双频磁场作用下铝合金半连续铸造工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是教育部青年教师基金项目(双频组合磁场作用下铝合金半连续铸造过程中熔体凝固行为研究)的部分内容,其目的是开发一种双频组合磁场铝合金DC铸造新工艺,以达到同时改善铸锭表面质量和内部组织的目的。
     本文的研究内容包括:设计制作了双频磁场实验设备,通过改变中低频线圈的放置位置以及施加电磁屏蔽,设计出了三种不同的实验设备。考察了不同实验方案条件下,低频磁场、中频磁场以及双频磁场对铸锭质量的影响。分析了铝合金半连续电磁铸造中低频磁场、中频磁场和双频组合磁场对改善铸锭表面质量和铸态组织的作用原理。
     通过实验分析和讨论得出以下结论:
     (1)两个双频线圈上下放置时,两个线圈形成的磁场不能同时集中作用于结晶器内石墨环附近的铝合金的熔体,放置在下部的低频线圈离结晶器较远,致使单独施加低频磁场对铸态组织的影响不明显;施加中频磁场可以改变DC铸造过程中熔池液面形态,增大熔池中液面的凸起高度,提高铸锭表面质量,减小铸锭皮下偏析层厚度。
     (2)两个线圈里外放置时,两个线圈形成的磁场可以同时集中作用于结晶器内石墨环附近的铝合金的熔体;单独施加低频磁场可以很好的细化铸态组织,单独施加中频磁场可以细化铸锭边部组织,但铸锭中部组织粗大;中、低频磁场同时施加时,由于中频磁场的热效应削弱了低频磁场对铝合金铸锭组织的细化效果,所以双频磁场对铸锭组织的改善作用较低频磁场弱。
     (3)两个线圈里外放置并在中频线圈内施加电磁屏蔽时,单独施加低频磁场可以很好的细化铸态组织;同时施加中低频磁场时,铸锭的铸态组织与单独施加低频磁场的铸态组织相差不大,电磁屏蔽可以很好的消除中频磁场的热效应对铸锭铸态组织的不利影响。
     综上所述,在常规DC铸造过程中施加双频磁场时,通过合理地布置双频线圈位置,适当地施加磁场屏蔽,可以显著细化铸态组织,提高铸锭表面质量,达到提高铝合金铸锭质量的目的。
This subject is a part work of "Research on solidification behaviors during semi-continuous casting of aluminum alloy under dual-frequency combined electromagnetic fields", which is supported by Young Teachers Fund Project of the Ministry of Education. The main purpose of this work is to develop a new casting process under dual-frequency electromagnetic fields, and then to obtain aluminum alloy ingots with high metallurgical quality.
     The content of this study includes the design of three kinds of dual-frequency electromagnetic combined fields DC casting sets by changing the location of two inductors and introducing electromagnetic shielding. The effects of the low- frequency electromagnetic field, intermediate-frequency electromagnetic field, and dual-frequency electromagnetic fields on the ingot's quality were investigated under the three kinds of sets. The principles of the electromagnetic fields improving the as-casting microstructure and surface quality was analyzed.
     The main results are as followings:
     (1) When the low frequency inductor was placed under the intermediate frequency inductor, the electromagnetic fields formed by the two inductors can't force on the melt near the graphite ring in the DC casting process simultaneously because of the long distance from the low-frequency inductor to the mould, so that the effect of low-frequency electromagnetic field on the as-cast structure was not obvious. The intermediate-frequency electromagnetic field can change the surface shape of melt in the DC casting process, so the surface quality of the ingots was improved and the segregation layer of the ingots reduced with the application of intermediate-frequency electromagnetic field.
