基于油气成藏模拟的圈闭定量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圈闭评价是油气资源评价中具体而重要的工作,其工作重点集中体现在对圈闭地质风险的准确评估上。随着科学技术的进步,各种探测和勘探技术对地下数据的获得带来有益的帮助,圈闭评价的准确性也相对提高。但随着油气的开采程度的增加,容易发现的构造特征明显的圈闭已经陆续发现,构造特征不是很明显的圈闭将难以准确地发现,油气勘探的风险在逐渐增加,也不利于国民经济的发展,勘探成熟区的新的油气圈闭的准确勘探的重要性逐渐被石油地质工作者所认识,对勘探成熟区的新的油气圈闭的勘探和预测已经成为油气资源评价领域的重点研究内容。
     目前在圈闭评价预测领域,多数圈闭评价是直接根据地质勘探数据,采用地质评价方法对圈闭进行分析和预测,这些评价方法能够比较直接的描述圈闭实际情况,但不能有效的动态分析圈闭的发展变化情况。在盆地及油气成藏模拟方面,模拟结果能够提供模拟区域的油气整体分布情况,基本上起到区带评价的作用,但对于圈闭级的评价,仍然需要根据盆地及油气成藏的模拟结果单独进行分析。目前的圈闭评价没有充分地利用盆地模拟的数据,更没有以油气成藏模拟结果为基础,需要重新设定参数、重新建模、重新组织数据,评价的准确性和有效性没有保证。以三维油气成藏动力学模拟结果为基础,建立圈闭定量综合评价系统,不仅可以获取大量与圈闭和成藏条件相关的静态参数,而且可以获取大量与圈闭及油气藏形成演化相关的动态参数,同时避免了重新组织数据所带来的完整性和一致性问题,从而可以减少人为影响,增强评价客观性,提高评价结果的可靠性和准确性。
     本论文在国家重大科学技术研究专项“大型油气田及煤层气开发——渤海湾盆地东营凹陷勘探成熟区精细评价示范工程”的资助下,以提高圈闭评价的准确性和方法的相对通用性为目的,在油气成藏模拟的基础上,对圈闭定量评价模式和评价方法方面开展了系统深入的研究,所做的主要工作和创新成果有:
     1、建立了基于油气成藏模拟的圈闭定量评价模型
     传统的圈闭评价都是石油地质专家在已有勘探资料的基础上进行分析和评价,也可以根据盆地及油气成藏模拟的结果对圈闭进行分析和评价。传统评价思路与油气成藏模拟无关或者与油气成藏模拟结合不紧密,对数据的利用效率相对较低。基于油气成藏模拟的圈闭评价能够对提高数据的利用效率,降低数据转换的损失,增强数据挖掘的程度,可以为圈闭定量评价提供更多且可靠的信息。现有的文献均没有建立在油气成藏模拟基础上的圈闭定量评价。论文的第二章说明了油气资源评价的层次及圈闭评价所处的重要层次和常用常规方法,研究了圈闭定量评价和油气成藏模拟的关系,建立了基于油气成藏模拟的圈闭定量评价模型。常规的圈闭评价主要是在具体的勘探资料的基础上,专家根据自己的知识对圈闭进行评价,这样的评价主观性较强,带来的风险也随之增加。在油气成藏模拟基础上的圈闭定量评价可以根据油气成藏模拟的数据,通过计算机数据处理和分析技术,得到圈闭级的数据,对圈闭进行定量的评价。在油气成藏模拟基础上的圈闭定量评价,可以有效地减少专家评价的主观性,得到比较客观的定量评价结果。现在没有具体的在油气成藏模拟基础上圈闭定量评价模式,需要根据实际情况建立具体的模型,然后才可以有效地完成后续的工作。在油气成藏模拟基础上的圈闭定量评价不同于传统的圈闭评价,其评价过程基本上都需要遵循模型中的核心步骤。盆地及油气成藏模拟是基础,必须满足圈闭定量评价的基本要求。三维地质建模的精度和计算机的运算能力要能够满足基本需求。圈闭搜索和圈闭信息识别是圈闭定量评价部分的基础,也可以在此基础上进行圈闭动态评价。在圈闭搜索和圈闭信息识别的基础上可以选用合适的方法进行圈闭地质评价、经济评价和综合评价,最后对结果进行有效地输出和显示。圈闭搜索和圈闭信息识别是在油气成藏模拟基础上的圈闭定量评价的核心步骤,与油气成藏模拟结合紧密的圈闭定量评价都需要实现这两个步骤。圈闭动态评价是重要特点和优势,可以对圈闭的动态变化趋势进行分析。地质评价、经济评价和综合评价和传统的评价不同之处在于其评价数据来源于圈闭信息识别的参数。
     2、实现了基于角点网格的圈闭搜索、圈闭信息识别和圈闭动态评价
     传统的圈闭评价的资料呈现在专家面前,没有圈闭搜索的需要。盆地及其油气成藏模拟的三维建模数据是海量的数据体,在巨大的三维空间数据中搜索圈闭数据本身就是一个复杂的工作。三维建模数据的精度和建模方式是圈闭搜索的基础要求,过于粗劣的建模对于盆地及油气成藏模拟或圈闭评价来说都是无效,精度过高计算机的性能不能满足实际需要。采用角点网格进行三维地质建模可以适应地质条件下的实际的不规则地质实体。角点网格是不规则六面体,增加了圈闭搜索的困难。由于精度的需要,角点网格也需要进行局部的加密,圈闭搜索的过程也需要对加密网格进行处理。圈闭信息识别主要是解决对圈闭信息的计算和提取的问题,涉及的参数比较多,计算方式各有不同,对技术要求也不一样。根据三维建模的实际精度、建模方式和已经搜索定位的圈闭,参考圈闭地质评价的圈闭条件、油源条件、保存条件、储层条件和匹配关系的基本地质要素,对圈闭信息进行计算和提取。由于各种条件的限制,部分参数可能不能完全满足实际的要求,可以根据对盆地及油气成藏模拟的数据,直接输入。常规的圈闭评价不具备圈闭动态评价的基本条件,只能靠专家进行人为的分析,给出发展趋势。通过对三维地质历史数据的研究和分析对比可以恢复圈闭的地质历史形态,从而进行圈闭的三维动态展示,便于对圈闭的发展变化情况进行有效地分析,判断圈闭的油气聚集和散失的情况是否符合实际的地质变化规律,有利于专家作出合理的判断。
     3、提出了圈闭定量评价对油气成藏模拟的反馈约束机制
