航空用2E12合金热处理工艺与疲劳行为的相关基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合金的热处理工艺与其微观组织演变规律及疲劳损伤行为有着密切的联系,通过热处理工艺优化及新型处理工艺开发对合金耐损伤微结构进行调控具有重要价值。本文利用光学显微镜、扫描电镜、透射电镜、X射线衍射仪、背散射电子衍射技术、正电子湮没技术、疲劳试验机、示差量热仪等手段系统的考察了固溶处理、形变处理、电场时效处理及热效应影响后的航空用2E12铝合金拉伸性能、疲劳性能的变化规律,分析和探讨了不同热处理状态下合金微观组织演变对合金耐损伤行为的影响规律及其机理,得到了以下主要结论:
     (1)2E12铝合金中粗大残留相在循环应力作用下将与基体脱粘而成为疲劳裂纹萌生位置,并在裂纹扩展过程中起到桥接作用,从而降低合金疲劳寿命、加速疲劳裂纹扩展速率。固溶处理可大幅提高合金疲劳性能,适当提高固溶温度、延长保温时间可提高合金综合力学性能,固溶温度应低于Al-Al2Cu-Al2CuMg共晶转变温度509℃。合金固溶后经室温水及沸水淬火后DSC曲线存在明显GPB区向S"转变峰;经油及室温水淬火后存在TypeⅠ及TypeⅡS相两相共存现象;空冷及沸水淬火后合金中存在明显的析出相结构,前者析出相体积更大,数量更多;导致合金析出相结构各异的原因主要是淬火介质冷却速率及冷却温度不一。
     (2)2E12合金在180℃时效表现为双阶段时效硬化过程,时效前冷变形削弱了合金第一阶时效段硬化趋势。预变形加速了合金第二阶段时效过程,缩短了峰值时效时间。冷变形显著细化了合金中沉淀析出相,随冷变形量的增加,强化相S相愈弥散,愈细小;预变形过程引入大量位错组织,成为合金析出相有利形核位置。
     (3)轧制变形后合金的晶粒在轧制方向尺寸增加,长宽比增大,产生由S型织构{123}<634>、黄铜型织构{011}<112>和铜型织构{112}<111>组成的形变织构。轧制变形可提高2E12铝合金表面残余压应力,拉伸变形则使得合金表面产生残余拉应力,即使变形量很小,对合金试样表面残余应力的性质及大小产生的影响都要高于轧制变形。
     (4)合金的疲劳裂纹扩展过程受到晶界的阻碍,扩展方式为穿晶扩展,疲劳过程中产生二次裂纹,二次裂纹萌生位置为裂纹前端附近的取向差较大晶界处。主裂纹扩展面为{111}面,裂纹扩展发生分叉位置为裂纹前端可同时开动两个或两个以上{111}<110>滑移系的晶粒处。形变处理后合金中出现{110}<112>,{123}<634>及{112}<111>织构,导致合金中{111}面倾向于偏离至循环应力加载最大方向,一定程度上抑制了裂纹的扩展,从而导致形变处理后短裂纹扩展阶段扩展速率降低。合金裂纹扩展速率与表面残余应力、裂纹尖端晶粒取向、裂纹尖端塑性区尺寸及塑性区吸收形变能的能力等因素有关。在短裂纹扩展阶段,裂纹尖端塑性区尺寸仅为单个晶粒大小时,表面残余压应力及形变引起的织构可抑制裂纹扩展。在裂纹稳态扩展区,加工硬化引取的裂纹尖端塑性区吸收形变储能的能力降低成为加速裂纹扩展的主要因素。
     (5)190℃时效过程中施加9kV/cm电场导致合金时效硬化曲线硬度峰值提前。施加9kV/cm强度电场时效合金试样电导率随时间的变化与不加电场时效的合金试样具有相同的变化规律,但其电导率值在时效各个阶段均较后者有所提高。电场时效可明显降低2E12铝合金中S相的形成激活能,Kissinger方法和普适积分法计算结果施加电场后合金S相形成激活能分别降低了7.9kJ/mol~12.7kJ/mol和6.8kJ/mol~22.6kJ/mol。电场可促进2E12铝合金中TypeⅠS相向TypeⅡS相转变,未施加电场时效的合金样品具有更高的过饱和度,其析出体积百分数及析出速率均高于施加电场的样品。
     合金经190℃强静电场时效,析出相数量明显增加,且分布更为弥散。这是由于淬火时产生的过饱和空位在电场作用下跳动几率增加,从而促进了溶质原子脱溶,增加第二相形核位置。时效不同时间后合金拉伸流变应力由高到低依次为10h、24h、5h。电场时效后合金中更为细小弥散的第二相增加了合金的屈服强度,对于时效过程中施加9kV/cm强度电场的试样,相同时效时间的试样均表现出较未施加电场更高的变形流变应力。经190℃/10h电场时效后合金疲劳寿命较未施加电场时效试样提高了约20%,且前者疲劳裂纹扩展速率在裂纹扩展各阶段均低于后者。
     (6)合金在150℃下进行热暴露,随暴露时间的增加,合金中第二相经历GPB长大→S"相形成→S'相形成的过程,析出第二相数量不断增加,导致硬度值呈线性增加。随热暴露时间的增加,合金的疲劳寿命呈现先增后降的趋势,暴露10h后合金具有最高疲劳寿命,当暴露1000h后合金疲劳寿命急剧降低。暴露100h及1000h合金中形成的S"相及S'相由于共格程度较GPB区低,使得疲劳过程可逆滑移位错数量减少,加之晶界处析出的第二相易成为疲劳微裂纹源,两者疲劳寿命不同程度地降低。合金的疲劳裂纹扩展速率随热循环时间的延长而加快;合金中GPB区结构尺寸受到疲劳过程中的位错切割作用和温度影响导致长大两方面因素影响,温度影响效果更为显著;高温影响下,当疲劳裂纹形成后,裂纹表面暴露在高温有氧的环境下,氧气较容易扩散进入裂纹尖端,促使裂尖表面形成AlxOy氧化膜,加快了合金试样的裂纹扩展速率。合金的疲劳过程可被看作热激活过程,随着循环应力值的增加,激活能不断降低。其激活过程可用公式βσ=Q0-RTln(Nf/N0)表示,式中Q0和β分别为8.54和1.52。
The microstructure evolution and fatigue damage of alloys depend on the heat-treatment. Thus, it is very important to develop and optimize heat-treatment technology for better fatigue performance microstructure. By means of OM, SEM, TEM, XRD, EBSD, PAL, fatigue tester, DSC, etc. the microstructure evolution and mechanical properties of aerostatic aluminum alloy 2E12 after solution heat treatment, deformation, ageing and heat exposion were studied. The relationship between microtructure and fatigue behavior of 2E12 aluminum alloys at different status was analysied, main conclusions were presented as followed:
     (1) During fatigue process, residual particals were easily debonded from the matrix, which caused initial sites there. With the propagation of fatigue crack, those residual particles were bridged by the main crack. The fatigue crack propagation rate of the alloy was accerlerated by those particles. By introducing solution heat-treatment, fatigue properties of the alloy could be improved significantly. Propriate increasing the heating temperature and holding time could enhance the mechanical properties of the alloy. The solution heat temperature limit was 509℃. There was a indentical transformation peak from GPB zone to S" phase of room temperature and boil water quenched alloys. The coexistence of type I and type II S phase was observed in room temperature water and oil quenched alloys. Visible precipitates appeared in air and boil water quenched alloys. The precipitates in air quenched alloy were bigger in size and more in quantity than those in boil water quenched alloy. The reason caused difference of precipitates was cooling rate and cooling temperature.
     (2) There were two stages ageing process of 2E12 aluminum alloy at 180℃. Pre-deformation weakened the first ageing hardening process but accelerated the second. The precipitates became finer and more dispersed with the pre-deformation. The dislocations caused by pre-deformation provided beneficial sites for the nuleations of precipitates.
