在小麦中引入和表达外源硝酸还原酶基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是世界上最重要的粮食作物之一,也是喜氮作物,其产量和/或品质往往与氮(特别是硝态氮,NO3-)的施用量呈一定程度的正相关。本研究旨在探索是否可以通过导入外源的硝酸还原酶基因(Nitrate Reductase Gene, NR)来提高小麦对NO3-的利用效率,从而在保持其产量和/或品质的同时减少氮肥的施用量,或者在不提高氮肥施用量的条件下提高其产量和/或品质,从而减少氮对环境的影响。
     本研究以两个冬性小麦品种“农大146”(ND146)和“冀麦6358”(JM6358)的幼胚愈伤为外植体,通过农杆菌介导法导入烟草NR基因,获得了转基因的小麦植株;对转基因T1代植株的硝酸还原酶活性、硝酸盐含量与T2代种子的千粒重和蛋白质含量进行了测定,获得如下主要结果。
     1PCR检测表明,ND146和JM6358的转化率分别为1.68%和0.4%。转基因植株T0和T1代的PCR-Southern和Southern blot检测显示,NR基因不仅整合到小麦基因组DNA,而且能够传递到下一代。
     2不论在KNO3诱导前还是诱导之后,“转基因农大146"(NR-ND146)的T1代均有71.4%的植株的硝酸还原酶活力(NRA)明显高于对照;在“转基因冀麦6358"(NR-JM6358)的T1代植株中,诱导前只有6358-17-5的NRA低于对照,而来源于其它5个T0代株系的NRA经50mM的KN03诱导后活力均高于对照。
     3在检测的15株NR-ND146和17株NR-JM6358的T1代植株中,硝酸盐含量(NC)的变化范围分别是2.8-44.8μg/g FW和4.5-29.1μg/gFW。与野生型对照相比,NR-ND146有8株NC明显降低,而NR-JM6358则有13株。
     4在T1代叶片被采样的植株中,NR-ND146所有植株的T2代种子千粒重均显著高于对照,而NR-JM6358的T2代种子千粒重明显增加的植株只占50%,但两者的T2代种子的蛋白含量都明显高于对照。
     5在T1代叶片没有被采样的植株中,70.8%的NR-ND146和65.4%的NR-JM6358的T2代种子千粒重显著地高于对照;前者种子蛋白质含量提高的植株占70.8%,而后者只占50%。上述结果表明,在不增加施氮量的情况下,组成型表达外源硝酸还原酶基因可以显著改善
     小麦对氮的利用效率,从而提高籽粒的蛋白质含量和千粒重。
The wheat (Triticum aestivum L.), typical nitrogen (N)-preferring plant, is one of the most important cereals in the world. Its yield and/or quality are some extent positively correlated with the application rate of nitrogen compounds (especially nitrate, NO3-). The purpose of the present work was to test whether or not introduction and expression of a foreign NR gene in wheat could increase N use efficiency and hence improve quality and/or yield without augmenting N supply, or could maintain quality and/or yield with a diminished use of N fertilizer.
     A tobacco NR gene under the control of CaMV35S promoter was transferred to wheat embryogenic calli derived from immature embryos of two winter cultivars,"Nongda146(ND146) and "Jimai6358"(JM6358), and the transgenic plants ("NR-ND146" and "NR-JM146") were regenerated. The nitrate reductase activity (NRA) and nitrate content (NC) of Ti plants,1000-grain weigh and protein content (SPC) of T2seeds, were analyzed. The main results were listed as follows.
     1. The transformation frequency were1.68%and0.4%for "ND146" and "JM6358", respectively, by PCR assay. The foreign NR gene was successfully integrated into wheat genome and passed on to the offspring, revealed by PCR-Southern and Southern blot assay in the To and T1generation.
     2. Compared with WT, the T1offspring of NR-ND146had a significant higher NRA in71.4%individuals tested, no matter with or without KNO3inducement. However, in NR-JM146descendants, all tested Ti individuals from5To line displayed remarkably stronger NRA than WT when induced with KNO3. Without the induction, one individual (plant6358-17-5) even showed lower NRA than WT.
     3. In NR-ND146family, the foliar NC of15Ti individuals varied from2.8to44.8μg g-1FW, and8plants displayed significantly lower NC than WT. In the family of NR-JM146, the foliar NC of17Ti descendents also varied from4.5to29.1μg g-1FW, and13T1individuals had the NC remarkably lower than WT.
     4. In all leaf-sampled Ti plants of NR-ND146family, the T2seeds had a very significant higher1000-grain weight than WT, whereas in the NR-JM6358family, only50%of leaf-sampled T1individuals displayed such a significant increment. All leaf-sampled Ti plants in both NR-ND146and NR-JM6358families had the SPC much higher than WT.
     5. In leaf-intact Ti plants,70.8%and65.4%of individuals in NR-ND146and NR-JM146family had the grain remarkably weighter than WT, respectively. Overall70.8%T1plants increased their SPC of NR-ND146family, but only50%T1plants increased their SPC of NR-JM6358family.
     These results indicated that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.
引文
曹翠玲,刘建朝,姚晨.(2007).不同呼吸抑制剂对小麦幼苗根系硝酸还原酶活性的影响.西北农林科技大学学报(自然科学版)35,185-188.
    陈梁鸿,王新望,张晓东.(1998).基因枪转化小麦不同受体的研究.华北农学报13,1-5.
    陈绪清,张晓东,梁荣奇,张立全,杨凤萍,曹鸣庆.(2004).玉米C4型pepc基因的分子克隆及其在小麦的转基因研究.科学通报 49,1976-1982.
    成卓敏,何小源,陈彩层,张杰,肖红,周广和.(1993).大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株.自然科学进展3,560-564.
    戴延波,曹卫星,孙传范,姜东,荆奇.(2003).增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响.应用生态学报14,1529-1532.
    邓新.(2004).小麦黄色花叶病毒转基因小麦的检测和获得[硕士学位论文].北京:中国农业大学.
    董槿,韩成贵,张凌娣,陈秀兰,张凌娣,刘伟华,韩月澎,王锦荣,翟亚峰,于嘉林,等.(2002).抗小麦黄花叶病毒转基因小麦的获得及病毒诱导的基因沉默.科学通报47,763-767.
    董莉莉,李友军,吴金芝,黄明.(2008).施用不同形态氮肥对土壤供氮能力及冬小麦氮素利用的影响.河南农业科学8,81-83.
    杜瑛,李平.(2011).小麦不同生育期硝酸还原酶活性的测定.安徽农业科学39,16517-16518.
    段远霖,李合生.(1999).不同光质和钙对小麦幼苗硝酸还原酶和谷氨酞胺合成酶活性的影响.植物生理学通讯35,122-125.
    范桂枝,蔡庆生.(2005).植物对大气CO2浓度升高的光合适应机理.植物学通报22,486-490.
    封克,汤炎,张素玲.(2001).铵离子对不同基因型水稻吸收硝酸根离子的影响.植物生理学通讯37,192-194.
    傅荣昭,曹光诚,马江生.(1997).用基因枪将人工雄性不育基因导入小麦的研究初报.遗传学报24,358-361.
    傅荣昭.(1994).植物遗传转化技术手册.北京:中国科学技术出版社.
    高廷东.(2003).光和不同形态氮互作对小麦幼苗碳氮同化的影响[硕士学位论文].山东:山东农业大学.