     由于三维建模技术的限制和对计算机性能要求很高等原因,在油气成藏模拟的基础上进行圈闭级的定量评价比较困难。如果能够实现圈闭的定位和圈闭参数的获取,就更有利于分析整个油气成藏模拟过程。由于圈闭定量评价位于整个盆地及油气成藏模拟的末端,可以全面获得各种模拟数据,圈闭本身也可以提取很多数据,这样便可以对整个评价过程进行系统性的考虑。整个盆地及油气成藏模拟过程中,从三维地质建模到构造史、热史、生排烃和运聚史,考虑微观因素相对较多,对模拟过程的系统性和整体性约束不足。从圈闭提取数据和获得的模拟数据出发,通过对各个模拟阶段的数据和圈闭参数的分析,可以对整个盆地及油气成藏模拟的过程的合理性进行分析和反馈,形成对其模拟过程的约束。通过不断地反馈再模拟,直到形成合理的、整体上符合地质认识的评价结果,有助于对模拟过程的完善和模拟准确程度的提高。盆地及油气成藏模拟的各个阶段的模拟结果对最后的模拟结果都有较大的影响,油气运聚模拟是关键,对整个模拟结果的影响也最大,圈闭评价部分对其要求也比较高。
     4、分析了圈闭地质评价方法的特点和适用性
     在油气成藏模拟基础上的圈闭定量评价的数据来源、评价流程和方法完全不同于传统的圈闭评价,是全新的评价模式。地质评价的数据来源是圈闭信息识别的参数,地质评价的方法是现有的定量评价方法。在地质评价方法方面圈闭地质评价作为圈闭评价的关键内容,有很多的评价方法,其效果和适用性各不相同。圈闭地质评价是油气资源评价中比较具体的局部的工作,有其自己的特点和要求。在进行圈闭地质评价前需要选择适合的评价方法,以便于得到较好的评价效果。论文第三章对现有的主要地质评价方法进行了分析和对比,按照对数据的依赖程度进行了分类分析说明。
     5、实现了基于油气成藏模拟的圈闭定量评价系统
     在油气成藏模拟基础上的圈闭定量评价是完全不同于常规圈闭评价的新的评价理论体系,其评价数据主要来源于油气成藏模拟,其评价过程需要经过圈闭定位搜索、信息识别、动态评价、地质评价、经济评价和综合评价,根据评价结果找到最有利的圈闭,为预探提供指导。在基于油气成藏模拟的圈闭定量评价的理论指引基础上,建立圈闭定量评价模型,进行系统分析和设计,具体实现了基于油气成藏模拟的圈闭定量评价系统,对实现的基本流程和基本功能进行了说明。实现的主要技术要求是圈闭搜索、信息识别、动态评价和圈闭地质评价。圈闭搜索部分必须实现圈闭坐标的准确定位,划分出圈闭的具体范围。信息识别主要是在圈闭搜索定位的基础上对圈闭参数进行提取和计算。动态评价主要恢复圈闭的地质历史,动态显示其变化过程。圈闭地质评价部分采用了四种适合油气勘探成熟区域的评价法,分别是风险概率法、加权平均法、模糊综合评判法和人工神经网络法。各个方法各有优劣,可以对各个方法的评价结果进行分析对比,以便得到更为准确的评价结论。系统也实现了经济评价和综合评价,最后给出综合评价的结果。
     6、验证了基于油气成藏模拟的圈闭定量评价的有效性
     以中国东营凹陷牛庄-王家岗地区为典型原型,充分利用现有的盆地地质研究成果,在对牛庄-王家岗地区进行盆地及油气成藏模拟的基础上,综合分析地热演化和油气生成、排放、运移、聚集和逸散的模拟结果,对勘探程度较高的对牛庄-王家岗地区进行了模拟试验,所得出的圈闭位置和资源量都接近实际勘探结果,不但可以自动追索油气的聚集区域,还可以较为准确地区分出圈闭边界、圈闭基本类型和圈闭资源量。模拟结果验证了所建立的基于油气成藏模拟的圈闭定量评价模型的可靠性和所选用的地质评价方法的正确性。
     本论文的研究内容是对圈闭定量评价的模式一种新的探索,也是对盆地及油气成藏模拟的一种延伸。本文的主要创新之处是建立了基于油气成藏模拟的圈闭定量评价模型;实现了在三维地质模型下的圈闭自动搜索和圈闭的信息识别,自动确定圈闭的位置和坐标,对圈闭的评价参数进行计算和提取;通过对三维地质历史的恢复,可以对圈闭进行动态评价,展示圈闭的三维动态变化情况,便于对圈闭的发展变化情况进行有效地分析,判断圈闭的油气聚集和散失的情况:通过对所有模拟数据的分析和整合,提出对油气成藏模拟过程的反馈和约束机制,增强模拟过程的合理性,提高模拟结果的可靠性。
Trap evaluation is a specific and important petroleum resource evaluation work and the work focuses on an accurate assessment of the geological risk. With the development of exploration technology, the underground data can be easier to be gotten and the accuracy of trap evaluation will be improved. However, with the increase in the degree of exploitation of oil and gas, a lot of structural traps have been found because they are obvious and it is difficult to find other traps. The increasing risk of oil and gas exploration is not conducive to the development of the national economy. Petroleum geology researchers recognize the importance of oil and gas exploration in mature exploration areas and exploration of new oil and gas traps in mature exploration areas will be the important content of the oil and gas resource evaluation.
