矿物材料分离与富集过程中系统优化问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离与富集是获得矿物材料的重要技术,目前针对矿物材料分离与富集过程进行系统优化的研究较少。钛铁矿是一种重要的矿物材料,我国钛铁矿资源储量处于世界第一。目前,钛铁矿分离与富集技术存在回收率低、工艺流程复杂的特点。论文以攀枝花选铁尾矿中钛铁矿的“全粒级-全浮选”回收工艺为例,探讨钛铁矿富集与分离过程中的系统优化和参数降维问题。论文以表面能参数为矿物可浮性度量,采用多粒级含量与浮选指标相关性分析、混料试验设计和响应曲面法对工艺过程中的参数进行了有效地降维处理和优化,对浮选工艺流程的系统优化有较好的指导作用。
     本论文从经过捕收剂作用的钛铁矿表面性质出发,根据表面能参数与矿物可浮性的关系选择了钛铁矿的捕收剂。首先对表征矿物材料表面性质的重要参数一接触角进行研究,建立了基于霍夫变换的全新接触角测量方法。该方法具有自动检测接触点、高准确性和鲁棒性的特点。用这种方法对接触角进行测量,便可得到固体表面能。测试了几种常见矿物改性前、后的表面能参数和四种合成材料的表面能参数。又对以上几种表面在减压条件下析出气泡的能力进行了研究,发现以上几种表面析出气泡的能力与其Lewis碱分量的相关性很大。本论文将这种析出气泡的能力叫做“亲气性”。通过这种亲气性,优选出了钛铁矿的捕收剂SYB1#,在无抑制剂环境下对SYB1#和其它两种捕收剂的实际浮选效果进行了对比,试验证明SYB1#的捕收性和选择性均优于其它两种捕收剂。
     对于磨矿的优化,提出了多粒级含量与浮选指标相关性分析确定最佳磨矿细度的方法,也分析研究了磨矿产品的多个粒级含量对浮选指标的影响。发现原矿直接入磨的方式造成大量微细粒级的产生,不利于钛铁矿的浮选。后对磨矿流程进行调整,采用筛分入磨方式进行磨矿。筛分入磨方式能产生较多-0.074~+0.045mm粒级。通过浮选指标与多个粒级含量的相关性分析得到,-0.074~+0.045mm粒级含量越多对钛铁矿的浮选越有利。在探索得到适宜的磨矿方式和有利的浮选粒级后,确定了最佳磨矿时间为3-4分钟。粒级优化得到窄粒级的入浮选物料。
     混料试验设计用于选择抑制剂。通过pH=5,7,9时抑制剂的混料试验设计,定性地确定了抑制剂为羧基及纤维素钠(CMC)。抑制剂混料试验设计的研究结果表明,在酸性条件(pH=5),中性条件(pH=7)和碱性条件(pH=9)下,CMC的使用均能获得较高的粗精矿品位。只是使用CMC做抑制剂时,随着pH值的升高粗精矿的回收率急剧下降。通过响应曲面法单目标优化,得到了粗选段的较优结果。在捕收剂用量为1025g/t,抑制剂用量为1025g/t,矿浆pH=5的工艺条件下。粗选获得品位超过40%、回收率达到60%的粗精矿。在粗选中,抑制剂用量、捕收剂用量和pH值对粗精矿回收率的影响并没有表现出显著的交互作用。但是,捕收剂用量与抑制剂用量、抑制剂用量与pH值的交互作用却对粗精矿品位的影响表现得很显著。在精选过程中,发现捕收剂用量与pH值的协同效应对精矿的回收率表现出了显著的有益作用。
     针对品位和回收率的多优化问题提出了广义满意度函数的解决办法。采用广义满意度函数可以将多目标响应转化为单目标响应。通过对品位和回收率的多目标优化后,钛铁矿全浮选工艺精矿品位达到47%,回收率超过40%。浮选指标较现有强磁-浮选工艺指标有了较大的提高。浮选稳定性模拟试验得出,精选过程有较好的稳定性。工艺条件的波动仅会引起回收率的小幅下降,精矿品位的波动不如回收率敏感。除此之外,在浮选稳定性模拟试验中发现了“补偿效应”。该效应使得捕收剂用量、抑制剂给用量和pH值三因素引起精矿回收率的波动小于pH值引起回收率的波动。通过浮选模型与浮选指标的关系提出了“工艺参数空间”的概念,即工艺条件的接受域。根据“工艺参数空间”,研究者、生产者可针对精料的应用领域对精料的质量做出调整。通过捕收剂的强化改性使得钛铁矿精矿回收率得到进一步提升,精矿回收率达45%以上。且浮选体系所需pH值也得到相应的提高。
Separation and enrichment are the processing techniques of mineral materials. There are however few studies on the topic. Ilmenite is an important mineral material. And ilmenite reserve of China is ranked first in the world. At present, a large quantity of erosion and complex technique are major problems in separation and enrichment of ilmenite. All size fractions flotation for recovering ilmenite from tailings of iron in Panzhihua area, Sichuan province, is taken as an example in the paper to explore optimal design and reduction of dimensions of the parameters in separation and enrichment. The dimensions of the parameters are reduced and optimization is satisfactorily achieved.