    郭战玲,沈阿林,寇长林,马政华,王守刚.(2008).不同小麦品种开花后硝酸还原酶活性与氮效率的关系.植物生理科学24,219-223.
    何道一,李中存,王洪刚.(2003).农杆菌介导的小麦活体转化.中国农业科学36,1437-1441.
    何新华,AnnOak, S.,李明启.(1994).C3和C4植物的氮素利用效率.云南植物研究16,93-94.
    贺杰,胡海燕,周岩,赵俊杰,魏琦超.(2011).农杆菌介导小麦遗传转化影响因素的研究.河南农业科学 40,41-44.
    黄培堂等译.(2002).分子克隆实验指南.北京:科学出版社.
    黄益洪,刘春光,马鸿翔,刘根齐,周淼平,于桂红,陆维忠.(2004).小麦花粉管途径转化及高效筛选体系的建立.分子植物育种2,777-782.
    黄益洪,周淼平,叶兴国,唐克轩,程红梅,陆维忠.(2002).农杆菌介导法获得小麦转基因植株的研 究.作物学报28,510-515.
    康乐,叶兴国,徐惠君,杜丽璞.(2005).葡萄糖氧化酶基因转化小麦的研究.作物学报31,686-691.
    李胜国,刘玉乐.朱锋,罗玉英,康良仪,田波.(1995).基因工程雄性不育烟草的获得.植物学报37,659-660.
    李胜国,刘玉乐,朱锋,罗玉英,康良仪,田波.(1997).基因工程雄性不育烟草及其温度敏感性.植物学报39,231-235.
    李砚川.(2011).根癌农杆菌介导的小麦成熟胚遗传转化研究.湖北农业科学17,3637-3639.
    李艳红,肖兴国.(1999).将新的人工雄性不育基因导入小麦栽培品种的研究初报.农业生物技术学报7,255-258.
    李艳红,肖兴国,赵广荣.(1997).小麦转基因研究进展.中国青年农业科学学术年报(B卷)pp.551-556.
    梁辉,郑近,段霞瑜,盛宝钦,贾双娥,李文义,唐顺学,欧阳俊闻,李家洋,李良材,等.(1999).用基因枪法获得抗白粉病转芪合酶基因小麦.科学通报 44,2644-2647.
    梁欣欣,刘录徉,赵林妹,张举仁,郭会君,赵世荣.(2007).农杆菌介导法向小麦茎尖导入DREB1A基因的研究初报.麦类作物学报27,16-19.
    廖祥儒,朱新产.(1996).氨积累对植物生长发育的效应.农业环境保护15,281-287.
    廖勇,张增艳,杜丽璞,徐慧君,姚乌兰,石建业,任正隆,辛志勇.(2007).中间偃麦草RAR1基因的分离及其在小麦背景中的功能分析.中国农业科学40,1667-1674.
    林中叶.(2008).大肠杆菌分泌表达重组Barnase[硕士学位论文].厦门:厦门大学.
    刘录祥,郑企成,赵林妹,张义丰,王晶,赵世荣,陈文华.(2001).小麦遗传转化无基因型障碍受体系统的研究.核农学报,15,308-310.
    马林,孟凡德,石书兵,宋维彦,聂文魁,刘心雨,郭飞.(2007).不同耕作方式对小麦硝酸还原酶活性和旗叶衰老指标的影响.新疆农业大学学报30,23-27.
    牟红梅,刘树俊,周文娟,文玉香,张文俊,魏荣瑄.(1999).慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析.遗传学报26,634-642.
    聂绚丽.(2010).拟南芥花药特异性启动子ATAF内克隆及功能分析[博士学位论文].北京:中国农业大学.
    邱树毅,姚汝华,宗敏华.(1999).超声波在生物工程中的应用.生物工程进展19,45-48.
    任鹏,布都会,奚亚军,王竹林,吕晓依,刘曙东,王彦民.(2007).卡霉素对不同小麦品种的效应及其在遗传转化筛选中的应用.麦类作物学报27,438-441.
    石珍源,殷桂香,杜丽璞,陶莉丽,徐慧君,叶兴国.(2011).小麦大龄幼胚再生性能改进与农杆菌转化.中国农业科学44,225-232.
    宋松泉,王永锐,傅家瑞.(1993).高等植物中硝酸还原酶的研究进展.作物杂志4,32-35.
    孙本普,王勇,李秀云,刘锋,王继诰,张宝民,孙在刚,曲百收,袁训成,李萌.(2004).不同年份的气候和栽培条件对冬小麦产量构成因素的影响.麦类作物学报24,83-87.
    孙菲菲,侯喜林,李英,高红亮,张昌伟.(2009).不结球白菜硝酸还原酶基因BcNR的克隆及其在拟南芥中的转化.中国农业科学42,577-587.
    孙晓红.(2004).codA基因的克隆及其在转基因植物中的表达分析[硕士学位论文].北京:中国农业大 学.
    王福聚.(2003).硝酸还原酶基因在芸薹属蔬菜上的转化及其表达[硕士学位论文].北京:中国农业大学.
    王关林,方宏筠.(2009).植物基因工程.北京:科学出版社.
    王凯,杜丽璞,张增艳,廖勇,徐慧君,姚乌兰,杨昆,邵艳军,辛志勇.(2008).中间偃麦草SGT1基因的克隆及其抗病功能的分析.作物学报34,520-525.
    王利群,王勇,董英,王文兵.(2003).酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆.生物工程学报,19,632-634.
    王琦,冯二艳,王荣,任嘉红.(2013).RACE法克隆甜菜NR基因及生物信息学分析.广西学报,33,89-95.
    王宪泽,张树芹.(1999).不同蛋白质含量小麦品质叶片NRA与氮素积累关系的研究.西北植物学报19,315-320.
    王艳丽,叶兴国,刘艳鹏,杜丽璞,徐慧君.(2005).农杆菌敏感小麦基因型的筛选研究.麦类作物学报5,6-10.
    王永芳,张军,崔润丽,李伟,智慧,李海权,刁现民.(2009).利用花粉管通道转化谷子DNAj基因获得转基因小麦.华北农学报24,17-21.
    王永勤,肖兴国,张爱民.(2002).农杆菌介导的小麦遗传转化几个影响因素的研究.遗传学报29,260-265.
    王勇.(2002).Cre/loxP定位重组系统在植物雄不育和杂种优势中的利用研究[博士学位论文].哈尔冰:东北农业大学.
    王志林.(2006).肠杆菌脱酰酶和脱氨酶基因在转基因植物中的功能分析与应用研究[博士学位论文].北京:中国农业大学.
    文汉,叶爱华,蔡永萍.(2001).硝酸还原酶活性与小麦叶片衰老及粒重的关系.中国农学通报17,11-13.
    吴茂森,田苗英,陈彩层,张文蔚,成卓敏.(2000).通过花粉管途径将BYDV-GPV株系缺失复制酶基因导入小麦.农业生物技术学报8,125-127.
    伍碧华,任正隆.(1996).2,4-D、KT和6-BA在小麦幼穗愈伤组织诱导和生长中的效应.四川大学学报(自然科学版)33,55-61.
    伍娟,董英,张志燕,谭小力.(2006).光和硝酸盐对番茄硝酸还原酶转录和酶活的调控.江苏农业科学22,475-476.
    吴颐泽译.(1985).植物硝酸盐运输与同化的温度适应性,植物营养生理进展.pp 88-93.
