深井阳极阴极保护技术在城市燃气管道防腐中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市燃气埋地钢质管道的防腐蚀问题是燃气管网安全运行的关键。深井阳极阴极保护技术相比较传统浅埋阳极技术,由于深井阳极远地点是沿其深度方向获得的,因此在低电阻率的深地层中可以获得沿金属构筑物更均匀的电流分布。同时,深井阳极地床还具有对其他金属构筑物干扰小,占地少等特点。近些年在油气长输管线、城市燃气管网、大型区域性设施阴极保护中得到了广泛的应用。
     由于各种原因,目前深井阳极阴极保护技术在实际工程应用中还存在很多问题。本文在查阅国内外相关文献、规范以及结合绵阳港华次高压管线深井阳极阴极保护工程的基础上,重点对深井阳极阴极保护设计环节进行了研究,并有针对性的提出相关设计优化方案。
     深井阳极阴极保护系统设计的科学、合理是保证系统正常运行的基础。本文结合绵阳港华阴极保护工程实例,对同一工程多个深井阳极阴极保护站的设计方案从设计参数的选择、阴极保护方式的确定及阴极保护站数量和位置的确定三个方面进行了分析,并提出了相应的优化方案。对于深井阳极地床的设计,针对目前深井阳极深井阳极地床设计中沿深度方向土壤电阻率的测试中存在的问题,引入巴恩斯分析法进行数据处理并在实践中加以验证。对于电源设备的选型,针对目前规范中部分繁琐的公式结合理论推导重新予以优化,做到公式简便、实用,满足工程要求。最后对深井阳极阴极保护系统的设计进行了总结,指出设计环节的中的关键点,制定了一套切实、可行的设计优化流程,相应编写的深井阳极阴极保护设计计算软件,可供设计人员在设计中参考使用。
     此外,本文对深井阳极阴极保护基本理论、实施前期的资料收集和现场调查进行了研究。最后并对深井阳极阴极保护技术进行经济性分析。通过以上的研究,得出相关结论供设计、施工人员参考。
The corrosion problem of city gas buried steel pipeline is key of the safe operation of gas network. Deep well anode cathodic protection technology compared to conventional shallow anode technology , due to the deep well anode bipropellant obtained along the depth, so in low resistivity of deep stratum along the metal structures can obtain more uniform current distribution. Meanwhile,deep well anode bed possesses distinguishing features of little interference to other metal structures and just requires minimum space. In recent years deep well anode cathodic protection technology has been widely used in long-distance oil and gas pipelines, city gas pipeline network and large regional cathodic protection facilities.
     For various reasons, there are many problems come to being in deep well anode cathodic protection technology practical application. Based on consulting patent and other literature and combined with cathodic protection project of the hypo-high pressure gas pipeline network in Mianyang, the emphasis is mainly placed on the design of deep well anode cathodic protection in this paper, and relevant design optimization scheme has been put forward.
     Scientific and reasonable design of deep well anode cathodic protection system is the foundation to ensure system normal operation. Combining with cathodic protection examples in Mianyang, the same engineering with multiple deep-well anodes design of cathodic protection three aspects of design parameter selection, determination of cathodic protection mode and the number and location of the cathodic protection station have been analyzed , and the corresponding optimization scheme has been put forward. For the design of deep well anode ground bed, and aiming at the problem of the deep well anode ground bed deep-well anodes designed along the depth direction of soil resistivity problems in the test, Barnes analysis has been introducted and used in engineering practice.For power equipment selection, the present standard of trival formula has been optimized again with theoretical derivation.Make formula simple, practical and meet the engineering requirements. Finally, anode cathodic protection system design is summarized, the key point of the design chain is pointed out, and a set of practical design optimization process is established. The software of deep well anode cathodic protection has been made for designers in the design reference.
     In addition, this paper makes studies of the basic theory of cathodic protection deep well anode,early implementation of data collection and field investigation. Finally, deep well anode cathodic protection technology has been compared economic analysis. Through the above study, the article draws relevant conclusions for the designers and builders for reference.
引文
[1]吴荫顺,曹备.阴极保护和阳极保护—原理、技术及工程应用[M].中国石化出版社, 2007.