     The collector of ilmenite is selected rationally from the characters or parameters of modified surface. The surface parameters are obtained from the measurements of wetting angle on bulk materials or minerals. An innovative method based on Hough Transformation is put forward for the measurement of contact angle. The contact points are detected automately with more accuracy and higher robustness, when this method is applied. The behavior that the bubbles are formed from gas evolution on the bulk materials in a vaccum is studied in our work. It is found out that the behavior is strongly correlated with the proton acceptor component, which is one of the surface energy parameters. Specifically, the less proton acceptor component, the more bubbles formed on the bulk material."Aerophilic", which is defined to measure the behavior aboved, is referred to selection of ilmenite collector that is SYB1#. The flotation tests show that the collector is superior to two constrastive collectors.
     Single size feed is produced by grinding optimization. The correlation between the quality of concentrate and the distribution of particle size is analysed. Meanwhile, the analysis is used to grinding optimization. An amount of fine particle is produced in case of feeding to mill without any pre-processing. Indeed, the excessive fine particle is fatal to flotation. The optimized grinding with pre-screening produces less fine particle. The correlation analysis indicates that the particles in size-0.074~ +0.045mm are beneficial to ilmenite flotation. The optimized grinding time is3-4min.
     The mixture experiment design is applied to select the depressor. The depressor mixture experiment at pH=5,7,9shows that carboxymethyl cellulose sodium (CMC) is the efficient depressor to flotation. In addition, high grade concentrate is recoved when CMC is used. And the recovery increases with the reduction of pH value. The satisfying rough concentrate is obtained by Response Surface Methodology (RSM). The grade and recovery of rough concentrate is40%and60%respectively in the condition that collector dosage, depressor dosage and pH is1025g/t,1025g/t, and5respectively. In addition, the grade of rough concentrate is significantly influenced by two interactions:collector dosage and depressor dosage, depressor dosage and pH value. In concentration flotation, the positive synergistic effect between collector dosage and pH value is beneficial to the recovery of ilmenite concentrate.
     The general desirability function is defined to convert multi-objective into single objective. The quality of concentrate is raised by optimization of multi-objective. The recovery of concentrate reaches up to40%as the grade reaches up to47%. The simulation of parameters fluctuation indicates that concentration flotation works with high robustness. The fluctuation of parameters causes only a slight decrement of the recovery. In contrast, the grade of concentrate is immune to fluctuation. Besides, a phenomenon called "complemental effect" is found in simulation. In detail, the recovery variation resulted from the fluctuation of three parameters (collector dosage, depressor dosage and pH value) is less than the variation resulted from the fluctuation of pH value. The recovery of concentrate is increased to45%by the optimization of SYB1#. And the restriction on pH value is relaxed obviously.
引文
[1]黄万抚.矿物材料及其加工工艺[M].北京:冶金工业出版社.2012.
    [2]廖立兵,汪灵,董发勤等.我国矿物材料研究进展(2000-2010)[J].矿物岩石地球化学通报.2012,31(4):321-339.
    [3]李胜荣.结晶学与矿物学[M].北京:地质出版社.2008.
    [4]晁济东.钛铁矿应用于高炉上的实践[J].宝钢情报.1991,(1):11-17.
    [5]Z A Sidlina. Use of ilmenite electrodes in industry[J]. Welding International. 2002,15(6):491-497.
    [6]王宝.焊接电弧物理与焊条工艺性设计[M].北京:机械工业出版社.1998.
    [7]廖立乾,文花明.焊条的设计制造与使用[M].北京:机械工业出版社.1998.