     (3) After the cold deformation, the grain size of the alloy increased along the rolling direction with the aspect ratio. There were three main texture of cold rolled alloy, S texture {123}<634>, Brass texture{011}<112> and Copper texture{112}<111>. Cold rolling and extension could increase surface residual stress and tensile stress respectively. The effect of extension on residual stress was stronger than cold rolling.
     (4) Fatigue crack propagation was obstructed by the grain boundaries. The crack propagation was transgranular. During the fatigue process, secondary cracks formed at the misorientation grain boundaries infront of the main crack. The spread plane of main fatigue crack was {111} plane, two or more{111}<110> slip systems started infront of the crack bifurcation. The cold rolled texture{110}<112>,{123}<634> and {112}<111> induced {111} plane deviated to the loading direction resulting lower fatigue crack propagation rate. The fatigue crack propagation rate could be affected by residual stress, orientation of the grains near main crack, size and the deformation torlerence of plastic zone. At the short crack propagation stage, the plastic zone size was at the grain size level, the residual stress and texture could suppress the crack propagation. At the steady propagation area, the crack propagation rate increased by the work hardening.
     (5) Applying 9kV/cm electric field during artifical ageing at 190℃could decrease the peak ageing time. The conductivity of artificial aged alloy with electric field showed same tendency with the traditional ageing process, however, the former one had a better performance the the latter one. The electric field dould decrease the formation energy of S phase during ageing. The formation energy of S phase were 7.9kJ/mol~12.7kJ/mol and 6.8 kJ/mol~22.6 kJ/mol lower calculated by Kissinger and General integration method. The electric field promoted transformation of typeⅠS phase to typeⅡS phase. The supersaturation of artificial aged alloy without electric field was higher than that with electric field. The precipitation rate of ones without electric field aged alloy was higher than that with.
     The volumen fraction of electric field aged alloy was higher than that without, and the precipitates were more dispersed of the former one. The electric field increased the quenched vacancies jumping rate, which promoted desolventizing of the solute atoms. The tensile flow stress of aged alloy with different ageing time was 10h>24h>5h. The refinement of precipitates under effection of electric field ageing caused higher yield strength and tensile flow stress of the alloy. The electric field had a positive effect on fatigue property of alloy. The 190℃/10h aged alloy with electric field had a 20% longer fatigue life and lower fatigue crack propagation rate.
     (6) During the heat exposion at 150℃, the microstructure evolution process was GPB zone→S"→S', the volume fraction increased with the exposion time, resulting hardness increased linerally. The fatigue life of alloy increased at first than decreased later with the heat exposed time. The 10h exposed alloy had the longest fatigue life, the fatigue life of 1000h exposed alloy decreased severesly. Precipitates in 100h and 1000h exposed alloy were S" and S' phases, which exhibited worse fatigue performance. It is because that those phases were less coherent than GPB zones, during fatigue process the amount of reversible dislocation decreased. Another reseaon is the deformatiuon coordination of precipitates free zone would caused microcracks near grain boundaries. Therefore, with the increase of exposed time, the fatigue life of alloy decreased. The size of GPB zone was affected by two factors, the cutting effect and temperature, and the latter was dominant. At higher temperature, the oxygen could penetrate through the surface of fatigue crack then caused AlxOy oxide film. Such oxide film accelerated fatigue crack propagation. The fatigue process could be treated as thermal activated, the activation energy decreased with cyclic loading stress. The thermal activated fatigue process of 2E12 aluminum alloy could be treated asβσ-Q0-RTln(N1/N0), where Q0 andβwere 8.54 and 1.52 respectively.