     In the field of trap evaluation, the majority trap evaluation is directly based on the geological exploration data, the geological evaluation methods can be used for the analysis and prediction of traps. The actual situation of the traps can be directly described by these methods, but the development and changes of the traps can not be dynamically analyzed. The results of the basin and hydrocarbon pool-forming simulation can provide the regional distribution of oil and gas. The basin and hydrocarbon pool-forming simulation can play the role of the zone evaluation. However, the evaluation of traps still needs to be analyzed separately according to the results of the basin and hydrocarbon pool-forming simulation. The current trap evaluation is not based on hydrocarbon pool-forming simulation and the basin simulation data can not be sufficiently utilized. The parameters, model and data need to be reorganized. There is no guarantee about the accuracy and validity of the evaluation. There are many advantages about the comprehensive quantitative evaluation system of traps based on three-dimensional oil and gas accumulation dynamics simulation results. A lot of static parameters can be gotten and the parameters are associated with traps and accumulation conditions. A lot of dynamic parameters about traps and oil and gas reservoir formation and evolution can be gotten. Incompleteness and inconsistency because of the data reorganization can be avoided. The human impact can be reduced and the objectivity of the evaluation can be enhanced. The reliability and accuracy of the evaluation results can be improved.
     This paper is based on the National Science and Technology Major Project of the Ministry of Science and Technology of China named as large scale oil and gas field and coal gas development, a model engineering of fine evaluation of mature exploration prospect in Dongying Sag of Bohai bay basin. To improve the accuracy and versatility of the trap evaluation method, the research on trap quantitative evaluation models and evaluation methods are the main content and the research are based on hydrocarbon pool-forming simulation. The main work and innovations:
     1^A quantitative evaluation model of traps based on hydrocarbon pool-forming simulation has been established
     The traditional trap evaluation is a kind of petroleum geological expert analysis and evaluation based on existing exploration data. The analysis and evaluation of traps based on basin and hydrocarbon pool-forming simulation results can also be done. Traditional ideas of evaluation are unrelated with the hydrocarbon pool-forming simulation or trap evaluation can not closely combine with the hydrocarbon pool-forming simulation and data utilization efficiency is relatively low. Data utilization efficiency can be improved if trap evaluation is based on hydrocarbon pool-forming simulation. The loss of data conversion can be reduced and the extent of data mining can be enhanced. More and reliable information can be provided for the traps quantitative evaluation. The quantitative evaluation of traps based on hydrocarbon pool-forming simulation can not be found from existing articles. The levels of the oil and gas resource evaluation and the key position of trap evaluation and the conventional methods have been explained in the second chapter. The links between the traps quantitative evaluation and oil and hydrocarbon pool-forming simulation have been studied. A quantitative evaluation model of traps based on hydrocarbon pool-forming simulation has been established. The conventional trap evaluation is one kind of evaluation by the experts based on their knowledge of the traps and the detailed exploration data. Subjective evaluation and great risk are the main problem about this kind of evaluation. Quantitative evaluation based on hydrocarbon pool-forming simulation can get the trap data and the result of quantitative evaluation by the data processing and analysis based on the data of hydrocarbon pool-forming simulation. The subjectivity of expert evaluation can be effectively reduced and more objective quantitative evaluation results can be gotten if trap quantitative evaluation is based on the hydrocarbon pool-forming simulation. A quantitative evaluation model of traps based hydrocarbon pool-forming simulation can not be found and the specific model must be established in accordance with the actual situation for the effective evaluation. Quantitative evaluation based on hydrocarbon pool-forming simulation is different with the traditional trap evaluation and the core steps of the model should be implemented. Basin and hydrocarbon pool-forming simulation are the base of the quantitative evaluation of traps. The results of basin and hydrocarbon pool-forming simulation must meet the basic requirements of quantitative evaluation of traps. Trap search and trap information recognition are the base of trap quantitative evaluation and dynamic trap evaluation can be done based on trap search and trap information recognition. Geological evaluation, economic evaluation and comprehensive evaluation can be achieved based on trap search and trap information recognition. The last step is the output and display of the evaluation results. Trap search and trap information recognition are the core steps of quantitative evaluation of traps based on hydrocarbon pool-forming simulation. Quantitative evaluation of traps combined with the hydrocarbon pool-forming simulation are needed to achieve these two steps. Dynamic trap evaluation is the important feature and advantage and the trend of trap dynamic changes can be analyzed. Geological evaluation, economic evaluation and comprehensive evaluation are different with the traditional trap evaluation because data of evaluation is from parameters of trap information recognition.