     (2) When the low frequency inductor was placed in inner of the intermediate frequency inductor, the electromagnetic fields formed by the two inductors can force on the melt near the graphite ring in the DC casting process simultaneously. As only the low-frequency electromagnetic field was applied in the DC casting process, the as-casting microstructure of the whole ingot was fined obviously. As only the intermediate-frequency electromagnetic field was applied in the DC casting process, the as-casting microstructure in the edge of the ingot was fined obviously, but the microstructure in center was coarse. As the low-frequency electromagnetic field and intermediate-frequency electromagnetic field were applied simultaneously in the DC casting process, the refining effect of the low-frequency electromagnetic field on cast microstructure was weakened by the thermal effect, so the effect of dual-frequency electromagnetic fields on improving the as-casting microstructure was not better than that of low-frequency electromagnetic field.
     (3) When the low frequency inductor was placed in the inner of the intermediate frequency inductor, and an electromagnetic shielding was used. As only the low-frequency electromagnetic field applied in the DC casting process, the as-casting microstructure of the whole ingot was fined obviously. As the low-frequency electromagnetic field and intermediate-frequency electromagnetic field were applied simultaneously in the DC casting process, the as-casting microstructure was as fine as that of only applying low-frequency electromagnetic field. So the electromagnetic shielding can eliminate the negative effect of the intermediate-frequency electromagnetic field on the as-casting microstructure effectively.
     In summary by reasonable placement of the two inductors and suitable electromagnetic shielding in the DC casting process the dual-frequency electromagnetic fields can improve the as-casting microstructure and the ingot surface quality effectively.
引文
1. Haug E, Mo A,Thevik H J.Macrosegregation near a cast surface caused by exudation andsolidification shrinkage [J]. International Journal of Heat and Mass Transfer,1995,38(9): 1553-1563.
    2. Thevik H J, Mo A. The influence of micro-scale solute diffusion and dendrite coarsening upon surface macrosegregation [J], International Journal of Heat and Mass Transfer,1997, 40(9):2055-2065.
    3. Kerr R C, Woods A W, Worster M G, Huppert H E. Disequilibrium and macrosegregation during solidification of a binary melt [J], Nature,1989,340(6232):357-362.
    4. Coriell S R. Mcfadder G B, Mitchell W F, Murray B T, Andrews J B, Arikawa Y.Effect of flow due to density change on eutectic growth [J], Journal of Crystal Growth,2001. 224(1-2):145-154.
    5. Kessler D. Sharp interface limits of a thermodynamically consistent solutal phase field model [J], Journal of Crystal Growth,2001,224(1-2):175-186.
    6. Mortensen A. On the rate of dendrite arm coarsening [J], Metallurgical Transactions,1991, 22A(2):569-574.
    7. Yang W, Chen W, Chang K, Mannan S, Debarbadillo J. Freckle criteria for the upward directional solidification of alloys [J], Metallurgical and Materials Transactions,2001,32A(2): 397-406.
    8. Wang C Y, Beckermann C. A multiphase solute diffusion model for dendritic alloy solidification [J], Metallurgical Transactions,1993,24A(12):2787-2802.
    9. Glicksman M E, Smith R N, Marsh S P, Krklinski R. Mushy zone modeling with microstructural coarsening kinetics [J], Metallurgical Transactions,1992,23A(2):659-667.
    10. Wang C Y. Beckermann C. Equiaxed dendritic solidification with convection:part Ⅰ Multiscale multiphase modeling [J]. Metallurgical and Materials Transactions.1996,27A(9): 2754-2764.
    11. D G Eskin. J Zuidema Jr, V I. Savran, L Katgerman. Structure formation and macrosegregation under different process conditions during DC casting [J], Materials Science and Engineering,2004,384(1-2):232-244.
    12. Peyman Ashtari, Kevin Gatenby. Formation of inverse segregation on the surface of belt-cast Al-Fe-Si and Al-Fe-Si-Mn alloys [J], Scripta Materialia.2007,57(7):627-630.
    13. Ridder S P, Kou S, Mehrabian R. Effect of fluid flow on macrosegregation in axi-symmetric ingots [J], Metallurgical and Materials Transactions.1987,12B(3):435-447.