    [8]张清辉,吴宪平,洪波.焊接材料研制理论与技术[M].北京:冶金工业出版社.2002.
    [9]安继儒.金属与焊接材料实用手册[M].成都:四川科学技术出版社.2007.
    [10]Corundum. http://en.wikipedia.org/wiki/Corundum.
    [11]Ilmenite. http://en.wikipedia.org/wiki/Ilmenite.
    [12]邓捷,吴立峰,乔辉等.钛白粉应用手册[M].北京:化学工业出版社.2003.
    [13]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature.1972,238:37-38.
    [14]Yoshihiko Ohama, Dionys Van Gemert(eds). Application of Titanium Dioxide Photocatalysis to Construction Materials. Springer.2011.
    [15]孙康.钛提取冶金物理化学[M].北京:冶金工业出版社2001.
    [16]Titanium. http://en.wikipedia.org/wiki/Titanium.
    [17]C. Leyens and M. Peters. Titanium and Titanium Alloys:Fundamentals and Applications [M]. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.2003.
    [18]李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].钛工业进展.2004,21(5):19-24.
    [19]邓国珠.世界钛资源及其开发利用现状[J].钛工业进展.2002,(5):9-12.
    [20]吴贤,张健.中国的钛资源分布及特点[J].钛工业进展.2006,23(6):8-12.
    [21]胡克俊,姚娟,席歆.攀枝花钛资源经济价值分析明.世界有色金属.2008,(1): 36-42.
    [22]中国冶金百科全书总编辑委员会.中国冶金百科全书(选矿)[M].北京:冶金工业出版社.2000.
    [23]王志,袁章福.中国钛资源综合利用技术现状与新进展[J].化工进展.2004,23(4):349-352.
    [24]邓国珠,余文华.利用攀枝花钛精矿的两条流程[J].钢铁钒钛.2003,24(2):34-38.
    [25]杨佳,李奎,汤爱涛,潘复生.钛铁矿资源综合利用现状与发展[J].材料导报.2003,8(17):44-46.
    [26]胡克俊,姚娟,席歆.攀枝花钛资源经济价值分析[J].世界有色金属.2008,(1):36-42.
    [27]李锡纯.攀枝花钛资源综合利用述评[J].冶金矿山设计与建设.1997,29(5):37-49.
    [28]周建国,刘轶平,周光华.攀枝花选钛厂工艺流程及装备优化[J].2000,20(4):45-47.
    [29]刘胜华.攀钢选钛厂微细粒钛铁矿浮选工艺技术的优化[J].矿产综合利用.2011,(6):26-29.
    [30]戴新宇.原生钛铁矿选矿技术的进展[J].中国矿业.2002,(2):40-42.
    [31]S. Bulatovic, D. M. Wyslouzil. Process development for treatment of complex perovskite, Ilmenite and Rutile Ores [J]. Minerals Engineering,1999,12(12): 1407-1417.
    [32]Naifonov, V.T. et al., Flotation studies of flotability of titanium minerals using sodium oleate, Tsvetnaja Metalurgia,1980, No.3.
    [33]Bulatovic, S., Wyslouzil, D.M., An investigation of flotation of zirconium and titanium minerals from beach sand, Report of Investigation, LR-4162,1991.
    [34]Quanyuan, S., and Tsai, S.C.. Flotation of ilmenite using benzyl arsonic acid and acidified Sodium silicate [J]. International Journal of Mineral Processing,1989, 26(1-2):111-121.
    [35]J. Drzymala, A. Luszczkiewicz, P. Simiczyjew, Flotation study on hercynite high-hercynite ilmenite ore [J]. International Journal of Mineral Processing.1983, 10(4):289-296.
    [36]Srdjan M. Bulatovic. Handbook of Flotation Reagents-Chemistry, Theory and Practice:Flotation of Sulfide Ores [M].2007.
    [37]朱建光,周菁.钛铁矿、金红石和稀土选矿技术[M].长沙:中南大学出版社.2009.
    [38]罗溪梅,童雄.钛铁矿浮选药剂的研究概况[J].矿冶.2009,18(2):13-18.
    [39]何国伟.用乳化塔尔油浮选攀枝花微细粒级钛铁矿的工业试验[J].广东有色金属学报.2000,(2):92-95.
    [40]何国伟梁冬云.攀枝花粗钛精矿精选工艺流程研究[J].有色金属(选矿部分).1997,(6):10-13.