     2^Trap search, trap information recognition and dynamic trap evaluation based on corner-point grids have been achieved
     The traditional trap evaluation do not need trap search because the experts can get the data of evaluation. Three-dimensional data model is a massive body of data and trap search is a difficult task in the gigantic three-dimensional spatial data. The accuracy and format of the three-dimensional model data are the basic requirements of trap search. The poor model is invalid for the basin and hydrocarbon pool-forming simulation or trap evaluation, but the computer's performance can not meet the high precision needs. The three-dimensional geological model based on corner-point grids can adapt the irregular geological entity. Trap search is more difficult because comer-point grids are irregular hexahedral. The density of a part of grids should be increased for the high precision and the high density grid should be processed when the trap is searched. Calculation and extraction of the trap information are the key of trap information recognition for many different parameters, different calculation methods and technology requires. Trap condition, oil source condition, storage condition, reservoir condition, matching relation, the accuracy and format of the three-dimensional model data and the position of traps which have been searched are all the basic conditions for calculation and extraction of the trap information. Some parameters can be entered directly bacause some parameters may not be able to get for the limitation of model data. There is no dynamic trap evaluation in Conventional trap evaluation and the development trends of traps can be given by the expert analysis. The geological history of traps can be restored through research and analysis of three-dimensional geological history data. The three-dimensional dynamic display of traps based on the geological history of traps can display the development and changes of traps and the expert can evaluate traps through analysis of traps hydrocarbon accumulation and dissipation.
     3-. The feedback constraint mechanism of quantitative evaluation of traps to hydrocarbon pool-forming simulation has been Proposed
     Quantitative evaluation of traps based on hydrocarbon pool-forming simulation is difficult because the limitations of the three-dimensional model and computer performance. Analysis of hydrocarbon pool-forming simulation process is more conducive if the location and parameters of the traps can be determined. Various simulation data can be obtained and a lot of trap data can be extracted because quantitative evaluation of traps is in the end of basin and hydrocarbon pool-forming simulation. The evaluation process can be systematically considered because various simulation data and a lot of trap data can be gotten. There are many micro factors from the three-dimensional geological modeling to tectonic history, thermal history, hydrocarbon generation history, hydrocarbon expulsion history and migration and accumulation history. Simulation process lack systematic and holistic constraints. Rationality of basins and hydrocarbon pool-forming simulation can be analyzed and simulation process can be constrained for the feedback by the analysis of the data of simulation process and the parameters of the traps. The evaluation results will be reasonable and consistent with the geological understanding through multiple feedback simulation. The simulation process can be perfect and the simulation accuracy can be improved. The simulation results of the various stages of basin and hydrocarbon accumulation simulation have a greater impact on the final results of the simulation. Hydrocarbon migration and accumulation simulation is the key of the simulation and has the greatest impact on the final results of the simulation. Requirements of trap evaluation are relatively high to the hydrocarbon migration and accumulation simulation.
     4-. Characteristics and applicability of geological evaluation methods of traps have been analyzed
     Quantitative evaluation of traps based on hydrocarbon pool-forming simulation is a new evaluation model. Data sources, evaluation processes and methods are completely different with the traditional trap evaluation. The data source of geological evaluation is the parameters from the trap information recognition and the methods of geological evaluation are the existing methods of quantitative evaluation. As the key of trap evaluation, there are many evaluation methods about geological evaluation of traps, but the effectiveness and applicability are different. As a specific work of petroleum resource evaluation, the characteristics and requirements of geological evaluation of traps are different. In order to get the better effect of trap evaluation, suitable method must be selected before the geological evaluation of traps. The existing geological evaluation methods have been analyzed and compared in the third chapter and these methods are classified according to the data dependence.
     5、Quantitative evaluation system of traps based on hydrocarbon pool-forming simulation has been achieved
     Quantitative evaluation of traps based on hydrocarbon pool-forming simulation is a new system theory of evaluation and it is completely different with conventional trap evaluation. The data is mainly from hydrocarbon pool-forming simulation. Trap search, trap information recognition, dynamic trap evaluation, geological evaluation, economic evaluation and comprehensive evaluation are the main stages. The most favorable trap based on the evaluation results can be found and guidance for pre-exploration can be provided. Quantitative evaluation model of traps, system analysis and design and quantitative evaluation system of traps based on hydrocarbon pool-forming simulation has been achieved, according to the theoretical guidance of quantitative evaluation of traps based on hydrocarbon pool-forming simulation. The basic processes and functions have been described. Trap search, trap information recognition, dynamic trap evaluation and geological evaluation of traps are the main content. The positions and ranges of traps must be determined by trap search. The parameters of traps can be extracted and calculated by information recognition on the basis of trap search. Geological history of traps can be restored and the process of trap changes can be dynamically displayed by dynamic trap evaluation. Risk probability, weighted average, fuzzy comprehensive evaluation and artificial neural networks are the geological evaluation methods. These methods are suitable for mature areas of the oil and gas exploration. Each method has its own advantages and shortcomings. More accurate evaluation results can be obtained by the analysis and comparison of the results of the various evaluation methods. Economic evaluation and comprehensive evaluation have been implemented and the final results of evaluation can be gotten.
     6、The validity of quantitative evaluation system of traps based on hydrocarbon pool-forming simulation has been confirmed
     Niuzhuang-Wangjiagang region is the mature region of exploration in china. Simulation experiments have been done in Niuzhuang-Wangjiagang. Geothermal evolution, oil and gas generation, emission, migration, accumulation and leakage have been simulated. The comprehensive analysis of simulation results and the proven geological results are consistent. The location of traps and the amount of resources are close to the actual exploration results. Trap boundary and trap type can be accurately obtained. The reliability of the model of quantitative evaluation based on hydrocarbon pool-forming simulation has been verified by the simulation results. The correctness of methods of geological evaluation has also been verified by the simulation results
     A new exploration about the model of quantitative evaluation of traps has been done in this paper and it is also an extension of basin and hydrocarbon pool-forming simulation. This paper has important innovations. A quantitative evaluation model of traps based on hydrocarbon pool-forming simulation has been established. Trap search and trap information recognition based on three-dimensional geological model have been achieved. Trap location and coordinates can be automatically determined. Trap evaluation parameters can be calculated and extracted. Dynamic trap evaluation can be achieved because geological history of traps" can be restored. Three-dimensional dynamic changes of traps can be dynamically displayed. Trap development and changes can be effectively analyzed and the situation of hydrocarbon accumulation and dissipation can be judged. The feedback constraint of hydrocarbon pool-forming simulation has been proposed by data analysis and integration. The rationality of the simulation process has been enhanced and the reliability of the simulation results has been improved.