    奚亚军,候文胜,张启发,路明.(2002).卡那霉素在转基因小麦后代筛选中的应用研究.西北农业学报11,17-20.
    奚亚军,林拥军,张启发,侯文胜,路明.(2004a).利用花粉管通道法将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究.作物学报30,608-612.
    奚亚军,张启发,林拥军,侯文胜,路明.(2004b).利用农杆菌浸种法将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究.中国农业科学37,1235-1238.
    夏光敏,李忠谊,贺晨霞,陈惠民,Richard,B.(1999).根癌农杆菌介导小麦转基因植株再生.植物生 理学报25,22-28.
    肖兴国,张爱民,聂秀玲.(2000).转基因小麦的研究进展与展望.农业生物技术学报8,111-116.
    邢莉萍,王华忠,蒋正宁,倪金龙,曹爱忠,于玲,陈佩度.(2008).类甜蛋白基因的转化及转基因植株的抗病性分析.作物学报34,349-354.
    幸享泰.(1986).水分胁迫对不同类型小支幼苗NR活力效应研究.硝酸还原酶与生化育种-全国学术交流会论文摘要汇编.湖北:孝感.
    徐春晖,夏光敏,贺晨霞.(2002).农杆菌转化系统研究进展.生命科学14,223-225.
    徐惠君,庞俊兰,叶兴国,杜丽璞,李连城,辛志勇,马有志,陈建平,陈炯,程顺,等.(2001).基因枪法向小麦导入黄花叶病毒复制酶基因的研究.作物学报27,688-693.
    徐琼芳,田芳,陈孝,侯文胜,李连城,杜丽璞,徐惠君,辛志勇.(2004).转基因抗虫小麦中sgna基因的遗传分析及抗虫性鉴定.作物学报30,475-480.
    徐子勤,Becker, D., Lorz, H. (2001a)通过卡那霉素选择体系再生可育小麦转基因植株.自然科学进展11,486-491.
    徐子勤.(200b).重要禾本类植物转基因研究.生物工程进展21,59-74.
    颜泽洪,万永芳,刘坤凡.(2001).一种新型高分子量麦谷蛋白亚基的鉴定及其同源蛋白间氨基酸序列的差异.科学通报46,1454-1459.
    燕飞,郑银英,张文蔚,肖红,李世访,成卓敏.(2006).农杆菌介导法获得转pac1基因小麦并表现对大麦黄矮病毒的抗性.科学通报51,1906-1912.
    叶兴国,Shirley, S.,徐惠君,杜丽璞,Tom., C. (2001).麦农杆菌介导转基因植株的稳定获得和检测.中国农业科学34,465-468.
    叶兴国,程红梅,徐惠君,杜丽璞,陆维忠,黄益洪.(2005).转几丁质酶和β-1,3-葡聚糖酶双价基因小麦的获得和鉴定.作物学报31,583-586.
    于承艳,都韶婷,刑承华,林咸永,章永松.(2006).CO2浓度对番茄幼苗生长及养分吸收的影响.浙江大学学报 32,307-312.
    喻修道,徐兆师,陈明,李连城,马有志.(2010).小麦转基因技术研究及其应用.中国农业科学43,1539-1553.
    曾君祉,王东江,吴有强,张健,周文娟,朱小平.(1993).用花粉管途径获得小麦转基因植株.中国科学(B辑)23,256-262.
    张彬,丁在松,张桂芳,石云鹭,王金明,方立锋,郭志江,赵明.(2007).根癌农杆菌介导获得稗草Ecppc转基因小麦的研究.作物学报33,356-362.
    张绪成,上官周平.(2007).施氮量对小麦叶片硝酸还原酶活性、一氧化氮含量和气体交换的影响.应用生态学报18,1447-1452.
    张世英,程炳嵩.(1987).硝酸还原酶及其活力调节因子.山东农业大学学报18,81-88.
    张晓东.(1997).高压氦气基因枪轰击小麦花药、幼德、幼胚、和胚性愈伤组织将除草剂Basra抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株.中国生物工程学会第二届学术讨论会论文集.河北:张家界.
    张新梅,徐惠君,杜丽璞,叶兴国,辛志勇,郭蔼光,薛崧,马有志.(2004).共转化法剔除转基因小麦中的bar基因.作物学报30,26-30.
    张艳萍,陈玉梁,张正英,肖兴国.(2009).农杆菌介导法将硝酸还原酶基因导入大白菜的研究.安徽农业科学37,14597-14599.
    张燕敏,扬帆,温之雨,赵和,王海波.(2006).卡那霉素筛选转基因小麦种子关键技术研究.河北农业学报10,1-4.
    赵献林,夏先春,刘丽,何中虎,孙其信.(2007).小麦低分子量麦谷蛋白亚基及其编码基因研究进展.中国农业科学40,440-446.
    赵小强,肖兴国.(2011).小麦转基因抗除草剂的研究与开发进展.中国作物学会50周年庆祝会暨2011年学术年会论文集.四川:成都.
    郑建敏,李浦,廖晓红,杨梅,饶世达,蒲宗君.(2012).四川冬小麦产量构成因子初步分析.作物杂志1,105-107.
    周芳菊,陈桥生,张道荣,汤清益,姜齐兵,王艳,刘先斌,陆天泰.(2012).小麦产量构成因素的相关性分析.湖北农业学报51,5287-5289.
    周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.(2006).小麦产量性状的QTL分析.麦类作物学报26,35-40.
    周阮宝,谷丽萍.(1994).植物硝酸还原酶的研究进展.植物杂志3,5-7.
    周雪荣,彭仁旺,方荣祥,陈正华,莽克强(1997).表达核糖核酸酶基因的雄性不育油菜的获得.遗传学报24,531-536.
    周月琴,庞磊,李叶云,江昌俊.(2013).茶树硝酸还原酶基因克隆及表达分析.西北植物学报 33,1292-1297.
    朱建伟.(2008).若干植物启动子的克隆及功能分析[博士学位论文].北京:中国农业大学.
    朱新开,周君良,封超年,郭文善,彭永欣.(2005).不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析.作物学报31,342-347.
    Agarwal, S., Nikolai, B., Yamaguchi, T., Lech, P., and Somia, N.V. (2006). Construction and use of retroviral vectors encoding the toxic gene barnase. Mol. Ther.14,555-563.
    Aguera, E., Ruano, D., Cabello, P., and de la Habe, P. (2006). Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber(Cucumis sativus L.) plants. J. Plant Physiol. 163,809-817.
    Altpeter, F., Diaz, I., McAuslane, H., Gaddour, K., Carbonero, P., and Vasil, I.K. (1999). Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol. Breed.5,53-63.
    Alvatez, M.L., Guelman, S., Halford, N.G., Lustig, S., Reggiardo, M.I., Ryabushkina, N., Shewry, P., Stein, J., and Vallejos R.H. (2000). Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits.Theor. Appl. Genet.100,446-449.
    Amoah, B.K., Wu, H., Sparks, C., and Jones, H.D. (2001). Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J. Exp. Bot.52,1135-1142.
    Anand, A., Trick, H.N., and Gill, B. S. (2003). Stable transgene expression and random gene silencing in wheat. Plant Biotechnol. J.1,241-251.
    Appenroth, K., Meco, R., Jourdan, V, and Lillo C. (2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci.159,51-56.