    [41]张国范,朱阳戈,冯其明,卢毅屏,欧乐明.油酸钠对微细粒钛铁矿的捕收机理[J].中国有色金属学报.2009,(2):372-377.
    [42]朱阳戈,张国范,冯其明,卢毅屏,欧乐明.微细粒钛铁矿的自载体浮选[J].中国有色金属学报.2009,(3):554-560.
    [43]朱阳戈.微细粒钛铁矿浮选理论与技术研究[D].中南大学.2011.
    [44]Kangnien Zhong, Lin Cui. Influence of Fe2+ ions of ilmenite on its flotability [J]. International Journal of Mineral Processing.1987,20, (3-4):253-265.
    [45]冯成建,钱鑫.用苯乙烯膦酸浮选钛铁矿的研究[J].有色金属(选矿部分)1991,(1):11-16.
    [46]任志民.应用强磁一浮选法苯乙烯聆酸作捕收剂浮选攀枝花钛铁矿[J].1982,(1):22-29.
    [47]胡永平,梁绪树,崔林.C28捕收剂浮选钛铁矿的研究.1992,(4):26-30.
    [48]王晶.TF2—8浮选钛铁矿溶液化学的研究[J].有色金属(选矿部分).1995,(2):22-26.
    [49]松全元.攀枝花地区钛铁矿浮选研究[J].稀有金属.1986,(4):241-245.
    [50]董宏军,陈正学.水杨羟肟酸浮选细粒钛铁矿的研究[J].矿冶工程.1991,(1):19-22.
    [51]文彦龙,钟宏,王帅,黄志强,胡斌.椰子油羟肟酸捕收剂的合成及其对钛铁矿的浮选性能[J].应用化工.2011,(9):1496-1499.
    [52]朱建光,朱玉霜,王升鹤,陈树民.利用协同效应最佳点配制钛铁矿捕收剂 [J].有色金属:选矿部分.2002,(4):39-41.
    [53]朱建光,陈树民,姚晓海,邓清华,王升鹤.用新型捕收剂MOH浮选微细粒钛铁矿.有色金属:选矿部分.2007,(6):42-45.
    [54]谢建国,张泾生,孟长春等.新型捕收剂ROB浮选微细粒级钛铁矿的试验研究[J].矿冶工程.2002,(2):47-50.
    [55]谢泽君.XT新型浮钛捕收剂的工业试验[J].矿产综合利用.2004,(4):22-26.
    [56]谢建国,陈让怀,曾维龙.新型捕收剂RST浮选微细粒级钛铁矿[J].有色金属.2002,(1):58-59.
    [57]戴新宇.F968捕收剂富集攀枝花细粒及钛铁矿的试验研究[J].金属矿山.2000,(11):40-43.
    [58]何虎,余德文.ZY捕收剂分选粗粒级钛铁矿的试验研究[J].金属矿山.2002,(6):23-25.
    [59]马忠臣.H717捕收剂选别钛铁矿的试验研究[J].有色矿冶.2003,(4):18-19.
    [60]魏民.TAO系列捕收剂选别攀枝花钛铁矿的研究[J].广东有色金属学报.2006,(2):80-83.
    [61]魏民,谢建国,陈让怀.新型钛铁矿捕收剂捕收性能和作用机理的研究[J].矿冶工程.2006,(4):38-41.
    [62]周友斌.攀枝花细粒钛铁矿浮选工艺在生产中应用探讨[J].金属矿山.2000,(1):32-36.
    [63]周军,钱鑫.混合药剂浮选原生钛铁矿的研究[J].有色金属(选矿部分)1996,(6):59-63.
    [64]马军二.钛铁矿与钛辉石浮选分离中无机抑制剂的作用机理研究[D].中南大学.2010.
    [65]华罗庚.优选学[M].北京:科学出版社.1981.
    [66]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社.2009.
    [67]《数学辞海》总编辑委员会.数学辞海[M].太原:山西教育出版社,北京:中国科学技术出版社,南京:东南大学出版社.2002.
    [68]最优化问题.http://www.wikipedia.org/
    [69]Christodoulos A. Floudas, Panos M. Pardalos. Encyclopedia of Optimization (2nd edition) [M]. Springer.2009:1538-1541.
    [70]李长颖.云南某铅锌矿浮选工艺优化研究[D].昆明理工大学.2009.
