaction: Journal of Computing and Information Science in Engineering, 8(4), pp. 1002.1-1002.6, 2008.
    [35] T. Guan, L.J. Li, and C. Wang,“Robust Estimation of Trifocal Tensors Using Natural Features for Augmented Reality Systems,”Computing and Informatics, 27(6), pp. 891-911, 2008.
    [36] H.-W. Shen and D.L. Kao,“A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields,”IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 98-108,Apr.-June 1998.
    [37] J. Stam,“Flows on Surfaces of Arbitrary Topology,”ACM Trans. Graphics (TOG) , pp. 724-731, 2003.
    [38] S.P. Lloyd,“Least Squares Quantization in PCM ,”IEEE Trans. Information Theory , vol. 28, no. 2, pp. 129-136, 1982.
    [39] R. Laramee, B. Jobard, and H. Hauser,“Image Space Based Visualization of Unsteady Flow on Surfaces ,”Proc. 14th IEEE Visualization (VIS’03), pp. 18-25, 2003.
    [40] S. Gottschalk, M.C. Lin, and D. Manocha ,“Obbtree : A Hierarchical Structure for Rapid Interference Detection,”Proc. ACM SIGGRAPH’96, pp. 171-180, 1996.
    [41] WEISKOPF D., SCHRAMM F., ERLEBACHER G.ERTL T.: Particle and texture-based spatiotemporal visualization of time-dependent vector fields. In Proceedings of IEEE Visualization 2005 (Washington, DC, USA, 2005), IEEE Computer Society, pp. 639– 646.
    [42] SHEN H.-W., KAO D.: A new line integral convolution algorithm for visualizing time-varying flow fields. IEEE Transactions on Visualization and Computer Graphics 4, 2 (1998).
    [43] P.V. Sander, Z.J. Wood, S.J. Gortler, J. Snyder, and H. Hoppe ,“Multi-Chart Geometry Images,”Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing (SGP’03), pp. 146-155 , 2003.
    [44] N.A. Carr, J. Hoberock , K. Crane, and J.C. Hart,“Rectangular Multi-ChartGeometry Images ,”Proc. Eurographics Symp. Geometry Processing (SGP’06), pp. 181-190, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700