    Back, E., Dunne, W., Schneiderbauer, A., de Framond, A., Rastogi, R., and Rothstein, S.J. (1991). Isolation of spinach nitrite reductase gene promoter which confers nitrate inducibility on gus gene expression in transgenic tobacco. Plant Mol. Biol.17,9-18.
    Barber, M.J., Desai. S.K., Marohnic, C.C., Hernandez, H.H., and Pollock, V.V. (2002). Synthesis and bacterial expression of a gene encoding the heme domain of assimilatory nitrate reductase. Arch. of Biochem. Biophys.402,38-50.
    Becker, D., Brettschneider, R., and Lorz. H. (1994). Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J.5,299-307.
    Becker, Y.W., and Fock, H.P. (1986). The activity of nitrate reductase and pool size of some amino-acids and some sugars in water-stressed maize leaves. Photosyn. Res.8,261-274.
    Bent, A.F. (2000). Arabidopsis in planta transformation uses mechanisms and prospects for transformation for other species. Plant Physiol.124,1540-1547.
    Bhalla, P.L., Ottenhof, H.H., and Singh, M.B. (2006). Wheat transformation an update of recent progress. Euphytica 149,353-366.
    Bieri, S., Potrykus, I., and Futterer, J. (2000). Expression of a barley seed ribosome-inactivating protein in transgenic wheat. Theor. Appl. Genet.100,755-763.
    Binka, A., Orcezyk, W., and Nadoiska-Orczyk, A. (2012). The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack):role of the binary vector system and selection cassettes. J. Appl. Genet.53,1-8.
    Blechl, A.E., and Anderson, O.D. (1996). Expression of a novel high molecular-weight glutenin subunit gene in transgenic wheat. Nat. Biotechnol.14,875-879.
    Bloom, A.J., Burger, M., Rubio-Asensio, J.S., and Cousins A.B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328,899-903.
    Brunner, S., Hurni, S., Herren, G., Kalinina, O., von Burg, S., Zeller, S., Schmid, B., Winzeler, M., and Keller B. (2011). Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnol. J.9,897-910.
    Buchanan, B.B., Gruissem, W., and Jones, R.L. (2000). Biochemistry and Molecular Biology of Plants. (Rockville:American Society of Plant Physiologists).
    Caboche, M., and Rouze, P. (1990). Nitrate reductase:a target for molecular and celluar studies in higher plants. Trends Genet.6,187-192.
    Campbell, W.H. (1996). Nitrate reductase biochemistry comes of age. Plant Physiol. 111,355-361.
    Campbell, W.H. (2001). Structure and function of eukaryotic NAD (P) H:nitrate reductase. Cell. Mol. Life Sci.58,194-204.
    Campbell, W.H., and Kinghorn, J.R. (1990). Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem. Sci.15,315-319.
    Capron, D., Mouzeyar, S., Boulaflous, A., Girousse, C., Rustenholz, C., Laugier, C., Paux, E., and Bouzidi M.F. (2012). Transcriptional profile analysis of E3 ligase and hormone-related genes expressed during wheat grain development. BMC Plant Biol.12,35.
    Chan, M.T., Chang H.H., Ho S.L., Tong, W.F., and Yu, S.M. (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol.22.491-506.
    Chauhan, H., and Khurana, P. (2011). Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol. J.9,408-417.
    Chen, L., Zhang, Z.Y., Liang, H.X., Liu, H.X., Xu, H.J., and Xin, Z.Y. (2008). Overexpression of TiERFl enhances resistance to sharp eyespot in transgenic wheat. J. Exp. Bot.59,4195-4204.
    Chen, W.P.. Chen, P.D., Liu, D.J., Kynast, R., Friebe B., Velazhahan R., Muthukrishnan, S., and Gill, B.S. (1999). Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet.99,755-760.
    Chen, Z., He, C.L., and Hu, H.H. (2012). Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 16,127-133.
    Cheng, C.L., Acedo, G.N., and Conkling, M.A. (1992). Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc.Natl. Acad. Sci. U.S.A.89,1861-1864.
    Cheng, C., Dewdney, J., Nam, H.G., den Boer, B.G., and Goodman H.M. (1988). A new locus (NIA1) in Arabidopsis thaliana encoding nitrate reductase. EMBO J.7,3309-3314.
    Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., and Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol.115, 974-980.
    Chumakov, M.I., Kurbanova, I.V., and Solovova, G.K. (2002). Agrobacterial transformation of uninjured plants. Russ. J. Plant Physiol.49,799-803.
    Clausen, M., Krauter, R., Schachermayr, G., Potrykus, I., and Sautter, C. (2000). Antifungal activity of a virally encoded gene in transgenic wheat. Nat. Biotechnol.18,446-449.
    Correia, M.J., Fonseca, F., Azedo-Silva, J., Dias, C., David, M.M., Barrote, I., Osorio, M.L., and Osorio, J. (2005). Effects of water deficiton the activity of nitrate reductase and content of sugars, nitrateand free amino acids in the leaves and roots of sunflower andwhite lupin plants growing under two nutrient supply regimes. Physiol Plant 124,61-70.
    Crawford, N.M., Campbell, W.H., and Davis, R.W. (1986). Nitrate reductase from squash:cDNA cloning and nitrate regulation. Proc.Natl. Acad. Sci. U.S.A.83,8073-8076.
    Crawford, N.M. (2006). Mechanisms for nitric oxide synthesis in plants. J. Exp. Bot.57,471-478.
    Curtis, I.S., Power, J.B., de Laat, A.M.M., Caboche, M., and Davey, M.R. (1999). Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep.18,889-896.
    Daniel-Vedele, F., Dorbe, M.F., Caboche, M., and Rouze, P. (1989). Cloning and analysis of the tomato nitrate reductase-encoding gene:protein domain structure and amino acid homologies in higher plants.Gene 85,371-380.
    de Block, M, Debrouwer, D., and Moens, T. (1997). The development of a nuclear male sterility system in wheal. Expression of the barnase gene under the control of tapetum specific promoters. Theor. Appl. Genet.95,125-131.
    de Borne, F.D., De Roton, C., Delon, R., and Chupeau, Y. (1994). Etude du comportement agronomique de tabacs industriels transgeniques presentant une activite nitrate reductase elevee. Annales du Tabac 26, 19-37.
    de Borne, F.D. (1993). Obtention de tabacs industriels transgeniques a teneur reduites en nitrate. University Paris-Sud, Orsay.
    Deckard, E.L., and Busch, R.H. (1978). Nitrate reductase assays as a prediction test for crosses and lines in spring wheat. Crop Sci 18,289-293.
    Deng, M.D., Moureaux, T., Cherel, I., Boutin. J.P., and Caboche, M. (1991). Effects of nitrogen metabolites on the regulation and circadian expression of tobacco NR. Plant Physiol. Biochem.29, 239-247.
    Ding, L.P., Li, S.C., Gao. J.M., Wang, Y.S., Yang, G.X., and He, GY. (2009). Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol. Biol. Rep. 36,29-36.
    Djennane, S., Chauvin, J.E., and Meyer, C. (2002a). Glasshouse behaviour of eight transgenic potato clones with a modified nitrate reductase expression under two fertilization regimes. J. Exp. Bot.53, 1037-1045.
    Djennane, S., Chauvin, J.E., Quillere, I., Meyer, C., and Chupeau, Y. (2002b). Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers. Transgenic Res.11,175-184.