    [71]牛福生.某锡铁矿选矿厂选矿工艺优化研究与实践[J].中国矿业.2009,18(1):81-94.
    [72]张岳.某金铜矿选矿工艺优化研究[J].金属矿山.2009,(4):56-59.
    [73]Ryszard S. Michalski, Ivan Bratko, Miroslav Kubat. Machine Learning and Data Mining:Methods and Applications[M].朱明等译.北京:电子工业出版社.2004.
    [74]吴春梅.现代智能优化算法的研究综述[J].科技信息.2012,(8):31-33.
    [75]Melanie Mitchell. An Introduction to Genetic Algorithms[M]. Cambridge, Massachusetts:MIT press.1996
    [76]S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing. Science[J]. New Series.1983,220(4598):671-680.
    [77]L. P. J. Veelenturf. Analysis and Applications of Artificial Neural Networks[M]. UK:Printice Hall International Ltd.1995.
    [78]loan Cristian Trelea. The Particle Swarm Optimization Algorithm:Convergence Analysis and Parameter Selection[J]. Information Processing Letters.2003,85: 317-325.
    [79]许时,孟书青,刘金华.常用选矿试验最优化方法的比较和应用[J].有色金属.1979,(3):13-20.
    [80]许时,孟书青,刘金华.常用选矿试验最优化方法的比较和应用[J].有色金属.1979,(4):18-25.
    [81]韩旭里,李松仁.钨、铋选矿产品方案优化研究[J].中南矿冶学院学报.1994,(2):167-170.
    [82]周英,卓金武,匡亚莉.基于规划模型的选煤工艺优化选择系统研究[J].选煤技术.2006,(4):3-5
    [83]陈诗国,张道强.半监督降维方法的实验比较[J].软件学报.2011,22(1):28-43.
    [84]van der Maaten L, Postma E, van den Herik J. Dimension reduction:A comparative review. Technical Report, TiCC-TR 2009-005, Tilburg University,2009.
    [85]Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology,1933,24(6):417-441.
    [86]陈立.辉钼矿浮选体系中的界面相互作用研究[D].中南大学.2007.
    [87]王晖,顾帼华.塑料浮选[M].长沙:中南大学出版社.2006.
    [88]谢广元.选矿学[M].徐州:中国矿业大学出版社.2001.
    [89]B·A·钱图利亚.提高矿物润湿性对比度的理论和实践[J].国外金属矿选矿.2005,(10):9-15.
    [90]M·密斯拉.超声波预处理改善毒砂浮选[M].国外金属矿选矿.2004,(6):35-38.
    [91]Fowkes FM.J.Phys.Chem.,1962,66:382
    [92]KRUSS online. http://www.kruss.de/en/home.html/
    [93]Biolin Scientific, http://www.biolinscientific.com/
    [94]上海中晨数字技术设备有限公司.http://www.powereach.com/index.html/
    [95]社文琴,巫莹柱.接触角测量的量高法和量角法的比较[J].纺织学报.2007,28(7):29-33.
    [96]R.M. Udrea, D.N. Vizireanu. Quantized multiple sinusoids signal estimation algorithm, J. of Instrumentation[J]. JINST 3, PO 2008:1-7.
    [97]D.N Vizireanu, S.V. Halunga. Single sine wave parameters estimation method based on four equally spaced samples[J]. Int. J. Electron,2011,98:941-948.
    [98]D.N. Vizireanu, S.V. Halunga. Analytical formula for three points sinusoidal signals amplitude estimation errors[J]. Int. J. Electron,2012,99(1):149-151.
    [99]O. I. del Rio, A. W. Neumann. Axisymmetric drop shape analysis:computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops[J]. J. Colloid Interface Sci..1992, 196(2):136-147.
    [100]宁乔,朱志强,吕旭涛等.图像法求液滴表面张力和接触角[J].空间科学学报.2008,28(1):74-79.
    [101]林志勇,王晓东,彭晓峰.外形分析-拟合求导法测接触角[J].工程热物理学报.2005,26(5):847-849.
    [102]徐志钮,律方成,李嫚等.椭圆拟合算法在硅橡胶憎水性检测应用中影响因素的研究[J].绝缘材料.2011,44(1):69-73.
    [103]裴念强,郭开华,李廷勋等.基于B样条的主动轮廓线法测量液滴接触角[J].计算机与应用化学.2007,24,(10):1383-1385.