引文
[1]张君尧.铝合金材料的新进展(1)[J].轻合金加工技术.1998.26(5).1-10
    [2]Iau. J., Kulak. M. A new paradigm in the design of aluminum alloys for aerospace applications[J]. Materials Science Forum.2000.331-337.127-140
    [3]Davidal Ray M. H. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light metal age.1991.2(9).11-15
    [4]李成功,傅恒志,于翘等.航空航天材料[M].北京:国防工业出版社.2002.28-38
    [5]工祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社.2005
    [6]William C., John, L., James, T. Aluminum alloys for aircraft structure[J]. Advanced Materials Processes,2002,160(12) 27-29
    [7]杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报.2002,19(2):76-80
    [8]中国特种飞行器研究所主编.海军飞机结构腐蚀控制设计指南[M].北京:航空工业出版社,2005
    [9]B.г.库德良绍夫,B.H.斯莫连采夫.铝合金断裂韧性[M](高云震译).北京:冶金工业出版社,1980:94-100
    [10]Starke, E., Staley, A. Application of modern aluminum alloys to aircraft[J]. Prog Aerospace Sci,1995,32:131-172
    [11]林肇琦.有色金属材料学[M].吉林:东北工学院出版社.1986:17-22
    [12]刘静安.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004:1-7,53-71
    [13]Hahn, G. T., Hart, R. M. Adv. Processes,1991,10:46
    [14]Nakai, M., Etoh, T. J. Jpn. Inst. Light Met.,1995,45:677
    [15]陈康华,刘红卫,刘允中.强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响[J].金属学报.2001.37(1)29-33
    [16]曾苏民.影响铝合金固溶保温时间的多因素相关规律[J].中国有色金属学报.1999,9(1)79-86
    [17]陈康华,刘允中,刘红卫.7075和2024铝合金的固溶组织与力学性能[J]. 中国有色金属学报,2000,10(6):819-822
    [18]Xu X J,Zhang J.Chen K M,etal. Improvement of strength in 2024 Al Alloy by enhanced solution treatment[C].Transactions of materials and heat treatment proceedings of the 14th IFHTSE congress,2004,25(5):297-300
    [19]R.Sadeler, Y.Totik, M.Gavgali et al. Improvements of fatigue behaviour i n 2014 A1 alloy by solution heat treatment and age-hardening[J], Materials and Design 25(2004)439-445
    [20]J.C.Grosskreutz, G.G.Shaw:Fracture, P.L.Pratt, ed., Chapman Hall, London, 1969,pp.620-629
    [21]W.L.Morris, O.Buck, and H.L.Marcus:Fatigue crack initiation and early propagation in Al 2219-T851 [J].Metall. Trans.A,1976,vol.(7A,):1161-1165
    [22]Morris, W. L. The effect of intermetallics composition and microstructure on fatigue crack initiation in Al 2219-T851 [J]. Metall. Trans. A,1978, vol.9 A: 1345-1348
    [23]Manabu N., Takehiko E. New aspects of development of high strength aluminum alloys for aerospace application[J]. Materials Science and Engineering A, 2000,285:62-68.
    [24]张国君,刘刚,丁向东等.含有第二相的高强铝合金疲劳模型[J].稀有金属材料与工程,2004,33(1):35-39
    [25]Ber L B. Acclerated artificial ageing regimes of commercial Aluminum alloys Ⅰ Al-Cu-Mg alloys[J]. Materials Science and Engineering A,2000,280:83-90
    [26]A.M. Zahra, C.Y. Zahra, C. Alfonso, et al., Scripta Mater.39 (1998) 1553.
    [27]S.P. Ringer, T. Sakurai, I.J. Polmear, Acta Mater.45(1997) 3731
    [28]Y. Nagai, M.Murayama, Z.Tang, T.Nonaka, et al., Acta Mater.49(2001)913
    [29]Gupta, A. K., Jena, A. K., Chaturvedi, M. C. Differential technique for the determination of activation energy of precipitation reactions from differential scanning calorimateric data[J]. Scripta Metallurgica,1988,22(3) 369-371
    [30]Jena, A. K., Gupta, A. K., Chaturvedi, M. C. Differential scanning calorimateric investigation of precipitation kinetics in the A1-1.53 wt.%Cu-0.79wt.%Mg alloy[J]. Acta Metallurgica,1989,37(3) 885-895.
    [31]Wang, S. C., Starink, M. J., Precipitates and intermetallic phase in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. International Materials Reviews,2005, 50(4),193-215
    [32]Mondolfo, L. F. Aluminum alloys-structure and properties[M]. London: Butterworths and Co.,1976
    [33]Wolverton C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys[J]. Acta Materialia,2001,49(16):3129-3142
    [34]Shchegoleva, T. V., Buinov, N. N. Sov. Phys. Crystallogr.,1967,12:552-555
    [35]Silcock, J. M., J. Inst. Met.,1960-61,89,203-210
    [36]Cuisiat, F., Duval, P., Graf, R. Etude des premiers stades de decomposition d'un alliage Al-Cu-Mg[J]. Scripta Metall.,1984,18(10),1051-1056
    [37]Wang, S. C., Starink, M. J., The assessment of GPB/S" structures in Al-Cu-Mg alloys[J]. Mater. Sci. and Eng. A,2004,386:156-163
    [38]Ratchev, P., Verlinden, B., De Smet P., et al.. Precipitation hardening of an Al-4.2wt.%Mg-0.6wt.%Cu alloy[J]. Acta Materialia,1998,46(10):3532-3533
    [39]Perlita, V.. Pearson's Handbook of crystallographic data for intermetallic phases[M].2nd edn,1991, Materials Park, OH, ASM International.