引文
[1]Kacewicz,M., Peters, K.E., Curry, D.J.2009 Napa AAPG Hedberg Research Conference on Basin and Petroleum Systems Modeling [J].AAPG Bulletin,2010,94(6):773-789.
    [2]Verweij,H.,Kacewicz,M.,Wendebourg,J.C. Basin Modeling Perspectives [J]. Marine and Petroleum Geology,2009,26(4):427-429.
    [3]吴冲龙,林忠民,毛小平等.“油气成藏模式”的概念、研究现状和发展趋势[J].石油与天然气地质,2009,30(6):673-683.
    [4]Blangy, J.-P. Quantitative evaluation of the geotechnical risk associated with a stratigraphic trap in the Neuquen Basin of Argentina [J]. Leading Edge,2001,20(11):1270-1281.
    [5]刘全稳,陈景山,曹淑丽等.圈闭管理的内容与办法[J].天然气工业,2002,22(3):17-20.
    [6]张厚福,张万选.石油地质学(第二版)[M].北京:石油工业出版社,1998.
    [7]李新宁,李志军,王劲松,等.盆地模拟技术在吐哈盆地的应用及分析[J].石油天然气学报,2005,27(6):838-842.
    [8]罗晓容.数值盆地模拟方法在地质研究中的应用[J].石油勘探与开发,2000,27(2):6-10.
    [9]石广仁,张庆春,等.盆地模拟的参数敏感性与风险分析[J].石油勘探与开发,2004,31(4):61-63.
    [10]苏劲,张水昌,等.地震资料解释与盆地模拟在油气成藏研究中的联合运用[J].石油地球物理勘探,2010,45(1):72-76.
    [11]Huvaz, Ozkan, Sarikaya, Hasan, Isik, Taner. Petroleum systems and hydrocarbon potential analysis of the northwestern Uralsk basin, NW Kazakhstan, by utilizing 3D basin modeling methods [J]. Marine and Petroleum Geology,2007,24(4):247-275.
    [12]Mello, Ulisses T, Rodrigues, Jose Roberto P,Rossa.Andre L. A control-volume finite-element method for three-dimensional multiphase basin modeling [J]. Marine and Petroleum Geology,2009,26(4):504-518.
    [13]Rodriguez, Jorge F.R, Littke, Ralf.Petroleum generation and accumulation in the Golfo San Jorge Basin, Argentina:A basin modeling study [J]. Marine and Petroleum Geology,2001, 18(9):995-1028.
    [14]Schneider, F. Basin modeling in complex area:Examples from Eastern Venezuelan and Canadian foothills [J]. Oil and Gas Science and Technology,2003,58(2):313-324.
    [15]YuklerM A, Cornford C, Welte D H. One-dimensional model to simulate geologic, hydrodynamic and thermodynamic development of a sedimentary basin[J]. Geol. Rundschau,1978,67 (3):960-979
    [16]Nakayama K, Van Siclen D C. Simulation model for petroleum exploration[J]. AAPG Bulletin,1981,65 (7):1230-1255
    [17]Ungerer P, Bessis F, Chenet P Y, et al. Geological and geochemical models in oil exploration: princip les and practical examp les[A]. In:Demaison G, ed. Petroleum geochemistry and basin evaluation [C]. AAPGMemoir 35,1984.53-77
    [18]张渝昌,徐旭辉,江兴歌等.展望盆地模拟[J].石油与天然气地质,2005,26(1):29-36.
    [19]石广仁.盆地模拟技术30年回顾与展望[J].石油工业计算机应用,2009,61(1):3-5.
    [20]张万选.“油气资源评价”的发展与展望[J].断块油气田,1991,1(1):38-49.
    [21]吴冲龙,刘海滨,毛小平等.油气运移和聚集的人工神经网络模拟[J].石油实验地质,2001,23(2):203-212.
    [22]Shi,Z.Z., Mercier-Laurent,E., Leake, D.Intelligent Information Processing:IV[M].New York:Springer,2008.
    [23]邓万宇,郑庆华,等.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287.
    [24]王燕妮,樊养余.改进BP神经网络的自适应预测算法[J].计算机工程与应用,2010,46(17):23-26.
    [25]戴群,陈松灿,等.一个基于自组织特征映射网络的混合神经网络结构[J].软件学报,2009,20(5):1329-1336.
    [26]李道伦,卢德唐,等.基于BP神经网络的隐式曲面构造方法[J].计算机研究与发展,2007,44(3):467-472.
    [27]樊敬亮,黄志全,钱铮等.模糊评判方法在圈闭地质评价中的应用[J].西南石油学院学报,2003,25(5):12-15.
    [28]李爱国,易海永,陈忠富等.模糊数学在渝东地区石炭系圈闭评价中的应用[J].天然气工业,2003,23(4):23-26.
    [29]许多年,王伟锋.模糊综合评判技术在乌夏地区圈闭评价中的应用[J].新疆石油天然气,2006,2(4):7-11.
    [30]杨昌明,王美丽,聂新坤.圈闭地质评价中模糊数学综合评判法的优势[J].西南石油学院学报,1999,21(2):4142.
    [31]孙小林.达坂城次凹圈闭地质风险评价[J].新疆石油天然气,2007,3(3):20-24.
    [32]蔡利学,邱全进.预探圈闭地质风险评价[J].大庆石油学院学报,2007,31(4):25-28.