    [104]阮秋琦.数字图像处理学.电子工业出版社.2007:325-330.
    [105]D.H. Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. Pattern Recognition.1981,13(2):111-122.
    [106]C.W. Lam, T. Sarkodie-Gyan, A.W. Campbell. Fuzzy cross-correlation algorithm for classifying high tolerance engine components[J]. Measurement.22 (1997) 15-22.
    [107]游达章,张建钢,甘勇.位图图像灰度化的方法及编程实现.广西工学院学报.2004,15(1):23-26.
    [108]N. OTSU. A threshold selection method from gray-Level histograms[J]. IEEE Trans. Systems Man Cybernetics.1979,9(1):962-66.
    [109]John A. Richards, Xiuping Jia. Remote sensing digital image analysis:an introduction(fourth ed)[M]. Springer. New York.2006.
    [110]Brian A. Hills. The Biology of Surfactant. Cambridge University Press[M]. England.1988.
    [111]Sharonmoyee Goswami, Shannon Klaus, Jay Benziger. Wetting and absorption of water drops on nafion films[J]. Langmuir.2008,24 (16):8627-8633.
    [112]C. J. van Oss, R. J. Good, M. K. Chaudhurys. Additive and nonadditive surface tension components and the interpretation of contact angles[J]. Langmuir.1988,4 (4):884-891
    [113]P. F. Rios, H. Dodiuk, and S. Kenig, et al. The effect of polymer surface on the wetting and adhesion of liquid systems[J]. J. Adhesion Sci. Technol..2007, 21(3-4):227-241
    [114]H. Yildmm Erbil, A. Levent Demirel, Yonca Avci, et al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science.2003,299:1377-1380
    [115]Satish G. Kandlikar, Mark E. Steinke. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface[J]. Int. J. Heat Mass Tran.. 2002,45:3771-3780
    [116]Lenore Rasmussen. Electroactivity in Polymeric Materials[M]. Springer. New York.2012.
    [117]丁振良.误差理论与数据处理[M].哈尔滨:哈尔滨工业大学出版社.1992.
    [118]John A. Rice. Mathematical Statistics and Data Analysis (3ed)[M]. CA.Thomson Higher Education.2007.
    [119]H·舒伯特.疏水化、疏水作用、疏水影响和异相凝聚及其在矿物加工中的重要性[J].国外金属矿选矿.2006,(1):4-10.
    [120]Agarwal Abhinandan. An experimental study of nanobubbles on hydrophobic surfaces[D]. Massachusetts Institute of Technology.2005.
    [121]李大勇,王伟杰,赵学增.固液界面纳米气泡研究[J].化学进展.2012,24(8):1447-1455.
    [122]Xue H. Zhang, Gang Li, Nobuo Maeda, and Jun Hu. Removal of Induced Nanobubbles from Water/Graphite Interfaces by Partial Degassing[J]. Langmuir. 2006,22(22):9238-9243.
    [123]Wang Chun-Lei, Li Zhao-Xia, Li Jing-Yuan, et al. High density gas state at water/graphite interface studied by molecular dynamics simulation[J]. Chinese Physics B.2008,17(7):2646-2654.
    [124]Z.A. Zhou, Zhenghe Xu, J.A. Finch, et al. On the role of cavitation in particle collection in flotation-A critical review. Ⅱ[J]. Minerals Engineering.2009,22(5): 419-433.
    [125]Wang Hui, Guo Chao, Fu Jiangang, et al. Adsorption behavior of weak hydrophilic substances on low-energy surface in aqueous medium[J]. Applied Surface Science.2011,257:7959-7967.
    [126]卢寿慈.矿物浮选原理[M].北京:冶金丁业出版社.1988:198-207.
    [127]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社.1993:1-2.
    [128]刘国库,张文军,王恩雷.阜新硅石精细提纯工艺研究初探[A].第十三届全国粉体工程及矿产资源高效开发利用研讨会论文专辑.2007,(64):66-73.
    [129]LUO Zhao-jun, WANG Yu-hua, Hu Yu-hua, et al. Optimization of Grinding in Reverse Flotation for Bauxite[J]. Trans. Nouferrous Met. Soc. China.2001,11(3): 444-446.
    [130]张治元,傅景海,李运成等.用解离分析方法确定磨矿细度及预测选别指标[J].西部探矿工程.1995,7(2):37-46.