    [2]茹慧灵.油气管道保护技术[M].石油工业出版社, 2008.
    [3] A. W.皮博迪.管线腐蚀控制(原著第二版)[M].化学工业出版社, 2004.
    [4] W. V.贝克曼, W.施文克, W.普林兹.阴极保护手册—电化学保护的理论和实践(原著第三版)[M].化学工业出版社, 2005.
    [5]王芷芳,段蔚,李夏喜.有关深井阳极的几个问题[J].石油与天然气化工, 2009, 38(3): 480~482.
    [6]李晓星.阴极保护原理与新技术[J].合肥学院学报(自然科学版), 2009, 16(增刊): 50~54.
    [7] Deep Well Anode System Design. Technical Bulletin[J], DW-01. 2008.
    [8] Ted Huck. Deep Continuous Wire Anode System Proves Enduring[J]. Pipeline & Gas Journal. 2007.
    [9] NACE Standard RP0572-2001. Recommended Practice Design, Installation, Operation, and Maintenance of Impressed Current Deep Groundbeds[S]. NACE International. Houston TX. USA, 2001.
    [10]王芷芳,吕承杰.深井阳极地床的应用[J].石油化工腐蚀与防护, 2004, 21(6): 43~45.
    [11]武烈,陈仁兴.新型深井阳极地床在阴极保护工程中的应用[J].材料开发与应用, 1999, 14(4): 39~41.
    [12]宋金会,王军,邹向东.外加电源深井阳极阴极保护技术在郑州市地下燃气管网中的应用[J].全面腐蚀控制, 2005, 19(1): 14~17.
    [13]冯宝鹤,徐沪康,牛跃华.采用外加电流技术对旧管网进行阴极保护改造[J].腐蚀与防护, 2002, 4: 33~37.
    [14]孟繁强,王宝林,韩砚平等.深井阳极技术在城市大口径供水旧管线阴极保护中的应用[J].腐蚀与防护, 2003, 24(12): 531~534.
    [15]武烈,董功俊,朱玉璧等.平圩发电厂厂区深井阳极阴极保护系统检测评估与技术改造方案设计[J].腐蚀与防护, 2003, 28(6): 303~306.
    [16]孙建斌,陈学江,钱建华等.大型钢质储罐群区域性阴极保护技术[M].中国石化出版社, 2009.
    [17] CP2—阴极保护技术员课程手册[M].美国腐蚀工程协会, 2006.
    [18] Stress Corrosion Causes Collapse of USA Bridge. Corrosion Prevention & Control[J], 1971, 18(4): 5.
    [19] R. Brousseau, B. Arsenault, S. Dallaire, D. Rogers, T. Mumby, and D. Dong. SprayedTitanium Coatings for the Cathodic Protection of Reinforced Concrete. ASM International[J]. 1997, 5(7): 193-196.
    [20] Raghavan Subasri, Tadashi Shinohara. Photoelectrochemical characterization of coatings derived from commercial sol solution for cathodic protection applications. Research on Chemical Intermediates[J], 2005, 31(4): 275-283.
    [21] SY/T 0096-2000.强制电流深阳极地床技术规范[S]. 2000.
    [22] Isabel C. P. Margarit, Oscar R. Mattos, Jose Roberto R. M. Ferreira. About coatings and cathodic protection: Electrochemical features of coatings used on pipelines. Journal of Coatings Technology[J]. 2001, 73(914): 61-65.
    [23] Y. S. Kim, G. J. Jeong, H. J. Sohn. Mathematical modeling on the corrosion of unprotected structure due to stray current resulting from cathodic protection system. Metals and Materials International [J], 1999, 5(1): 93-99.
    [24] D. J. Tighe-ford, P. Khambhaita, S. D. H. Taylor, A. Rayner. Dynamic characteristics of ship impressed current cathodic protection systems. Journal of Applied Electrochemistry[J], 2001, 31: 105-133.
    [25]胡学文,吴丽蓉,许崇武等.外加电流阴极保护用辅助阳极的研究现状及发展趋势[J].腐蚀与防护, 2000, 21(12): 546~549.
    [26] Groundbed Design with HSCI Anodes [R]. Anotec Industries LTD. 2005.