    [40]Jin, Y., Chunzhi, L., Minggao, Y. On the crystal structure of S prime phase in Al-Cu-Mg alloy[J]. Journal of Materials Science Letters,1990,9(4):421-424
    [41]Al-Khafaji, M. A., Rainforth, W. M., Rylands, L. M., et al.. in "Electron microscopy and analysis 1999", Institute of Physics Conference Series Number 161, University of Sheffield, Sheffield, UK, August 1999,279-282
    [42]Wang, S. C., Starink, M. J.. Two types of S phase precipitates in Al-Cu-Mg alloys. Acta Materialia,2007,55,933-941
    [43]Hardy, H. K.. The ageing characteristics of some ternary aluminum-copper-magnesium alloys with copper:magnesium weight ratio of 7:1 and 2.2:1 [J]. Journal of Institute Metals,1954,83(55),17-34
    [44]Vietz, J. T., Polmear, I. J.. The influence of small additions of silver on the ageing of aluminum alloys:observation on Al-Cu-Mg alloys[J]. Journal of Institute Metals,1966,94,410-419
    [45]Ringer, S. P., Hono, K., Sakurai, T., et al., Cluster hardening in an aged Al-Cu-Mg alloy [J]. Scripta Materialia,1997,36(5),517-521
    [46]Ringer, S. P., Sakurai, T., Polmear, I. J., Origins of hardening in aged Al-Cu-Mg-(Ag) alloys[J]. Acta Materials,1997,45(9),3731-3744
    [47]Reich, L., Ringer, S. P., Hono, K.. On the rapid hardening effect in Al-Cu-Mg alloys[J]. Philosophical Magazine Letters,1999,79(9),639-648
    [48]Lumley, R. N., Donnell, R. G. O., Polmear, I. J.. Enhanced fatigue resistance by underaged an Al-Cu-Mg-Ag alloy[J]. Materials Forum,2005,29:256-261
    [49]Bray, G. H., Glazov, M., Rioja, R. J.. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys[J]. International Journal of Fatigue,2001,23:S265-276
    [50]Sarioglu F., Orhaner F O.. Effect of prolonged heating at 130℃ on fatigue crack propagation of 2024 A1 alloy in three orientations [J]. Materials Science and Engineering A,1998,248:115-119
    [51]Liu Yanbin, Liu Zhiyi, Li Yuntao, et al.. Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging[J]. Materials Science and Engineering A,492(2008):333-336
    [52]Wanhill R J H, Gestel G F J A van. Thermo-mechanical treatment of aluminum alloys[J]. Aluminum,1978,54 (9):573-580.
    [53]Avramovic-Cingara G, Perovic D D, McQueen H J. An overview for thermomechanical processing of Al-Li based alloy, Part Ⅰ[J]. Aluminum,2000,76 (4):313-316.
    [54]Avramovic-Cingara G, Perovic D. D., McQueen H J. An overview for thermomechanical processing of Al-Li based alloy, Part Ⅱ[J]. Aluminum,2000,76 (4):402-406.
    [55]Singh S, Goel D B. Influence of thermomechanical ageing on tensile properties of 2014 aluminum alloy[J]. Journal of Materials Science,1990,25 3894-3900.
    [56]Kaneko J. Thermomechanical treatment of aluminum alloys [J]. Journal of the Japan Society for Heat Treatment,1981,21 (6):331-336.
    [57]Latkowski A. Properties of AlCuMg alloys after thermomechanical treatment[J]. Aluminum,1986,62(2):113-115.
    [58]Duckworth W. E.. Thermomechanical treatment of metal [J]. JOM,1966, 1:915-922
    [59]Mcevily A., Clark J. B., Bond A P. ASM Trans[J],1967,60:661-671.
    [60]N.Sen, D.R.F. West. J Inst Met.[J] 1969;97:87
    [61]赵刚,李洪晓,刘春明等.2014铝合金的形变时效处理[M].东北大学学报(自然科学版).2001.22(6).664-667
    [62]李慧中,梁霄鹏,陈明安等.冷轧变形对2519铝合金组织与力学性能的影响[J].材料热处理学报.2008.29(2).86-89
    [63]Singh S, Goel D. B.. Structural changes during thermomechanical agine of 2014 Aluminum alloy for aerospace application[J]. Bulletin of Mater. Sci.,1991, 14(1):35-41
    [64]有色金属及热处理编写组.有色金属及热处理[M].北京:国防工业出版社,1981,62
    [65]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社,2008,8-15
    [66]Hirsch, J., Lucke, K. Mechanism of Deformation and Development of Rolling Texture in Polycrystalline FCC metals[J]. Acta Metall.36,1988,2863-2927
    [67]Stout, M. G. Met. Experimental deformation texture of OFE Copper and 70:30 Brass from wire drawing[J]. Compression and Torsion Trans.20A,1989,125-131
    [68]Mao, W., Yu, Y. Reaction stress Model and Relaxation stress among the grain during tensile deformation of FCC metals[J]. Materials Science Forum,2005, Vol.495-497.995-1000
    [69]Burger, G. B., Gupta, A. K. Jeffrey, P. W., et al., Microstructural control of aluminum sheet used in automotive application[J]. Materials Characterization,1995, 35(1):23-29