    Djennane, S., Quillere, I., Leydecker, M.T., Meyer, C., and Chauvin, J.E. (2004). Expression of a deregulated tobacco nitrate reductase gene in potato increases biomass production and decreases nitrate concentration in all organs. Planta 219,884-893.
    Dubois, V., Botton, E., Meyer, C, Rieu, A., Bedu, M., Maisonneuve, B., and Mazier, M. (2005). Systematic silencing of a tobacco nitrate reductase transgene in lettuce(Lactuca sativa L.). J. Exp. Bot.56:2379-2388.
    Eick, M., and Stohr, C. (2012). Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase. Protoplasma 249,909-918.
    Ermakova, E.A. (2006). A comparative study of the interaction of Bacillus amyloliquefaciens ribonuclease (barnase) and Bacillus intermedius ribonuclease (barnase) with barstar by brownian dynamics simulation. Biophysics 51,202-208.
    Fahim, M., Ayala-Navarrete, L., Millar, A.A.. and Larkin, P.J. (2010). Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnol. J.8,821-834.
    FAOSTAT. (2010). Agriculture date available on http://faostat.fao.org/site/368/Desktop Default. aspx?PageID=368#ancor.
    Ferrari, T.E., Yoder, O.C., and Filner, P. (1973). Anaerobic nitrate production by plant cell and tissues: evidence for two nitrate pools. Plant Physiol.51,423-431.
    Ferrario-Mery, S., Murchie, E., Hirel, B., Galtier, N., Quick. W.P., and Foyer, C.H. (1997). Manipulation of the pathways of sucrose biosynthesis and nitrogen assimilation in transformed plants to improve photosynthesis and productivity. A Molecular Approach to Primary Metabolism in Higher Plants Foyer. C.H., and Quick, W.P. ed. (London:Taylor & Francis Publishers), pp.125-153.
    Ferrario-Mery, S., Valadier, M.H., and Foyer, C.H. (1998). Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol.117, 293-302.
    Foyer, C.H., Lescure, J.C., Lefebvre, C., Morot-Gaudry, J.F., Vincentz, M., and Vaucheret, H. (1994). Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol.104, 171-178.
    Fresneau, C, Ghashghaie, G., and Cornic, G. (2007). Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.):role of leaf internal CO2. J. Exp. Bot.58,2983-2992.
    Friemann, A., Brinkmann, K., and Hachtel, W. (1991). Sequence of a cDNA encoding bi-specific NAD(P)H-nitrate reductase from the tree Betula pendula and identification of conserved protein regions. Mol. Gen. Genet.227,97-105.
    Galangau, F., Daniel-Vedele, F., Moureaux, T., Dorbe, M.F., Leydecker, M.T., and Caboche, M. (1988). Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol.88,383-388.
    Gao, S.Q., Chen, M., Xia, L.Q., Xiu, H.J., Xu, Z.H., Li, L.C., Zhao, C.P., Cheng, X.G., and Ma, Y.Z. (2009). A cotton(Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep.28, 301-311.
    Gao, S.Q., Xu, H.J., Cheng, X.G., Chen, M., Xu, Z.S., Li, L.C., Ye, X.G., Du, L.P., Hao, X.Y., and Ma, Y.Z. (2005). Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chin. Sci. Bull.50,2714-2723.
    Garnica, M., Houdusse, F., Zamarreno, A.M., and Garcia-Mina, D.J.M. (2010). Nitrate modifies the assimilation pattern of ammonium and urea in wheat seedlings. J. Sci. Food Agric.90,357-369.
    Gerendas, J., Zhu, Z.J., Bendixen. R., Ratcliffe, R.G., and Sattelmacher, B. (1997). Physiological and biochemical processes related to ammonium toxicity in higher plants. J Plant Nutr Soil Sci 160, 239-251.
    Hansen, G., and Chilton, M.D. (1996). "Agrolistic"transformation of plant cells:Integration of T-strands generated in planta. Proc. Nati. Acad. Sci. U.S.A.93,14978-14983.
    Hartley, R.W., and Barker, E.A. (1972). Amino-acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens. Nature New Biol.235,15-16.
    Harwood, W.A., Bartlett, J.G., Alves, S.C., Perry, M., Smedley, M.A., Leyland, N., and Snape, J.W. (2009). Barley transformation using Agrobacterium-mediated technique. Methods Mol. Biol.478,137-147.
    Harwood, W.A. (2012). Advance and remaining challenges in the transformation in the transformation of barley and wheat. J. Exp. Bot.63,1791-1798.
    Hauptmann, R.M., Ozias-Akins, P., Vasil, V.. Tabaeizadeh, Z., Rogers, S.G., Horsch, R.B., Vasil, I.K., and Fralcy, R.T. (2003). Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep.6,265-270.
    He, Y, Jones, H.D., Chen, S., Wang, D.W., Li, K.W., Wang, D.S., and Xia, L.Q. (2010). Agrobacterium-mediated transformation of durum wheat(Triticum turgidum L. var. durum cv. Stewart) with improved efficiency. J. Exp. Bot.61,1567-1581.
    Hensel, G., Himmelbach, A., Chen, W.X., Douchkov, D.K., and Kumlehn, J. (2011). Transgene expression systems in the Triticeae cereals. J. Plant Physiol.168,30-44.
    Hernandez, H.H., Walsh, E.D., and Bauer, A. (1974). Nitrate reductase of wheat-its relation to nitrogen fertilization. Cereal Chem 51,330-336.
    Hiei, Y, Ohta S., Komari T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J.6, 271-282.
    Hoff, T., Truong, H.N., and Caboche, M. (1994). The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ.17,489-506.
    Hu, T., Metz, S., Chay, C., Zhou, H.P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F., et al. (2003). Agrobacterium mediated large-scale transformation of wheat(Triticum aestivum L.) using glyphosate selection. Plant Cell Rep.21,1010-1019.
    Huang, S.H., Ratliff, K.S., Schwartz, M.P., Spenner, J.M., and Matouschek, A.(1999). Mitochondria unfold precursor proteins by unraveling them from their N-termini. Nat. Struct. Biol.6,1132-1138.
    Hyde, G.E., Crawford, N.M., and Campbell, W.H. (1991). The sequence of squash NADH:nitrate reductase and its relationship to the sequences of other flavoprotein oxidoreductases. J. Biol. Chem. 266,23542-23547.
    Itoh, T., Tanaka, T., Barrero, R.A., Yamasaki, C., Fujii, Y., Hilton, P.B., Antonio, B.A., Aono, H., Apweiler, R., Bruskiewich, R., et al. (2007). Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res.17,175-183.
    Janni, M., Sella, L., Favaron, F., Blechi, A.E., de Lorenzo, G., and Ovidio, R.D. (2008). The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol. Plant Microbe Interact.21,171-177.
    Jenner, C.F., Ugalde, T.D., and Aspinall, D. (1991). The Physiology of starch and protein deposition in the endosperm of wheat. Aust. J. Plant Physiol.18,211-216.
    Jensen, P.E., Hoff, T., Stummann, B.M., and Henningsen, K.W. (1996). Functional analysis of two bean nitrate reductase promoters in transgenic tobacco. Physiol Plant 96,351-358.
    Kaiser, W.M., and Brendle-Behnisch, E. (1991). Rapid modulation of Spinash leaf nitrate reductase activity by photosynthesis:I. Modulation in vivo by CO2 availability. Plant Physiol.96,363-367.