    [131]田晓珍,姚燕燕,张治元等.矿物解离分析与理想选别指标预测曲线[J].金属矿山.2004,(3):30-42.
    [132]丘德镳.怎样确定最佳磨矿粒度[J].矿冶工程.1991,11(3):66-69.
    [133]陈永伟,刘志红,候俊杰.贵州某硅钙质磷矿石磨矿细度的研究[J].化工矿物与加工.2011,(3):5-27.
    [134]唐云,张覃.磷矿石浮选中磨矿细度的确定[J].贵州工业大学学报.1998,27(3):92-100.
    [135]Guo Yin Xu, Dian Wen Liu, et al. Pu Rong Wang. Recovering Limonite by High Intensity Magnetic Separation Technology from Honghe Limonite Ore[J]. Advanced Materials Research.2013,634-638:3437-3441.
    [136]曾从江,金会心,李轶涛.贵州织金新华磷矿磨矿细度的实验研究[J].贵州化工.2010,35(2):9-11.
    [137]段希祥.强化针对性磨矿—当代磨矿领域中的重要原则[J].昆明理工大学学报(理工版).2009,29(4):57-68.
    [138]A.F.塔加尔特.选矿手册:第二卷第二分册(湿式磨碎)[M].冶金部选矿研究院译.北京:冶金工业出版社,1959:1-2.
    [139]王丽.钛辉石对钛铁矿浮选影响研究[D].中南大学.2009.
    [140]Jack V. Tu. Advantages and Disadvantages of Using Artificial Neural Networks versus Logistic Regression for Predicting Medical Outcomes[J]. Journal of Clinical Epidemiology.1996,49(11):1225-1231.
    [141]Abu Bakar Md Sultan, Ramlan Mahmud, Muhammad Nasir Sulaiman. Reducing Premature Convergence Problem through Numbers Structuring in Genetic Algorithm[J]. IJCSNS International Journal of Computer Science and Network Security.2007,7(4):215-217.
    [142]D. C. Montgomery. Design and Analysis of Experiments (3rd edition) [M].汪仁官译.北京:中国统计出版社.1991.
    [143]M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry[J]. Talanta,2008,76:965-977.
    [144]J.V. Mehrabani, M. Noaparast, S.M. Mousavi, R. Dehghan, A. Ghorbani. Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology [J]. Separation and Purification Technology,2010,72, (3):242-249.
    [145]F. Rincon, B. Martinez, R. Perez-Olmos, A. Berzosa. The Roles of pH Extraction and Colloidal Protein Solubility in the Optimization of Spectrophotometric Nitrite Determination in Meat Products via Response Surface Methodology [J]. Meat Science,2008,80, (3):744-52.
    [146]G. E. P. Box, K. B. Wilson. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society Series B Statistical Methodology.1951,13(1):1-45.
    [147]许禄,邵学广.化学计量学方法(第二版)[M].北京:科学出版社.2004:114-115.
    [148]张怀德.极值点与最值点、稳定点及拐点的关系[J].甘肃高师学报.2005,10(5):11-12.
    [149]王晶.基于响应曲面法的多响应稳健性参数优化方法研究[D].天津:天津大学.2009.
    [150]张志红,何桢,郭伟.在响应曲面方法中三类中心复合设计的比较研究[J].沈阳航空工业学院学报.2007,24(1):87-91.
    [151]Box G E P, Behnken D W, Some New Three Level Designs for the Study of Quantitative Variables [J]. Technometrics,1960,2(4):455-47.
    [152]C. F. Jeff Wu, Michael Hamda. Experiments Planning, Analysis, and Parameter Design Optimization.张润楚等译.试验设计与分析及参数优化.北京:中国统计出版社.2003.
    [153]胡雅琴.响应曲面二阶设计方法比较研究[D].天津:天津大学.2005.
    [154]John A. Cornell. A primer on Experiment with Mixtures [M], John Wiley & Sons, Inc.2011.
    [155]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社.1996.
    [156]《选矿手册》编辑委员会编.选矿手册第三卷第二分册[M].北京:冶金工业出版社.1999.
    [157]Srdjan M. Bulatovic. Handbook of Flotation Reagents:Chemistry, Theory and Practice:Volume 1:Flotation of Sulfide Ores [M]. Elsevier B.V..2007.
    [158]邓玉珍.选矿药剂概论[M].北京:冶金工业出版社.1994.
    [159]胡为柏.浮选(修订版)[M].北京:冶金工业出版社.1983.