    [70]Crosby, K. S., Mirshams, S. S. Development of texture and texture gradient in Al-Cu-Li(2195) thick plane[J]. Journal of Materials Science.35,2000,3189-3195
    [71]蒋显全,张秀景,张新民.热轧温度对3004H19易拉罐各向异性和织构的影响[J].铝加工.2000.23(1).6-19
    [72]刘楚明,张新明,周鸿章等.铁含量及退火对高纯铝箔再结晶织构的影响[J].金属热处理.2002,27(3),21-24
    [73]赵素玲,郑子樵.退火和冷轧变形对电容铝箔立方织构的影响[J].武汉理工大学学报.2001.23(6).31-33
    [74]郭家林,尹志民,商宝川等.2524铝合金薄板平面各向异性研究[J].航空材料学报.2009.29(1).1-6
    [75]Suresh, S. Fatigue of Materials[M]. Cambridge:Cambridge University Press, 1991
    [76]Saga J, Hayashi, M., Nishio, Y. Effect of grain size on fatigue damage in pure aluminum[J]. Journal of the Society of Materials Science,1977,26:289-295
    [77]Ludwing, W., Buffiere, J. Y., Savelli S,, et al.. Study of the interaction of a short fatigue crack with grain boundaries in a cast A1 alloy using X-ray microtomography[J]. Acta Materialia,2003,51(3):585-598
    [78]Lindigkeit, J., Terlinde, G., Gysler, A., et al.. The effect of grain size on the fatigue crack propagation behavior of age-hardened alloys in inert and corrosive environment[J]. Acta Metallurgica,1979,27(11):1717-1726
    [79]李眉娟,胡海云,刑修三.多晶体金属疲劳寿命随晶粒尺寸变化的理论研究[J],物理学报,2003,52(8):2092-2095
    [80]Carter, R. D., Lee, E. W., Starke, E. A., etal.. The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy. Metallurgical Transactions A[J],1984,15(3):555-563
    [81]Suresh, S., Vasudevan, A. K., Bretz, P. E.. Mechanism of slow fatigue crack growth in high strength aluminum alloys:role of microstructure and environment[J]. Metallurgical Transactions A,1984,15(2):369-379
    [82]肖纪美.合金能量学[M].上海:上海科技出版社,1985:15
    [83]刘兵.静电场对铝合金的作用效应与机制[D].博士学位论文,西安,西北工业大学.2002.1
    [84]Conrad, H., Sprecher, A. F. JOM[J],1990,42:28
    [85]刘志义,刘冰,邓小铁等.脉冲电流对2091Al-Li合金超塑性机理的影响[J].金属学报.2000,36(9):944-951
    [86]Pfann, W. G., Wagner, R. S. Trans. Met. Soc[J]. AIME 224,1962,1139
    [87]Verhoven, J.D.Trans. Met. Soc[J].AIME 233,1963,1156; 239,1965,694,761
    [88]Verhoven, J. D. Metall. Rev[J].1963,8,311
    [89]Getselev, Z. N. Casting in an electromagnetic field[J]. Journal of Metals,1971, 23(10),38-39
    [90]Vives, C., Ricou, R. Experimental study of continuous electromagnetic casting of aluminum alloys[J]. Metallurgical Transactions B,1985,16B(6),377-384
    [91]Meyer, J. L., Szekely, L., Elkaddah, N. Comprehensive study of the induced current, the electromagnetic force field, and the velocity field in a complex electromagnetically driven flow system[J]. Metallurgical Transactions B.1987, 18B(3),529-538
    [92]Vives, C. Electromagnetic refining of aluminum alloys by the CREM process, Part I:working principle and metallurgical results [J]. Metallurgical Transactions B, 1989,20B(8):623-629
    [93]Vives, C. Electromagnetic refining of aluminum alloys by the CREM process, Part Ⅱ:specific practical problems and their solutions[J]. Metallurgical Transactions B,1989,20B(8):631-643
    [94]Zhang, B. J., Cui, J. Z., Lu, G. M. Effects of electromagnetic field on macrosegregation of continuous casting 7075 alloy[J]. Transactions of Nonferrous Metals Society of China,2003,13(1):158-161
    [95]张勤,崔建忠,陆贵民等.电磁半连铸液穴形状随磁场强度的变化规律[J].东北大学学报(自然科学版),2002,23(6):566-568
    [96]朱庆丰,赵志浩,崔建忠等.低频磁场对水平连铸2024铝合金微观组织的影响[J].东北大学学报(自然科学版),2007,28(7):998-1001
    [97]Tewari, S. N., Shah, R., Song, H. Effect of magnetic field on the microstructure and macrosegregation in directionally solidifield Pb-Sn alloys[J]. Met. Trans. A, 1994,25A,1535
    [98]Liu, W., Liang, K. M., Zheng Y. K., et al.. Study of the diffusion of Al-Li alloys subjected to an electric field[J]. Journal of Mater. Sci.1998,33:1043-1047
    [99]Liu, W., Liang, K. M., Zheng Y. K., et al.. Effect of an electric field during solution treatment of 2091 Al-Li alloy[J]. J. of Mater. Sci. Lett.1996,15:1327-1329
    [100]Liu, W., Cui, J. Z. A study on the ageing treatment of 2091Al-Li alloy with an electric field[J]. J. of Mater. Sci. Lett.1997,16,1400-1401
    [101]刘伟,崔建忠.电场均匀化对2091Al-Li合金时效过程中第二相析出的影响[J].稀有金属材料与工程.1997,26(1),31-34
    [102]孙丽媛,刘伟.电场固溶对2091合金显微结构的影响[J].金属热处理学报.1997,18(1),64-67
    [103]刘北兴,冯海波,李仁顺.电场固溶处理对1420铝合金时效行为的影响[J].材料科学与工艺,1999,7(4):39-43
    [104]Kishkin, S. T., Klypin, A. A.. Dokl. Akad. Nauk. SSSR.1973,211:325