    Kaiser, W.M., Planchet, E., and Rumer, S. (2011). Nitrate reductase and nitric oxide. In Annual Plant Reviews. Nitrogen Metabolism in Plants in the Post-genomic Era. Foyer, C.H., Zhang, H. ed.(Chichester, UK:Wiley-Blackwell), pp.127-146.
    Kaiser, W.M., Spill, D., and Brendle-Behnisch, E. (1992). Adenine nucleotide are apparently involves in the light-dark modulation of spinach-leaf nitrate reductase. Planta 186,236-240.
    Kaiser, W.M., Weiner, H., and Huber, S.C. (1999). Nitrate reductase in higher plants:a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105,384-389.
    Kaiser, W.M., Weiner, H., Kandlbinder, A., Tsai, C.B., Rockel, P., Sonoda, M., and Planchet, E. (2002). Modulation of nitrate reductase:some new insights, an unusual case and a potentially important side reaction. J. Exp. Bot.53,875-882.
    Kashkush, K., Feldman, M., and Levy, A.A. (2002). Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160,1651-1659.
    Khanna, H.K., and Daggard, G.E. (2003). Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep.21, 429-436.
    Khurana, J., Chugh, A., and Khurana, P. (2002). Regeneration from mature and immature embryos and transient gene expression via Agrobacterium-mediated transformation in emmer wheat(Triticum diccocum Schuble). Indian J. Exp. Biol.40,1295-1303.
    Kichey, T., Hirel, B., Heumez, E., Dubois, F., and Gouis, J.L. (2007). In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Res.102,22-32.
    Klein, T.M., Wolf, E.D., Wu, R., and Sanford, J.C. (1987). High-velocity microprojectiles for delivering acids into living cells. Nature 327,70-73.
    Kleinhofs, A., and Flesher, D. (1990). Advances in nitrogen assimilation. In intermediary Nitrogen Metabolism, Miflin, B. J., and Lea, ed. (San Diego:Academic), pp.89-120.
    Konishi, M., and Yanagisawa, S. (2011). Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochem. Biophys. Res. Commun.411,708-713.
    Kronzuker, H.J., Glass, A.D.M., and Siddiqi, M.Y. (1999). Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes. Plant Physiol.120,283-291.
    Kubo, Y., Ogura, N., and Nakagawa, H. (1998). Limited proteolysis of the nitrate reductase from spinach leaves. J. Biol. Chem.263,19684-19689.
    Kumari, S. (2011). Yield response of uniculm wheat (Triticum aestivum L.) to early and late application of nitrogen:flag leaf development and senescence. J. Agric. Sci.3,170-182.
    Lambeck, I.C., Fischer-Schrader, K., Niks, D., Roeper, J., Chi, J.C., Hille, R., and Schwarz, G. (2012). Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase. J. Biol. Chem. 287,4562-4571.
    Langridge, P., Brettschneider, R., Lazzeri, P., and Lorz, H. (1992). Transformation of cereals via Agrobacterium and the pollen pathway:a critical assessment. Plant J.2,631-638.
    Lawlor, D.W., Boyle, F.A., Kendall, A.C., and Keys, A.J. (1987). Nitrate nutrition and temperature effects on wheat:enzyme composition, nitrate and total amino acid content of leaves. J. Exp. Bot.38, 378-392.
    Lee, L.P., and Tidor, B. (2001). Barstar is electrostatically optimized for tight binding to barnase. Nat. Struct. Biol.8,73-76.
    Leuchtenberger, S., Perz, A., Gatz, C., and Bartsch, W. (2001). Conditional cell ablation by stringent tetracycline-dependent regulation of barnase in mammalian cells. Nucleic Acids Res.29,76-81.
    Lewis, J.M., Mackintosh, C.A., Shin, S., Gilding, E., Kravchenko. S., Baldridge, G. Zeyen, R., and Muchlbauer, G.J. (2008). Overexpression of the maize Teosinte Branchedl gene in wheat suppresses tiller development. Plant Cell Rep.27,1217-1225.
    Li, Q., Wang, X.F., Ma, L.Y., Wei, M., Shi, Q.H., and Yang, F.J. (2012). Molecular characterization of a cucumber nitrate reductase (CsNR) gene under NO3- stress. Mol. Biol. Rep.39,4283-4290.
    Lillo, C., and Appenroth, K.J. (2001). Light regulation of nitrate reductase in higher plants:which photoreceptors are involved?. Plant Biol 3,455-465.
    Lin, Y., Hwang, C.F., Brown, J.B., and Cheng, C.L. (1994).5'proximal regions of Arabidopsis nitrate reductase genes direct nitrate induced transcription in transgenic tobacco. Plant Physiol.106,477-484.
    Luna, C.M., Casano, L.M., and Trippi, V.S. (2000). Inhibition of wheat nitrate reductase activity by zinc. Biol. Plant.43,257-262.
    Luo, C., Giffin, W.B., Branlard, G., and McNeil, D.L. (2001). Comparison of low-and high molecular-weight wheat glutenin allele effects on flour quality. Theor. Appl. Genet.102,1088-1098.
    Mariani, C., de Beuckeleer, M., Truettner, J., Leemans, J., and Goldberg, B. (1990). Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347,737-741.
    Matsumoto, T., Wu, J., Kanamori, H., Katayose, Y.C., Fujisawa, M., Namiki, N., Mizuno, H., Yamamoto, K., Antonio, B.A., Baba, T., et al. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
    Mauguen, Y., Hartley, R.W., Dodson, E.J., Dodson, G.G., Bricogne, G., Chothia, C., and Jack, A. (1982). Molecular structure of a new family of ribonucleases. Nature 297,162-164.
    Meza, T.J., Kamfjord, D., Hakelien, A.M., Evans, I., Godager, L.H., Mandal, A., Jakobsen, K.S., and Aalen, R.B. (2001). The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environment factors. Transgenic Res.10,53-67.
    Miyazaki, J., Juricek, M., Angelis, K., Schnorr, K.M., Kleinhofs, A., and Warner, R.L. (1991). Characterization and sequence of a novel nitrate reductase from barley. Mol. Gen. Genet.228, 329-334.
    Moghaieb, R.E.A., EI-Arabi, N.I., Momtaz, O.A., Youssef, S.S., and Soliman, M.H. (2010). Genetic transformation of mature embryos of bread (T.aestivum) and pasta (T.durum) wheat genotypes. GM Crops 1,87-93.
    Morel, J.B., Mourrain, P., Beclin, C., and Vaucheret, H. (2000). DNA methylation and chromatin structure affect post-transcriptional transgene silencing in Arabidopsis. Curr. Biol.10,1591-1594.
    Muller, E., Lorz, H., and Lutticke, S. (1996). Variability of transgene expression in clonal cell lines of wheat. Plant Sci.114,71-82.
    Murashige, T., and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15,473-479.
    Nehra, N.S., Chibbar. R., and KaKartha, K.K. (1995). Wheat transformation:methods and prospects. Plant Breed. Abs. 65,803-808.
    Nejidat, A., Zhang, G., Grinberg, M., and Heimer, Y.M. (1997). Increased protein content in transgenic Arabidopsis thaliana over-expressing nitrate reductase activity. Plant Sci.130,41-49.
    Nikolic, M., Cesco, S., Monte, R., Tomast, N., Gottardi, S., Zamboni, A., Pinton, R., and Varanini, Z. (2012). Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance. BMC Plant Biol.12,66.