    [33]詹丽,杨昌明,杨东福.中国西部某盆地圈闭地质条件评价方法与模型[J].地质科技情报,2007,26(1):82-86.
    [34]石广仁.油气运聚定量模拟技术现状、问题及设想[J].石油与天然气地质,2009,30(1):1-10.
    [35]刘吉余,王明明,李景明.天然气运聚成藏过程模拟研究现状[J].天然气工业,2006,26(7):1-4.
    [36]吴冲龙,王燮培,周江羽等.含油气系统概念与研究方法[J].地质科技情报,1997,16(2):43-50.
    [37]吴冲龙,王燮培,毛小平等.油气系统动力学的概念模型与方法原理——盆地模拟和油 气成藏动力学模拟的新思路、新方法[J].石油实验地质,1998,20(4):319-327.
    [38]吴冲龙,王燮培,何光玉,李绍虎,毛小平.论油气系统与油气系统动力学[J].地球科学,2000,25(6),604-611.
    [39]吴冲龙,毛小平,王燮培等.三维油气成藏动力学建模与软件开发[J].石油实验地质,2001,23(3):301-311.
    [40]石油地质勘探专业标准化委员会.圈闭评价技术规范CSY/T5520-2005)[S].4匕京:石油工业出版社,2005.
    [41]武守诚.石油资源地质评价导论[M].北京:石油工业出版社,1994.
    [42]叶继根,吴向红,朱怡翔,刘合年,罗凯.大规模角点网格计算机辅助油藏模拟历史拟合方法研究[J].石油学报,2007,3.28(2):83-86.
    [43]韩峻,施法中,吴胜和,范峥.基于格架模型的角点网格生成算法[J].计算机工程,2008,34(4):90-95.
    [44]徐能雄,武雄,汪小刚,贾志新,段庆伟.基于三维地质建模的复杂构造岩体六面体网格剖分方法[J].岩土工程学报,2006.28(8):957-961.
    [45]杜王盖,孙炳楠,陈水福.任意六面体同为网格中的SIMPLE算法[J].湘潭大学自然科学学报,2006,6.28(2):56-60.
    [46]凌咏红,黄小微.油田三维地质建模技术及其软件实现[J].计算机工程,2009,1.35(1):237-239.
    [47]吴冲龙,毛小平,田宜平等.盆地三维数字构造-地层格架模拟技术[J].地质科技情报,2006,25(4):18.
    [48]Dilip K. Mukhopadhyay, Premanand Mishra. A balanced cross section across the Himalayan frontal fold-thrust belt, Subathu area, Himachal Pradesh, India:thrust sequence, structural evolution and shortening. Asian Earth Sciences, Volume 25, Issue 5, August 2005, Pages 735-746.
    [49]Eugenio Carminati. Neglected basement ductile deformation in balanced-section restoration: An example from the Central Southern Alps (Northern Italy). Tectonophysics, Volume 463, Issues 1-4,1 January 2009, Pages 161-166.
    [50]Direen N.G., D. Brock, M. Hand. Geophysical testing of balanced cross-sections of fold-thrust belts with potential field data:an example from the Fleurieu Arc of the Delamerian Orogen, South Australia. Structural Geology, Volume 27, Issue 6, June 2005, Pages 964-984.
    [51]Gall B Le, Nonnotte P, Rolet J. Rift propagation at craton margin. Distribution of faulting and volcanism in the North Tanzanian Divergence (East Africa) during Neogene times[J]. Tectonophysics,2008,448:1-19.
    [52]Maniatis G, Hampel Andrea. Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models[J]. Structural Geology,2008,30: 21-28.
    [53]Martin P J, John J W. Localization of normal faults in multilayer sequences[J]. Structural Geology,2006,28:816-833.
    [54]李绍虎,吴冲龙,吴景富,何大伟.一种新的压实校正方法[J].石油实验地质,2000,22(2):110-114.
    [55]石广仁.考虑断层发育史并适用于欠压实的地史模型[J].石油学报,2002,23(1):24-28.
    [56]李绍虎.关于地层骨架体积质量不变压实校正方法一回答漆家福等对这一方法的讨论[J].石油实验地质,2001,23(3):357-360.
    [57]漆家福,杨桥.关于碎屑岩的去压实校正方法的讨论——兼论李绍虎等提出的压实校正法[J].石油实验地质,2001,23(3):351-356.
    [58]M. Makhous, Yu. I. Galushkin. Burial history and thermal evolution of the northern and eastern Saharan basins [J]. AAPG Bulletin,2003,87(10):1623-1651.
    [59]Nansheng Qiu, Jian Chang, Yinhui Zuo, et al. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin,northwest China [J]. AAPG Bulletin,2012,96(5):789-821.
    [60]Alban Souche, Olivier Beyssac, Torgeir B. Andersen. Thermal structure of supra-detachment basins:a case study of the Devonian basins of western Norway [J]. Journal of the Geological Society,2012,169(4):427-434.
    [61]Gary W. Zielinski, Pawel Poprawa, Jan Szewczyk, et al. Thermal effects of Zechstein salt and the Early to Middle Jurassic hydrothermal event in the central Polish Basin [J]. AAPG Bulletin,2012,96(10):1981-1996.
    [62]A. D. Carr, I. C. Scotchman. Thermal history modelling in the southern Faroe-Shetland Basin[J]. Petroleum Geoscience,2003,9(4):333-345.
    [63]吴冲龙,李星.多热源叠加的岩层有机质成熟度动态模拟方法[J].石油与天然气地质,2001,22(2):187-189.
    [64]Wu Chonglong,Yang Qi,Zhu Zuoduo,Liu Gang, Li Xing, Thermodynamic Analasis and Simulation of Coal Metamorphism In Fushun Basin, China. International Journal of Coal Geology,2000,44:149-168.