    [105]Conrad, H., Guo, Z., Sprecher. A. F.. Effect of an electric field on the recovery and recrystallization of Al and Cu[J]. Scripta Metall.1989,23:821-824
    [106]Jung, K., Conrad, H. J. Mater. Sci[J].2004,39:6481
    [107]Conrad, H., Jung, K. Z f Matallkde[J] 95:352
    [108]刘杨,王磊,丁扬等.电场处理对GH4199合金组织与变形行为的影响.中国有色金属学报,2006,16(10):1749-4755
    [109]刘杨,王磊,乔雪璎等.应变速率对电场处GH4199合金拉伸变形行为的影响.稀有金属材料与工程,2008,37(1):66-71
    [110]陈铮,刘兵,王永欣等.电场处理的强化晶界效应与唯象理论.稀有金属材料与工程,2001,30(5):331-334
    [111]Liu, B., Chen, Z. Wang, Y. X.. et al. The effect of an electric field on the mechanical properties and microstructure of Al-Li alloy containing Ce[J]. Materials Science and Engineering A,2001, (313):69-74
    [112]孙丽媛,刘伟.电场固溶对2091Al-Li合金显微结构的影响[J].金属热处 理学报,1997,18(1):64-67
    [113]肖伯涛,赵骧,何长树等.电场时效对2014铝合金的微观组织和力学性能的影响[J].材料与冶金学报,2006,5(2):137-140
    [114]孙东立,王美林,王秀芳等.电场时效对LY12铝合金微变形行为的影响[J].材料工程,2003,5:15-18
    [115]Lin, F. S., Starink, Jr. M. J. Effect of copper content and degree of recrystallizition on the fatigue resistance of 7xxx-type aluminum alloys[J]. Materials Science and Engineering,1980,43:65-76
    [116]郭加林,尹志民,沈凯等.使役条件下热暴露对2124-T851铝合金显微组织与性能的影响[J].中南大学学报(自然科学版),2009,40(4),921-925
    [117]杨胜.2E12铝合金服役环境下的损伤行为与耐损伤微结构的研究[D].博士学位论文,长沙,中南大学,2008
    [118]中华任命共和国国家技术监督局.GB3075-82.中华人民共和国国家标准—量与单位.北京:中国标准出版社,1983-03-01
    [119]叶华人民共和国国家技术监督局.GB/T 6398-2000.中华人民共和国国家标准—量与单位.北京:中国标准出版社中华人民共和国国家标准
    [120]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版,2007
    [121]R. N. West, Adv. Phys,1973, vol.20,263
    [122]邓文,熊良钺,王淑荷等,Fe-Al系金属间化合物中的微观缺陷和电子密度[J].金属学报.2002.38:453
    [123]Nakai M, Etoh T. Effect of the morphology of constituents and dispersoids on fracture toughness and fatigue crack propagation rate in 2024 aluminum alloys. Journal of Japan Institute of Light Metals,1995,45:677-68
    [124]Uchida H, Yoshida H. Heat treatment of aluminum alloys. Sumitomo Light Metal Technical Reports,1997,38:177
    [125]Kung C. Y., Fine M E.Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 Aluminum alloys[J]. Metallurgical Transaction A,1979,10:603-609
    [126]Hahn G. T., Rosenfield A. R. Metallurgical factors affecting fracture toughness of aluminum alloys [J]. Metall Trans A,1975,6:653-668
    [127]R.Sadeler, Y.Totik, M.Gavgali et al. Improvements of fatigue behaviour i n 2014 Al alloy by solution heat treatment and age-hardening [J], Materials and Design 25(2004)439-445
    [128]J. C. Grosskreutz, G.G.Shaw:Fracture[M], P.L.Pratt, ed., Chapman Hall, London,1969,620-629.
    [129]Morris, W. L. O. Buck, and H. L. Marcus:Fatigue crack initiation and early propagation in A1 2219-T851[J]. Metall. Trans.A,1976,vol.(7A,):1161-1165.
    [130]Morris, W. L. The effect of intermetallics composition and microstructure on fatigue crack initiation in Al 2219-T851 [J]. Metall. Trans. A,1978, vol.9A, pp. 1345-1348.
    [131]杨胜.2E12铝合金服役环境下的损伤行为与耐损伤微观结构的研究[D].博士学位论文.长沙,中南大学,2008.
    [132]Schercliff H R,Ashby M F. A Process Model for Age Hardening of Aluminium Alloys -The Model[J]. Acta Metall,1990,38(10):1789-1802.
    [133]诺维柯夫H H.金属热处理理论[M].北京:机械工业出版社,1987:279-282.
    [134]陈传尧.疲劳与断裂[M].华中科技大学出版社.武汉,2002.
    [135]FORSYTH P J E. A two stage process of fatigue crack growth[C]. Proceedings of crack propgagation symposium. Cranfield:The College of Aeronautics. 1961:76-94.
    [136]E1-Soudani S. M., Pelloux R. M. Influence of inclusion content on fatigue crack propagation in aluminum alloy [J]. Metallurgical Transactions. Vol.2 1973:519-531.
    [137]钟群鹏,赵子华.断口学[M].高等教育出版社,北京,2005.
    [138]Larid C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation[R]. In:Fatigue Crack Propagation, Special Technical Publication 415, Philadelphia:ASTM,1967:131-168
    [139]李海,郑子樵,魏修宇,等.时效析出对2E12铝合金疲劳断裂行为的影响[J].中国有色金属学报,2008,14(4):589-594
    [140]Zebett A., Pulmtree A., Microstructural effects on the small fatigue crack behaviour of an Aluminum alloy plate[J]. Fatigue & Fracture of Engineering Materials & Structures,1995,18(7-8):801-809
    [141]A. Charai., T. Walther, C. Alfonso, A. M. Zahra, C. Y. Zahra. Coexistence of clusters, GPB zones, S"-, S'- and S-phase in an Al-0.9%Cu-1.4%Mg alloy Acta. Mater.48 (2000):2751-2764.