    Nikovies, K., Simidjieva, J., Peres, A., Ayaydin, F., Pasternak, T., Davies, J.W., Boulton, M.I., Dudits, D., and Horvath, G.V. (2001). Cell-cycle, phase-specific activation of maize streak virus Promoter. Mol. Plant Microbe Interact.14,609-617.
    Oldach, K.H., Becker, D., and Lorz, H. (2001). Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol. Plant Microbe Interact.14,832-838.
    Paddon, C.J., Vasantha, N., and Hartley, R.W. (1989). Translation and processing of Bacillus amyloliquefaciens extracellular RNase. J. Bacteriol.171,1185-1187.
    Padidam, M., Venkatesvarlu, K., and Johri, M.M. (1991). Ammonium represses NADPH-nitrate reductase in the moss Funaria hygrometrica. Plant Sci.75,184-194.
    Park, B.S., Song, J.T., and Seo, H.S. (2011). Arabidopsis nitrate reductase activity is stimulated by the E3 sumo ligase AtsIZ1. Nat. Commun.2,400.
    Patnaik, D., Vishnudasan, D., and Khurana, P. (2006). Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Curr. Sci.91,307-317.
    Pedersen, C., Zimny, J., Becker, D., Jahne-Gartner, A., and Lorz, H. (1997). Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization. Theo Appl Genet 94,749-757.
    Peerbolte, R., Leenhouts, K., Slogteren, G.M.S., and Schilperoort, R.A. (1986). Clones from a shooty tobacco crown gall tumor Ⅱ:. irregular T-DNA structures and organization, T-DNA methylation and co ndit ional expression of opine genes. Plant Mol. Biol.7,285-299.
    Potrykus, I. (1990). Gene transfer to cereals:an assessment. Nat. Biotechnol.8,535-542.
    Prosser, I.M., Massonneau, A., Smyth, A.J., Waterhouse, R.N., Forde, B.G., and Clarkson, D.T. (2006). Nitrate assimilation in the forage legume Lotus japonicus L. Planta 223,821-834.
    Qick, W.P., Schur, U., Fichtner, K., Schulze, E.D., Rodermel, S.R., Bogorad, L., and Stitt, M. (1991). The impact of decreased Rubisco on photosynthesis growth, allocatio and storge in tobacco plants which have been transformed with antisense rbcS. Plant J.1,51-58.
    Quillere, I., Dufosse, C., Roux, Y, Foyer, C.H., Caboche, M., and Morot-Gaudry, J.F. (1994). The effects of deregulation of NR gene expression on growth and nitrogen metabolism of Nicotiana plumbaginifolia plant. J. Exp. Bot.45,1205-1211.
    Raizada, M.N., Brewer, K.V., and Walbot, V. (2001). A maize MuDR transposon promoter shows limited autoregulation. Mol. Gen. Genet.265,82-94.
    Rastogi, R.. Back, E., Schneiderbauer, A., Bowsher, C.G., Moffatt, B., and Rothstein, S.J. (1993). A 330 bp region of the spinach nitrate reductase gene promoter directs nitrate inducible tissue specific in transgenic tobacco. Plant J.4,317-326.
    Redinbaugh, M.G., and Campbell, W.H. (1981). Purification and characterization of NAD(P)H:nitrate reductase and NADH:nitrate reductase from corn roots. Plant Physiol.68,115-120.
    Reitz, S.R., Karowe, D.N., Diawara, M.M., and Trumble, J.T. (1997). Effects of elevated atmospheric carbon dioxide on the growth and linear furanocoumarin content of celery. J. Agric. Food Chem.45, 3642-3646.
    Risacher, T., Craze, M., Bowden, S., Paul, W., and Barsby, T. (2009). Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. Methods Mol. Biol.478, 115-124.
    Rosales, E.P., Iannone, M.F., Groppa, M.D., and Benavides, M.P. (2011). Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol Biochem.49,124-130.
    Rosales, E.P., Iannone, M.F., Groppa, M.D., and Benavides, M.P. (2012). Polyamines modulate nitrate reductase activity in wheat leaves:involvement of nitric oxide. Amino Acids 42,857-865.
    Sahrawat, A.K., Becker, D., Lutticke, S., and Lorz, H. (2003). Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci.165,1147-1168.
    Sairam, R.K., and Dube, S.D. (1984). Effect of moisture stress on nitrate reductase activity in rice in relation to drought tolerance. Indian J. Plant Physiol.27,264-270.
    Samuelson, M.E., Ohlen, E., Lind, M., and Larsson, C.M. (1995). Nitrate regulation of nitrate uptake and nitrate reductase expression in barley grown at different nitrate:ammonium ratios at constant relative nitrogen addition rate. Physiol Plant 94,254-260.
    Schnorr, K.M., Juricek, M., Huang, C.X., Culley, D., and Kleinhofs, A. (1991). Analysis of barley nitrate reductase cDNA and genomic clones. Mol. Gen. Genet.227,411-416.
    Shaw, D.J., and Gray, J.C. (2011). Visualisation of stromules in transgenic wheat expressing a plastid-targeted yellow fluorescent protein. Planta 233,961-970.
    Shin, S., Mackintosh, C.A., Lewis, J., Heinen, S.J., Ramder, L., Diii-Macky, R., Baldridge, G.D., Zeyen, R.J., and Muehlbauer, GJ. (2008). Transgenic wheat expressing a barley class Ⅱ chitinase gene has enhanced resistance against Fusarium graminearum. J. Exp. Bot.59,2371-2378.
    Shiraishi, N., Kubo, Y, Takeba, C., Kiyota, S., Sakano, K., and Nakagawa, H. (1991). Sequence analysis of cloned cDNA and proteolytic fragements for nitrate reductase from Spinacia oleracea L. Plant cell Physiol.32,1031-1038.
    Sivamani, E., Brey, C.W., Talbert, L.E., Young, M.A., Dyer, W.E., Kaniewski, W.K., and Qu, R. (2002). Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Res.11,31-41.
    Smidansky, E.D., Clancy, M., Meyer, F.D., Lanning, S.P., Blake, N.K., Talbert, L.E., and Giroux, M.J. (2002). Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc. Natl Acad. of Sci. U.S.A.99,1724-1729.
    Solomonson, L.P., and Barber, M.J. (1990). Assimilatory nitrate reductase:functional properities and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol.41,225-253.
    Souza, E.J., Martin, J.M., Guttieri, M.J., Habernicht, D.K., Lanning, S.P., Mclean, R., Carlson, G.R., and Talbert, L.E. (2004). Influence of genotype, environment and nitrogen management on spring wheat quality. Crop Sci.44,425-432.
    Sparks, C.A., and Jones, H.D. (2009). Biolistics transformation of wheat. In Jones, H.D., Shewry, P.R., Walker, J. eds. Methods in molecular biology, transgenic wheat, barley and oats, pp.71-92.
    Steven, J.R., and Sobhana, S. (1999). Inducible gene expression in Plants. (New York:CABI Publishing).
    Stewart, G.R., and Orebamjo, J.O. (1979). Some unusual characteristics of nitrate reduction in Erythrina senegalensis DC. New Phytol.83,311-319.
    Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W., and Krapp, A. (2002). Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot.53,959-970.
    Stoger, E., Williams, S., Christou, P., Down, R.E., and Gatehouse, J.A. (1999). Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol. Breed.5,65-73.