    [27]张延丰.金属氧化物阳极材料在深井阳极地床中的应用[J].石油工程建设, 2006, 32(6): 54~56.
    [28]徐刚,杨浩,刘素平.新型深井阳极应用技术.腐蚀与防护, 2007, 28(2): 90~92.
    [29]张平,龚树鸣,李浩.深井阳极地床在工程上的应用[J].天然气与石油, 2005, 23(4): 24~26.
    [30]林长植.深井阳极外加电流阴极保护技术在城市煤气管网中的作用[C]. 99全国第3届埋地管线防腐蚀工程技术交流会论文集,昆明: 1999.
    [31]司永宏,牛卫飞,王世来.交流电流衰减法(PCM)在埋地管道防腐层检测中的应用[J].化学工程与装备, 2008, 10(10): 99~101.
    [32]胡士信,廖宇平,王冰怀.管道防腐层设计手册[M].化学工业出版社, 2007.
    [33] SY/T 0087. 1-2006.钢制管道及储罐腐蚀评价标准埋地钢质管道外腐蚀直接评价[S]. 2006.
    [34] SY/T 0017-2006.埋地钢质管道直流排流保护技术标准[S]. 2006.
    [35]罗华飞. MATLAB GUI设计学习手记[M].北京航空航天大学出版社, 2009.
    [36]陈世一,吴先策,江国业.管道强制电流阴极保护电流和电位计算的数值方法[J].石油化工高等学校学报, 2008, 21(3): 75~78.
    [37] SY/T 0036-2000.埋地钢质管道强制电流阴极保护设计规范[S]. 2000.
    [38] DIN 30676-1985.外表面阴极保护的设计和应用[S]. 1985.
    [39] Cathodic Protection And Other Corrosion Control Considerations For Natural Gas Spur Line[J]. Coffman Cathodic Protection Report. 2006.
    [40] ISO 15589-1 2003. Petroleum and natural gas industries-Cathodic protection of pipeline transportation systems-Part 1: On-land pipelines [S]. 2003.
    [41]杨永.埋地钢钢质管道阴极保护设计的保护电流密度选择[J].地下管线管理, 2007, 21(4): 18~21.
    [42] Holtsbaum W B. Application and Misapplication of 100-mV Criterion for Cathodic Protection[J]. Materials Performance, 2003, 42(1): 30.
    [43] Ashworth V. Cathodic Protection Theory and Practice[M]. 1986.
    [44]石仁委,龙媛媛.油气管道防腐蚀工程[M].中国石化出版社, 2008.
    [45]解红军,杜艳霞,张连来.深井阳极阴极保护的应用及相关技术.材料保护[M]. 2009, 42(5): 43~46.
    [46] W. Brian Holtsbaum P. Eng. Performance of Deep Groundbeds in Western Canada[J]. NACE Northern Area Western Region Conference-Anchorage, AK, 2001.
    [47]张金光.供水管线强制电流深井式阳极阴极保护[J].石油化工与腐蚀防护, 2006, 23(6): 38~40.
    [48]黄金钊,韩斌,陈学政等.深井阳极地床在管道追加阴极保护工程中的应用[J].腐蚀与防护, 2002, 6: 37~39.
    [49] W. V.贝克曼.阴极保护简明手册[M].石油工业出版社, 1992.
    [50] GB/T 21448-2008.埋地钢质管道阴极保护技术规范[S]. 2008.
    [51]胡士信.阴极保护手册[M].化学工业出版社, 1999.
    [52] GB/T 21246-2007.埋地钢质管道阴极保护参数测量方法[S]. 2007.
    [53]曹阿林,朱庆军,侯保荣等.油气管道的杂散电流腐蚀与防护[J].煤气与热力. 2009, 29(3): B06~09.
    [54] Hosokawa Y, Kajiyama F, Nakamura Y. New Cathodic Protection Criteria Based on Direct and Alterating Current Densities Measured Using Coupons and Their Application to Modern Steel Pipelinde. Corrosion, 2004, 60(3): 304.
    [55]袁厚明.地下管线检测技术[M].中国石化出版社, 2007.
    [56]刘玉明.工程经济学[M].清华大学出版社, 2006.
    [57] SY/T0042-2002.防腐蚀工程经济计算方法标准[S]. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700