    [142]Bagarystsky Y. A. Dokl Akad SSSR 1952; 87:397. and 559
    [143]Ringer S. P., Hono K., Polmear I. J. Sakurai T. Acta Mater.1996; 44:1883
    [144]Ringer S. P., Caraher S. K., Polmear I. J. Scripta Mater.1998; 39:1559
    [145]Wang S. C., Starink M. J., Gao N. Scripta Mater 2006;54:287
    [146]Zhang C. B., Sun W., Ye H. Q., Phil. Mag. Lett.1989;59:265
    [147]Radmilovic V., Kilaas R., Dahmen U., Shiflet G. J. Acta Mater 1999; 47:3987
    [148]Majimel J., Molenat G., Danoix F., et al.. Mater. Sci. Forum 2002; 239-402:1025
    [149]Kovarik L., Miller M. K., Court S. A., Mills M. J., Acta Mater.2006,54:1731
    [150]林启权,张辉.形变热处理对2519铝合金性能的影响[J].矿冶工程,2004,24(1):92-99
    [151]田荣璋,王祝堂.铝合金及其加工手册[M].中南大学出版社,2000
    [152]余永宁.金属学原理[M].冶金工业出版社,2000
    [153]冯端.金属物理学Ⅲ—金属力学性质.北京:科学出版社,1999
    [154]Ringer S.P., Hono K., Polmear I. J.. Applied Surface Science[J],1996 94/95: 253-260.
    [155]Yuan S., Jeh J., Tsau C. Mater Trans JIM[J],1999,40:233-241.
    [156]Jena A. K., Gupta A. K., Chaturvedi, M. C.. Acta metall[J],1989,37,885.
    [157]Zahra, A. M., Zahra, C. Y., Lacom, W. et al Proc. Int. Conf. on Light Metals[C]. Amsterdam,20-22 June 1990, ed. T. Khan and G. E.enberg,1990, p.633.
    [158]Ringer, S., Hono, K., Sakurai, T. et al. Scripta mater.[J],1997,36,517.
    [159]Ringer, S., Sakurai, T., Polmear, I. J., Acta mater.[J],1997,45,3731.
    [160]Perlitz, H., Westgren, A., Archiv Kemi Min. Geol. B[J],1943,16,13.
    [161]Cuisiat, F., Duval, P., Graf, R., I., Scripta metall.,[J] 1984,18,1051.
    [162]Wilson R.N. P.G. Partridge, Acta metall.[J],1965,13, p.1321.
    [163]Radmilovic Thomas, G., Shiflet G.J.et al, Scripta Metallurgica[J], Vol.23, Issue 7, July 1989, Pages 1141-1146
    [164]Wilson R. N., Forsyth P. J. E.. J Inst Metals.[J],1966,94:8-13
    [165]Silcock J M., J Inst Metals. [J],1960-61:89,203-210
    [166]费豪文.《物理冶金基础》.卢光熙等译[M].上海:上海科技出版社,1980:243
    [167]余永宁,毛卫民.材料的织构[M].北京:冶金工业出版社.2001
    [168]MaoW. Modeling of rolling texture in aluminum [J].Mat. Sci.& Eng., A257, 1998,171-177
    [169]Schijve J.The effect of Pre-strain on fatigue crack growth and crack closure. Engineering Fracture Mechanics,1976,8:575-581
    [170]AlCuMg Alloy with high damage tolerance suitable for use as structural members in aircrafts,EP pattern 2003/008215
    [171]Bilby, B. A., Cardew, G. E., Howard, I. C. Stress intensity factors at the tip of kinked and forked cracks[J]. In Fracture 1977 (ed. D. M. R. Taplin), vol.3, pp. 197-200. New York:Pergamon Press.
    [172]Cotterell, B., Rice, J. R., Slightly curved or kinked cracks[J]. International Journal of Fracture.1980 16:155-169
    [173]Suresh, S., Shih, C. F. Plastic near-tip fields for branched cracks[J]. International Journal of Fracture.1986.30.237-259
    [174]胡赓祥,蔡殉材料科学基础[M]上海交通大学出版社,2000,21
    [175]Kim, W. H., Larid, C. Crack nucleation and stage Ⅰ propagation in high stran fatigue-Ⅱ[J]. Acta Metallurgica.1987.26.789-799
    [176]Wood, W. A. Formation of fatigue cracks[J]. Philosophical Magazine 3.692.9.
    [177]李树堂.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990:161-168
    [178]McClintock, F. A. On the plasticity of the growth of fatigue cracks[J]. Fracture of Solids,1963, vol.20,65-102
    [179]P. Juirerm, I. Altenberger. Fatigue behavior of deep rolled Al-Mg-Si-Cu alloy at elevated temperature [J]. Scripta Materialia 55 (2006) 943-946
    [180]J. Liu, X. J. Shao, Y. S. Liu, Z. F. Yue. Effect of cold expansion on fatigue performance of open holes[J]. Materials Science and Engineering A. doi: 10.1016/j.msea.2007.05.034
    [181]J. Schijve. Fatigue of aircraft materials and structures[J]. International Journal of Fatigue.16(1994)21-32
    [182]Asaro, R. J., Hermann, L., Baik, J. M. (1981). Transitions in fatigue crack closure in 2048 aluminum[J]. Metallurgical Transactions 12A,1133-1135
    [183]Carter, R. D., Lee, E. W., Starke, E. A., Beevers, C. J. (1984). Effect of microstructure and environment on fatigue crack closure in 7475 aluminum alloy. Metallurgical Transactions 15A[J],555-563
    [184]Suresh, S., Vasudevan, A. K. (1984). Application of fatigue threshold concepts to variable amplitude fatigue crack propagation. In Fatigue Crack Growth Threshold Concepts.361-378. Warrendale:The Metallurgical Society of the American Institute of Mining, Mineral and Petroleum Engineers.