    Stoger, E., Williams, S., Keen, D., and Christou, P. (1998). Molecular characteristics of transgenic wheat and the effect on transgene express. Transgenic Res.7,463-471.
    Stohr, C., and Ullrich, W.R. (2002). Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot.53,2293-2303.
    Streit, L., Martin, B.A., and Harper, J.E. (1987). A method for the separation and the partial purification of the three forms of nitrate reduction present in wild-type soybean leaves. Plant Physiol.84,654-657.
    Sun, Q.Q., Zhang, Y, Rong, T.Z., Dong, S.T., and Zuo, Z.P. (2007). Transfer and detection of barstar gene to maize inbred line 18-599 (white) by particle bombardment. Agric. Sci. in China 6,101-105.
    Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M., and Kojima, M. (2006). Development of Simple and Efficient in Planta Transformation Method for Wheat (Triticum aestivum L.) Using Agrobacterium tumefaciens. J. Biosci. Bioeng.102,162-170.
    Tamas, C, Kisgyorgy, B.N., Rakszegl, M., Wilkinson, M.D., Yang, M.S., Lang, L., Tamas, L., and Bedo, Z. (2009). Transgenic approach to improve wheat(Triticum aestivum L.) nutritional quality. Plant Cell Rep.28,1085-1094.
    Tang, P.S., and Wu, H.Y. (1957). Adaptive formation of nitrate reductase in rice seedlings. Nature 179, 1355-1356.
    Timofeev, V.P., Balandin, T.G., Tkachev, Y.V., Novikov, V.V., and Deev, S.M. (2007). Dynamic spin label study of the barstar-barnase complex. Biochemistry 72,994-1002.
    Truong, H.N., Vaucheret, H., Quillere, I., Morot-Gaudry, J.F., and Caboche, M. (1994). Utilization of transgenesis for the analysis of nitrate metabolism. C. R. Soc. Biol.,188,140-149.
    Tucker, D.E., Allen, D.J., and Ort, D.R. (2004). Control of nitrate reductase by circadian and diurnal rhythms in tomato. Planta 219,277-285.
    Vasil, V., Srivastava, V., Castillo, A.M., Fromm, M.E., and Vasil, I.K. (1993). Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Nat. Biotechnol.11, 1153-1158.
    Vaughn, K.C., and Campbell, W.H. (1988). Immunogold localization of nitrate reductase in maize leaves. Plant Physiol.88,1354-1357.
    Veraverbeke, W.S., and Delcour, J.A. (2002). Wheat protein composition and properties of the glutenin in relation to breadmaking functionality. Crit Rev in Food Sci and Nutr 42,179-208.
    Vincentz, M., and Caboche, M. (1991). Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia. EMBO J.10,1027-1035.
    Vishnudasan, D., Tripathi, M.N., Rao, U., and Khurana, P. (2005). Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Res.14, 665-675.
    Voss, C., Lindau, D., and Flaschel, E. (2006). Production of recombinant RNase Ba and its application in downstream processing of plasmid DNA for pharmaceutical use. Biotechnol. Prog.22,731-744.
    Vouillot, M.O., Machet, J.M., and Meynard, J.M. (1996). Relationship between the amount of reduced nitrogen accumulated in winter wheat shoots and the activity of nitrate reductase measured in situ. Eur J Agron 5,227-236.
    Walsh, D.E., Hernandez, H.H., and Bauer, A. (1976). The relation of wheat nitrate reductase and soil nitrate to flour quality. Cereal Chem.53,469-477.
    Wang, M.B., and Waterhouse, M. (1997). A rapid and simple method of assaying plants transformed with hygromycin or PPT resistance genes. Plant Mol. Biol. Rep.15,209-215.
    Wang, T., Tomic, S., Gabdoulline, R.R., and Wade, R.C. (2004). How optimal are the binding energetic of Barnase and Barstar? Biophys. J.87,1618-1630.
    Wang, Y.L., Xu, M.X., Yin, G.X., Tao, L.L., Wang, D.W., and Ye, X.G. (2009). Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Res. Commun.37,1-12.
    Warner, R.L., and Kleinhofs, A. (1992). Genetics and molecular biology of nitrate metabolism in high plants. Physiol Plant 85,245-252.
    Weeks, J.T., Anderson, O.D., and Blechl, A.E. (1993). Rapid Production of multiple independent lines of fertile transgenic wheat. Plant Physiol.102,1077-1084.
    Weiler, K.S., and Wakimoto, B.T. (1995). Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet.29,577-605.
    Wilkinson, J.Q., and Crawford, N.M. (1991). Identification of the Arabidopsis CHL3 gene as the nitrate reducase structural gene NIA2. Plant Cell 5,461-471.
    Wu, H.X., Doherty, A., and Jones, H.D. (2008). Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat(Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res.17,425-436.
    Wu, H.. Doherty, A., and Jones, H.D. (2009). Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods Mol. Biol.478,93-103.
    Wu, H., Sparks, C., Amoah, B., and Jones, H.D. (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep.21,659-668.
    Xia, L.Q., Ma, Y.Z., He, Y, and Jones, H.D. (2012). GM wheat development in China:current status and challenges to commercialization. J. Exp. Bot.63,1785-1790.
    Xiao, X.G., and Branchard, M. (1995). In vitro high frequency plant regeneration from hypocotyl and root segments of spinach by organogenesis. Plant Cell, Tissue and Organ Cul.42,239-244.
    Yamamoto-Katou, A., Katou, S., Yoshioka, H., Doke, N., and Kawakita, K. (2006). Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol. 47,726-735.
    Yaneva, I.A., Hoffmann, G.W., and Tischner, R. (2002). Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol Plant 114,65-72.
    Yu, M., Hu, C.X., Sun, X.C., and Wang, Y.H. (2010). Influences of Mo on nitrate reductase, glutamine synthetase and nitrogen accumulation and utilization in Mo-efficient and Mo-inefficient winter wheat cultivars. Agric. Sci. China 9,355-361.
    Yu, Y., and Wei. Z. (2008). Increased oriental armyworm and aphid resistance in transgenic wheat stably expressing Bacillus thuringiensis (Bt) endotoxin and Pinellia ternate agglutinin (PTA). Plant Cell, Tissue and Organ Cul.94,33-44.
    Zale, J.M., Agarwal, S., Loar, S., and Steber, C.M. (2009). Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep.28,903-913.
    Zhang, L.Y., French, R., Langenberg, W.G., and Mitra, A. (2001). Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease. Transgenic Res.10,13-19.
    Zhao, T.J., Zhao, S.Y., Chen, H.M., Zhao, Q.Z., Hu, Z.M., Hou, B.K., and Xia, GM. (2006). Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep.25,1199-1204.
    Zhao, X.Q., Nie, X.L., and Xiao, X.G. (2013). Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.)increase seed protein content and weight without augmenting nitrogen supplying. PLos ONE 8, e74678.
    Zhou, J.Z., and Kleinhofs, A. (1996). Moleecular evolution of nitrate reductase genes. J.Mol. Evol.42, 432-442.
    Zhu, Z.L., and Chen, D.L. (2002). Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst.63,117-127.
    Zubko, E., Scutt, C., and Meyer, P. (2000). Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat. Biotechnol.18,442-445.
    Zuo, J.R., Niu, Q.W., Moller, S.G., and Chua, N.H. (2001). Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol.19,157-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700