    14.单长智,王立娟,王德满.实心圆锭的应力分析及防止裂纹的措施[J],轻合金加工技术,1997,25(1):1-4.
    15.王恒林,郑贤淑,姚山,金俊泽.热裂预测的等效应变判据[J],大连理工大学学报,1998,38(3):194-197.
    16.杨秉俭,刘伟涛,苏俊义.薄板坯连铸结晶器中铸坯凝固壳应力发展的有限元分析[J],应用力学学报,1994,11(2):55-62.
    17.郑贤淑,金俊泽,李治.厚大铸件热裂纹预测方法研究[J],大连理工大学学报,2000,40(3):183-186.
    18. Farrel D E. Effect of flow on morphological stability during directional solidification [J], Physical Review B,1987,36(7):4025-4027.
    19. Uhlmann D R, Seward T P, Chalmers B. The effect of magnetic fields on the structure of metal alloy castings [J], Trans Metall Soc AIME,1966,236(4):527-535.
    20. Getselev Z V. Casting in an electromagnetic field [J], Journal of Metals,1971,23(10): 38-44.
    21. Vives C. Electromagnetic refining of aluminum alloys by the CERM process:part Ⅰ Working principle and metallurgical results [J], Metallurgical Transactions,1989,20B(1): 623-629.
    22. Vives C. Electromagnetic refining of aluminum alloys by the CREM process:part Ⅱ. Specific practical problems and their solutions [J], Metallurgical Transactions,1989,20B(1): 631-643.
    23. Hjellming L N, Tolley P A, Walker J S. Melt motion in a Czochralski crystal puller with a non-uniform axisymmetric magnetic field:isothermal motion [J], Journal of Fluid Mechanics, 1993.249(1):1-34.
    24. Dong J. Cui J Z. Effect of Low-Frequency Electromagnetic Casting on the Castability. Microstructure and Tensile Properties of DC Cast Al-Zn-Mg-Cu Alloy [J], Metallurgical and Materials Transactions,2004,35(8):2487-2494.
    25. Zhao Z H, Cui J Z. Effect of low frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy [J], Journal of Alloys and Compounds, 2005,396(1-2):164-168.
    26.张北江,崔建忠,路贵民,张勤,班春燕.电磁场频率对电磁铸造7075铝合金微观组织的影响[J],金属学报,2002,38(2):215-218.
    27. XiangjieWang, Haitao Zhang, Yubo Zuo, Zhihao Zhao, Qingfeng Zhu, Jianzhong Cui. Experimental investigation of heat transport and solidification during low frequency electromagnetic hot-top casting of 6063 aluminum alloy [J], Materials Science and Engineering,2008,497(1-2):416-420.
    28. Zhihao Zhao, Jianzhong Cui, Jie Dong, Zhefeng Wang, Beijiang Zhang. Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy [J], Journal of Alloys and Compounds,2005,396(1-2):164-168.
    29.张北江,崔建忠,路贵民,张勤.外加电磁场对半连续铸造7075铝合金宏观偏析规律的影响[J],东北大学学报,2002,23(10):968-971.
    30.左玉波,赵志浩,朱庆丰,崔建忠.低频电磁铸造对7050铝合金羽毛组织缺陷的影响[J],铸造技术,2007,28(5):649-652.
    31. D Perrier, Y Fautrelle, J Etay, R Piccinato, R Boen. Experimental study of the instabilities generated by a two-frequency magnetic field at the free surface of a gallium pool [C], Fourth International Conference on "MagnetoHydroDynamic at dawn of Third Millennium", France, 2000,18(22):149-154.
    32. Joonpyo Park, Gyu Chang Lee, Myounggyun Kim. Application of Electromagnetic Force to Melting and Csting of Aluminum and Magnesium Alloys [C], The 5th International Symposium on Electromagnetic Processing of Materials, Sendai, Japan.2006:391-394.
    33. Ryu Hirayama, Keisuke Fujisaki. Dual In-Mold Electromagnetic Stirring in Continuous Casting [J], IEEE Transactions on Magnetics,2004,40(4):2095-2097.