    [65]李术元.化学动力学在盆地模拟生烃评价中的应用[M].东营:石油大学出版社,2000.12-153.
    [66]高岗,柳广弟,王兆锋.生烃模拟结果的校正[J].新疆石油地质,2005,26(2):202-206.
    [67]庞雄奇,陈章明,陈发景.排油气门限的基本概念、研究意义与应用[J].现代地质,1997,11(4):510-520.
    [68]石广仁,张庆春.烃源岩压实渗流排油模型[J].石油学报,2004,25(5):34-37.
    [69]陈中红,查明.烃源岩排烃作用研究现状及展望[J].地球科学进展,2005,20(4):459-463.
    [70]张卫海,陈中红,查明,曲江秀.东营凹陷烃源岩排油机理[J].石油学报,2006,27(5):46-50.
    [71]何光玉,刘海滨.油气系统动力学模拟方法评价[J].地质科技情 报,1999,18(2):45-48.
    [72]陈蟒蛟.圈闭评价法在吐鲁番坳陷油气勘探中的应用[J].石油与天然气地质,1992,13(2):191-200.
    [73]杨庆元,杨继良.松辽盆地构造圈闭评价的研究[J].石油与天然气地质,1991,12(3):276-282.
    [74]刘海涛,赵锡奎,李坤等.阿克库勒凸起碎屑岩圈闭特征分析[J].重庆科技学院学报(自然科学版),2009,30(1):1-4.
    [75]刘震,梁全胜,肖伟等.内蒙古二连盆地岩性圈闭早期形成和多期形成特征分析[J].现代地质,2005,19(3):403-408.
    [76]邱旭明.苏北盆地断块圈闭分类及油气成藏特征[J].石油与天然气地质,2003,24(4):371-374.
    [77]任凤楼,柳忠泉,王大华等.南美奥连特盆地16区块构造沉积特征及石油地质评价[J].海洋石油,2009,30(1):1-7.
    [78]郭秋麟,宋国春,曾磊等.圈闭评价系统(TrapDEM2.0)[J].石油勘探与开发,2001,28(3):41-45.
    [79]蔡希源,侯启军.油气圈闭地质评价方法及应用[J].大庆石油地质与开发,1994,13(2):1-5.
    [80]王丽君,严恒.多维决策圈闭评价方法及其应用[J].海相油气地质,2012,17(4):63-67.
    [81]赵庆飞,石晓飞,王平美.区带/圈闭的灰色综合评判技术方法研究[J].断块油气田,2002,9(1):33-39.
    [82]唐振国,乔卫,杨秀芳.松辽盆地北部火山岩体岩性圈闭评价方法[J].大庆石油地质与开发,2001,20(4):9-11.
    [83]郭元岭.济阳坳陷地层圈闭成藏特征及地质风险评价[J].录井工程,2006,17(2):65-68.
    [84]王友启,汤达祯.潜山圈闭成藏特征及地质风险评价——以渤海湾盆地济阳坳陷为例[J].石油实验地质,2006,28(2):147-151.
    [85]杨飞.应用模糊数学预测塔里木盆地有利圈闭[J].成都理工学院学报,1997,24(1):30-36.
    [86]李耀华,李宗银,李红亮等.川西前陆盆地须家河组圈闭评价[J].天然气工业,2005,25(A):11-13.
    [87]刘伯土,曹波,袁东风.川北地区圈闭的模糊综合评判和经济评价[J].天然气工业,2000,20(6):34-38.
    [88]杨昌明,王美丽.模糊数学综合评判法在圈闭地质评价中的应用探讨[J].中国地质矿产经济,1999,(1):26-28.
    [89]薛冰.用模糊数学方法对海安凹陷南部局部构造含油气性的评价[J].石油与天然气地质,1992,13(4):423-430.
    [90]Liu Haibin,Wu Chonglong.Artificial Neural Network Model of Hydrocarbon Migration and Accumulation[J] Journal of China University of Mining & Technology,2002,12(2):210-214.
    [91]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
    [92]Kumar S. Neural Networks(影印本)[M].北京:清华大学出版社,2006.
    [93]刘希玉,刘弘.人工神经网络与微粒群优化[M].北京:北京邮电大学出版社,2008.
    [94]史忠植.神经网络[M].北京:高等教育出版社,2009.
    [95]Shi, Guangren. The use of artificial neural network analysis and multiple regression for trap quality evaluation:A case study of the Northern Kuqa Depression of Tarim Basin in western China [J]. Marine and Petroleum Geology,2004,21(3):411-420.
    [96]Li, D.L., Lu, D.T., Kong, X.Y., Wu, G. (2007)'Implicit Surfaces Based on BP Neural Networks', Journal of Computer Research and Development, vol.44, no.3, pp.467-472.
    [97]陈守余,周梅春.BP人工神经网络油气圈闭评价[J].物探化探计算技术,1998,20(3):230-234.
    [98]刘靖.BP神经网络在江汉盆地西南缘圈闭评价中的应用[J].企业技术开发,2005,24(1):18-20.
    [99]徐刚,张建宁,谭明友.BP人工神经网络在济阳拗陷圈闭地质评价中的应用[J].石油地球物理勘探,2004,39(5):565-569.
    [100]董桥梁,周玉冰,靳晓丽.圈闭地质评价的人工神经网络算法[J].断块油气田,1998,5(2):14-15.
    [101]赵荣,金曙光.乌尔逊凹陷北部圈闭综合评价[J].大庆石油地质与开发,2004,23(2):14-16.
    [102]林启太.层次分析法在露采方案设计中的应用研究[J].武汉工业大学学报,1998,20(4):61-64.
    [103]马洪,柳广弟,朱立林等.层次分析法在圈闭成藏定量评价中的应用[J].大庆石油学院学报,2006,30(6):1-4.