    [160]徐翔,刘殿文,章晓林等.钒钛磁铁矿浮钛时残余钛磁铁矿的影响[J].昆明理工大学学报(自然科学版).2010,35(4):15-19.
    [161]Xiaolin Zhang, Dianwen Liu, Jianjun Fang, et al. Study on Influence of Residual Magnetite in Panzhihua Ilmenite Flotation[J]. Procedia Earth and Planetary Science. 2011,2:83-88.
    [162]R. http://www.r-project.org/
    [163]Peter Dalgaard. Introductory Statistics with R (2nd edition). New York:Springer. 2008.
    [164]江龙.胶体化学概论[M].北京:科学出版社.2002.
    [165]孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社.2001.
    [166]Bingliang Xu, Dianwen Liu, Guoyin Xu. Anti-depression Effect of Sulphuric Acid on the Flotation of Ilmenite[J]. Advanced Materials Research.2012, 524-527:935-939.
    [167]宗志宇,何桢,孔祥芬.多响应优化方法的比较和应用研究[J].数理统计与管理.2006,(6):697-704.
    [168]Khuri A I, Conlon M. Simultaneous Optimization of Multiple Response Represented by Polynomial Regression Function [J]. Technometrics,1981,23(4): 363-375.
    [169]P. C. Mahalanobis. On the generalised distance in statistics. Published by the National Institute of Sciences of India:49-55.
    [170]Pignatiello J. J. Strategies for Robust Multiresponse Quality Engineering [J]. IIE Transaction,1993,25(3),5-15.
    [171]Chiao C H, Hamada M. Analyzing Experiments with Correlated Multiple Response [J]. Jornal of Quality Technology,2001,33(4):451-465.
    [172]Quesada G M, Castillo E D. A Dual-response Approach to the Multivariate Robust Parameter Design Problem [J]. Technometrics,2004,46(2):176-187.
    [173]Jeong I J, Kim K J. Interactive Desirability Function Approach to Multi-response Surface Optimization [J]. International Journal of Reliability, Quality and Safety Engineering,2003,10(2):205-217.
    [174]Derringer G. A balancing act:optimizing a product's properties [J]. Quality Progress,1994,27:51-58.
    [175]杨方,高齐圣,于增顺.多响应问题的稳健性设计优化[J].工业工程.2010,(3):43-46.
    [176]陈立周.机械优化设计方法(第二版)[M].北京:冶金工业出版社.1995.
    [177]Cantrell, David W. "Pythagorean Means." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/ Pythagorean Means.html
    [178]Havil, J. Gamma:Exploring Euler's Constant. Princeton [M]. NJ:Princeton University Press.2003.
    [179]Cantrell, David W. and Weisstein, Eric W. "Power Mean." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PowerMean.html
    [180]Generalized mean. Wikipedia. http://en.wikipedia.org/wiki/Generalized_mean/.
    [181]武汉大学.分析化学.北京:高等教育出版社.2000.
    [182]W.J. DeCoursey. Statistics and Probability for Engineering Applications [M]. Elsevier.2003
    [183]Gentle, James E.. Random Number Generation and Monte Carlo Methods (2nd edition). Springer.2003.
    [184]陈春霞.KMRI浮选加药自动控制系统[J].云南冶金.2005,34(3):67-68.
    [185]杜金芳.铝土矿浮选过程粗选矿浆pH值软测量模型及应用[D].中南大学.2011.
    [186]YB 4031-91.钛精矿(岩矿)[S].中华人民共和国行业标准.
    [187]YS/T 320-2007.锌精矿[S].中华人民共和国行业标准.
    [188]许炳梁.响应曲面法优化钛铁矿提取工艺[D].昆明理工大学.2011.
    [189]Zhu Yangge, Zhang Guofan, Feng Qiming, Yan Daicui, Wang Weiqing. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite [J]. Transactions of Nonferrous Metals Society of China,2011,21, (5):1149-1154.
    [190]Kangnien Zhong, Lin Cui. Influence of Fe2+ ions of ilmenite on its flotability [J]. International Journal of Mineral Processing.1987,20, (3-4):253-265.
    [191]冯其明,刘谷山,喻正军,卢毅屏,欧乐明,张国范.铁离子和亚铁离子对滑石浮选的影响及作用机理[J].中南大学学报(自然科学版).2006,37,(3):476-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700