    [185]LIU W and CUI J Z. Effect of the homogenization treatment in an electric field on T1 precipitation in 2091 Al-Li alloy[J], Scripta Metallutgica et Mataialia,1995, 33(4):623-626
    [186]LIU W, CUI J Z. A study on the ageing treatment of 2091 Al-Li alloy with an electric field[J], J. of Mater. Sci. Lett.1997,16:1410-1411
    [187]KOCH, C. C., Experimental evidence for magnetic of electric field effects on phase transformations[J], Mater. Sci. Eng.2000, A287:206-212
    [188]BARANOV Y. V., Effect of electrostatic fields on mechanical characteristics and structure of metals and alloys[J], Mater. Sci. and Eng.2000, A287:288-300
    [189]李智燕,电场时效对2E12铝合金的组织和性能的影响[D].硕士学位论文,长沙.中南大学
    [190]P. Ratchev, B. Verlinden, P.De Smet.. Scripta Materialia[J],1998, 38(8):1196-1201
    [191]周明哲,易丹青,贾延琳等预变形对2E12铝合金时效析出过程的影响[J],稀有金属材料与工程,已接收
    [192]Luo A. Acta Metal [J],1993,41 (3):769
    [193]Hu, R. Z., Yang, Z. Q., Ling, Y J. Thermochim. Acta,1988,123:135
    [194]Zhang Tonglai. Hu Rongzu, Li Fuping Thermochim. Acta,1994,244:177-184
    [195]刘兵.静电场对铝合金的作用效应与机制[D].博士学位论文,西安,西北工业大学.
    [196]MITTEMEIJER E. J., Analysis of the kinetics of phase transformations [J]. Journal of Materials Science,1992,27(15):3977-3987
    [197]胡荣祖,史启桢.热分析动力学[M],科学出版社,北京,2001,57-58.
    [198]ZURBO H. S., SEYEDREZAI H., A model for the growth of solute clusters based on vacancy trapping[J], Scripta Materilia 61 (2009) 141-144
    [199]Y. X. Wang, Z. Chen, B. Liu, et al., Rare Met. Mater. Eng.34 (2005):46
    [200]C. C. Koch, Mater. Sci. Eng. A 287 (2000):213
    [201]Z. Chen, B. Liu, Y. X. Wang, et al., Rare Met. Mater. Eng.30 (2001):331
    [202]H. Conrad, S. Ramachandran, K. Jung, J. Narayan. J. Mater. Sci. (2006) 41:7555
    [203]Y. Nagai, M. Murayama, Z. Tang, et al., Acta Mater.49 (2001) 913
    [204]S. Esmaeili et al., Phil. Mag.87 (2007) 3797.
    [205]文先哲.晶体缺陷与金属强度[M].中南工业大学出版社.1996.157
    [206]郑子樵.材料科学基础[M].中南大学出版社.2005.477
    [207]Tanaka, K., Nakai, Y., Yamashita, M. Fatigue growth threshold of small cracks[J]. International Journal of Fracture.1981.17.519-533
    [208]姚磊江.疲劳损伤过程的能量耗散分析及基于能量耗散的疲劳损伤模型 [D].博士学位论文.西安.西北工业大学,2000
    [209]Zuo, J. Z., Kermanidis A1 Th, Pantelakis Sp G. Strain energy density prediction of fatigue crack growth form hole of aging aircraft structures [J]. Thereotical and Applied Mechanics.2002.38,37-51
    [210]Charles J., Crane F. A. A., Furness J. A. G. Selection and use of engineering materials:Third Edition, Butterworth Heinemann, Oxford,1997
    [211]吕宝桐,郑修麟.低温下LY12CZ铝合金的疲劳裂纹扩展.宇航学报,1993(1):76-80
    [212]李智燕, 易丹青, 周明哲电场时效对2E12铝合金力学性能和微观组织的影响中国有色金属学报2009 Vol.9 No.8
    [213]Walsh J A.Jata K V,Starke Jr E A. The influence of Mn dispersoid content and stress state on ductile fracture of 2124 type A1 alloys,Acta Metal,1989,37(11): 2861-2871
    [214]P. Ratchev, B. Verlinden, P. DE Smet, P. Van Houtte. Precipitation hardening of an Al-4.2wt.%Mg-0.6wt.%Cu alloy Acta Metallurgica[J] 1998 Vol.46 No.10 3522-3533
    [215]LIU Yanbin, LIU Zhiyi, LI Yuntao, XIA Qinkun, ZHOU Jie, Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging, Materials Science and Engneering A 492(2008) 333-336
    [216]Hornbogen, Zum Gahr Distribution of plastic strain in alloys containing small particles Metallography. Vol.8, no.3, pp.181-202. June 1975
    [217]刘岗.2E12铝合金的热处理与微观组织及疲劳性能研究[D].长沙:中南大学,2007
    [218]Danqing Y., Mingzhe Z., Huiqun L., et al.. Effect of temperature and corrosive environment of cyclic fatigue and final fracture behavior of 2524 aluminum alloy[J]. International Journal of the Scociety of Materials Engineering for Resources.2010, 17(1),58-63
    [219]Wlliam J. Baxter, Donald R. Lesure and Chol K. Syn, Thermal activation of fatigue Damage. Metallurgical and Materials Transactions A. Vol.31 A 2000:63-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700