    34. Ryu Hirayama, Keisuke Fujisaki. Combined System of AC and DC Electromagnetic Field for Stabilized Flow in Continuous Casting [J], IEEE Transactions on Magnetics,2005,41(10): 4042-4044.
    35.张志峰,李廷举,温斌,金俊泽.复合电磁场对连铸结晶器弯月面金属液运动行为及铸坯质量的影响[J],钢铁研究学报,2000,第12卷增刊:36-40.
    36.张志峰,李廷举,金俊泽.复合电磁场作用下连铸金属液弯月面运动规律的热模拟研究[J],金属学报,2001(9),37(9):975-979.
    37.钱忠东,李本文,李东辉.电磁连续复合式结晶器内钢液流场的数值模拟[J],金属学报,2001,37(11):1223-1227.
    38. Beitelman L. Effect ofmold EMS design on billet casting productivity and product quality [J], Canadian Metallurgical Quarterly,1999,38 (5):301-307.
    39. Shuangming Li, Jinshan Li, Qitang Hao, Hongchao Kou, Jianguo Li, Hengzhi Fu. Research on the dual-frequency electromagnetic shaping of liquid metal [J], Journal of Materials Processing Technology,2003,137:204-207.
    40. Shuangming Li, Lin Liu, Jinshan Li, Qitang Hao, Hengzhi Fu. Dual-frequency electromagnetic confinement of liquid aluminum [J], Journal of Materials Processing Technology,2005,166(3):449-454.
    41. H Z Fu, J Shen, L Liu, Q T Hao, S M Li, J S Li. Electromagnetic shaping and solidification control of Ni-base superalloys under vacuum [J], Journal of Materials Processing Technology,2004,148(1):25-29.
    42. Changjiang Song, Gaofei Liang. Zhenming Xu, Jun Shen, Jianguo Li. Shaping Stability and Temperature Field in Dual Frequency Electromagnetic Confinement and Shaping, J [J], Iron Steel Res. Int,2005,12(3):14-17.
    43. Changjiang Song, Gaofei Liang, Zhenming Xu, Jun Shen, Jianguo Li. Study on process of dual-frequency electromagnetic confinement and shaping for stainless steel [J], Journal of Materials Processing Technology,2006,180(1-3):179-184.
    44. Hai Hao, Xingguo Zhang, Shan Yao, Junze Jin. Improvement of Csating Speed and Billet Quality of Direct Chill Cast Aluminum Wrought Alloy with Combination of Slit Mold and Electromagnetic Coil [J], Materials Transactions,2008,48(8):2194-2201.
    45 Havard J T, Asbjom M, Torgeir R. A mathematical model for surface segregation in aluminum direct chill casting [J], Metallurgical and Materials Transaction,1999,30(1): 135-142.
    46 Nofal A A. Surface Defect formation in the DC-Cast Aluminum Products. Advances in Continuous Casting Research and Technology[M], Gairo:TahaMT., El-MahallawyN. A, Cairo,1992:205-218.
    47.刘福杰.铝合金DC铸锭表面冷隔浅析[J],铝加工,1996,19(6):4-8.
    48.董杰.超高强铝合金低频电磁半连续铸造工艺及理论研究[D],东北大学博士论文,2004(2).
    49. Coriell S R, Mcfadden G B, Billia B, Thi H N, Dabo Y. Electrical pulsing during directional solidification:analysis of transients by Laplace transform [J], Journal of Crystal Growth,2000,216(1-4):495-500.
    50. Bessaih R, Kadja M, Marty P. Effect of wall electrical conductivity and magnetic field orientation on liquid metal flow in a geometry similar to the horizontal Bridgman configuration for crystal growth [J], International Journal of Heat and Mass Transfer,1999, 42(23):4345-4362.
    51. Shercliff J A. Thermoelectric magnetohydrodynamics [J], Journal of Fluid Mechanics, 1979,91(2):231-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700