    [104]姜振学,陈冬霞,邱桂强等.应用层次分析法研究透镜状砂体成藏主控因素[J].石油勘探与开发,2003,30(3):44-47.
    [105]陈志高,李检龙.应用专家系统技术评价松辽南圈闭的含气性[J].石油实验地质,1996,18(4):427-434.
    [106]成金华,熊维纲.圈闭油气预测模型[J].石油物探,1990,29(2):34-39.
    [107]陈志高,李检龙,周维奎等.专家系统技术在含油气性评价中的应用—以松辽盆地南部区块和圈闭为例说明[J].天然气地球科学,1996,7(5):20-28.
    [108]孙淑霞,何宝侃.一种预测评价FOREVA专家系统[J].成都地质学院学报,1989,16(2):121-126.
    [109]徐向华,李树森,王川.葵花岛构造圈闭含油气性评价[J].中国海上油气(地质),1996,10(6):377-383.
    [110]肖国林,周才凡,李桂群.东海XH凹陷烃资源预测—勘探层分析及石油资源专家系统分析[J].青岛海洋大学学报,1995,25(3):375-382.
    [111]徐景祯,陈章明,刘晓冬.圈闭地质综合评价的专家系统模型[J].石油学报,1997,18(3):23-30.
    [112]李树森,王川,樊民星.对圈闭油气资源评价专家系统的认识[J].石油与天然气地质,1994,15(3):187-192.
    [113]冷济高,庞雄奇,苏栋等.圈闭含油气性评价研究进展[J].油气地质与采收率,2010,17(2):37-41.
    [114]黄铮,张方,吕宏伯.一个实用的石油地质专家系统[J].北京工业大学学报,1995,21(3):89-94.
    [115]彭放,方敏.圈闭含油气性评价二元灰色关联度模型及其应用[J].湘潭矿业学院学报,2001,16(4):12-16.
    [116]吴伟,张秀荣,徐东芳.徐家围子断陷火山岩圈闭含气性的综合评价[J].大庆石油学院学报,2002,26(2):9-11.
    [117]薛永超,付广,彭仕宓.利用灰色关联分析法进行圈闭综合评价[J].西安石油学院学报(自然科学版),2003,18(5):23-26.
    [118]刘天佑,师学明,侯连喜等.综合运用模式识别方法评价塔北雅克拉地区圈闭的含油气性[J].石油地球物理勘探,1997,32(4):556-564.
    [119]罗群,白新华,刘银河.圈闭成藏动、静态综合评价法[J].地质科技情报,1997,16(2):51-56.
    [120]朱玲,朱伟,刘靖等.江汉盆地西南缘圈闭的灰色关联评价[J].石油与天然气地质,2001,22(2):182-184.
    [121]郭少斌,朱建伟,杜旭东.应用灰色系统理论对一棵树地区构造圈闭评价[J].石油与天然气地质,1995,16(1):76-80.
    [122]吴国平,敖敏思,吴亦奇等.基于云模型和灰关联的油气圈闭多域信息评价[J].西南石油大学学报(自然科学版),2009,31(5):1-5.
    [123]刘刚.灰色聚类分析在圈闭评价中的应用[J].天然气地球科学,2001,12(6):18-22.
    [124]刘婕,刘全稳,徐剑良等.圈闭的灰色关联分析方法研究[J].西南石油大学学报,2007,29(2):72-74.
    [125]张立国,张吉光.灰色关联分析在圈闭评价中的应用[J].大庆石油地质与开发,1995,14(4):12-19.
    [126]Paolo Ruffo,Livia Bazzana,Alberto Consonni,Anna Corradi,Andrea Saltelli, Stefano Tarantola.Hydrocarbon exploration risk evaluation through uncertainty and sensitivity analyses techniques[J].Reliability Engineering and System Safety,2006,91:1155-1162.
    [127]S.Noeth, R.O.Thomsen, R.Littke. A method for assessing statistical significance and uncertainties for calibration of 1-D thermal basin maturation models[J]. AAPG Bulletin,2002,86(3):417-431.
    [128]Stephen J.Hay, Philip J.Park, Kristin Seim.Data calibrated migration modelling in the assessment of Brent Group prospectivity:a case study from the Veslefrikk area of the Norwegian North Viking Graben[J].Marine and Petroleum Geology,2000,17:821-839.
    [129]S.D.Burley,S.Clarke,A.Dodds,J.Frielingsdorf,P.Huggins,A.Richards,I.C.Warburton,G.Willia ms.New insights on petroleum migration from the application of 4D basin modelling in oil and gas exploration[J].Journal of Geochemical Exploration,2000,69-70:465-470.
    [130]刘斌,王国春,李素敏等.勘探项目经济评价方法与参数指标体系探讨[J].特种油气藏,2009,16(2):40-42.
    [131]罗东坤,俞云柯.油气资源经济评价模型[J].石油学报,2002,23(6):12-15.
    [132]刘伯土,朱允辉,高晓歌.圈闭定量评价-三因素综合排队法[J].石油与天然气地质,2000,21(4):366-369.
    [133]周霞.盆地构造演化定量模拟技术研究与软件系统设计[D].广州:中国科学院研究生院,2010.
    [134]朱光有,金强,戴金星等.东营凹陷油气成藏期次及其分布规律研究[J].石油与天然气地质,2004,25(2):209-215.
    [135]蒋有录,刘华,张乐等.东营凹陷油气成藏期分析[J].石油与天然气地质,2003,24(3):215-218.
    [136]姜福杰,姜振学,庞雄奇.东营凹陷油气成藏体系的划分及定量评价[J].地球科学一一中国地质大学学报,2008,33(5):651660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700