长江河口羽状流扩散与混合过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用COHERENS (A COupled Hydrodynamical-Ecological model for REgional and Shelf Seas)模型中的三维水动力模块研究了长江河口羽状流扩散与混合过程的时空变化及其控制因素。论文内容大致可分为以下三个部分:
     第一部分:分别研究了概化的长江河口的羽状流扩散与混合过程对(i)不同水平与垂向网格精度、(ii)动量与(iv)盐度方程的对流项计算格式(upwind、Lax-Windroff、带Superbee限制函数TVD和带单调限制函数TVD格式)、(v)水平扩散系数与(vi)垂向涡粘系数的敏感性。(1)羽状流的扩散与混合过程对水平与垂向网格精度似乎相对不敏感。(2)相对动量方程的对流项计算格式,羽状流的扩散与混合过程对盐度方程的对流项计算格式更为敏感,采用Lax-Windroff格式计算盐度方程对流项不能得到稳定的计算结果。(3)羽状流的水平扩散对水流和盐度的水平扩散系数的取值较为敏感。随着水平扩散系数的增大,羽状流向北、向外海方向扩散的范围以及厚度增大,向南扩散的范围以及盐度的水平梯度反而减小。(4)羽状流的扩散和混合过程对水流和盐度的垂向涡粘系数非常敏感。随着垂向涡粘系数的增大,羽状流向北扩散的范围以及厚度增大,向南扩散的范围以及盐度的垂向梯度反而减小,且突起宽度减小,沿岸流宽度增大。另外,这一部分还分别研究了羽状流扩散与混合过程对河流径流量、底部纵向坡度、科氏力、定常风和M2分潮的响应。(a)随着河流径流量的增大,羽状流向各方向的水平扩散范围也增大。(b)随着底部纵向坡度的增加,羽状流向北和向外海方向扩散的范围扩大,向南扩散的范围反而减小。(c)科氏力导致羽状流水向南偏转,河口呈不对称分布。(d)自东南向西北方向传播的M2分潮抑制了羽状流向各方向的扩散,并加强了羽状流水与海水之间的垂向混合。(e)在6 m/s东南偏南定常风作用下,羽状流向东北方向扩散;然而,在4 m/s西北定常风作用下,羽状流向外海方向扩散受到抑制,且在羽状流边缘出现强烈的下降流。
     第二部分:将实际地形下的长江河口划分为矩形网格(188×140),网格单元大小是1045.5 m×1038.5 m,模拟了M2分潮作用下洪季长江河口羽状流的扩散过程。(i)长江河口羽状流主要由南支入海,并以淡水舌的形式向外海扩散,并在北港外、北港与北槽之间、北槽与南槽之间以及南槽以南形成了四个淡水舌。淡水舌的平面形态受M2分潮调控,在落急时刻向海推进,而在涨急时刻向岸回收。(ii)长江河口外形成的淡水舌,分别指向东、东南偏东、东南和东南偏南方向。但是,在科氏力、地形以及M2分潮共同作用下,长江河口羽状流总体上向东南方向扩散。(iii)在北港和北槽口外,盐度水平梯度较大,形成强烈的羽状锋。羽状锋位置和羽状锋强度都受M2分潮调控,显示出潮周期变化特征。低潮位时,羽状锋距河口最远,高潮位出现1小时后,羽状锋距河口最近。羽状锋强度涨憩最大、落憩最小。羽状锋强度最大的时刻与羽状锋开始向河口方向推进时刻之间存在1小时的滞后。同样地,羽状锋强度最小的时刻与羽状锋开始向外海方向推进时刻之间也存在1小时的滞后。
     第三部分:将COHERENS模型进行了改进,以便适用于实际地形下的长江河口正交曲线网格(149×69)下的计算,网格大小从283 m到5583 m。首先,分别模拟了M2、S2、K1、O1四个分潮作用下洪、枯季长江河口羽状流的扩散与混合过程。(i)长江河口羽状流的扩散形态与长江径流流量和潮型有关,可呈现射流、圆形突起和淡水舌形态,并向东南方向扩散。(ii)长江河口羽状流在纵断面上大致可分为上部漂浮层和下部垂向混合层的二层结构。上部漂浮层厚度的变化规律为洪季小于枯季、大潮大于小潮、涨急小于落急。(iii)长江河口羽状流的层化受控于潮汐混合以及河流流量与潮汐相互作用形成的河口环流。采用了Simpson’s层化参数(φ)估算了垂向分层。层化参数(φ)洪季大于枯季、大潮小于小潮、落急大于涨急。其次,模拟了四个分潮和风共同作用下洪、枯季长江河口羽状流的扩散与混合过程。(i)在洪季6 m/s东南偏南定常风作用下,长江河口羽状流表层一部分水体在大潮时以淡水朵云的形态脱离羽状流主体向东漂移,在小潮时则整体向东北偏东方向扩散;长江河口羽状流底层仍以淡水舌的形态向东南方向扩散。枯季,在4 m/s西北定常风作用下,长江河口羽状流向外海的扩散受到抑制,但是,仍以淡水舌的形态向东南方向扩散。(ii)在洪季6 m/s东南偏南定常风作用下,长江河口羽状流上部漂浮层厚度有所增厚。在枯季4 m/s西北定常风作用下,除小潮涨急时刻外,长江河口羽状流垂向盐度梯度较小,近似地呈现充分混合状态。(iii)在洪季6 m/s东南偏南定常风作用下,长江河口羽状流的层化大大加强,层化参数最大值较无风时的增长了约20~80﹪。在枯季4 m/s西北定常作用下,羽状流迎风一侧的层化加强,其余部分的层化减弱。显然,羽状流中的层化或去层化与风向有关,即促进上升流的风驱动羽状流浮于海水之上向海运动,从而增强长江河口羽状流的层化,促进下降流的风则驱动羽状流向岸运动,导致去层化。
A three-dimensional hydrodynamical module of COHERENS (a COupled Hydrodynamical-Ecological model for REgional and Shelf Seas), is used to study temporal and spatial variation of the dispersal and mixing processes, and their controlling factors, within the Changjiang River plume. The thesis is presented in three parts:
     The first part of this thesis deals with a schematized tidal estuary, representative of the Changjiang River. A sensitivity study is made using the COHERENS model to assess how the dispersal and mixing processes within the plume in a schematized tidal estuary respond to (i) the horizontal grid resolution; (ii) the vertical grid resolution; (iii) each of four different advection schemes in the momentum equations (the upwind scheme, the Lax-Windroff scheme, the TVD scheme with the superbee limiter, and the TVD scheme with the monotonic limiter); (iv) those in the salinity equation; (v) the horizontal diffusion coefficients of flow (νH) and salinity (λH); and (vi) the vertical eddy viscosities of flow (νT) and salinity (λT ), respectively. (1) The dispersal and mixing processes within the plume appears to be relatively insensitive to the horizontal and vertical grid resolutions. (2) The dispersal and mixing processes within the plume are more sensitive to the advection scheme in the salinity equation than that in the momentum equations. Application of the Lax-Windroff scheme in the salinity equation may lead to unstable results. (3) The horizontal expansion of the plume is sensitive to the horizontal diffusion coefficients of flow (νH) and salinity (λH). The northward and seaward expansions of the plume and its thickness increase with both increasingνH andλH. The southward expansion of the plume and its horizontal salinity gradient decrease with both increasingνH andλH. (4) The dispersal and mixing processes within the plume are sensitive to the vertical eddy viscosities of flow (νT) and salinity (λT ). The northward expansion of the plume and its thickness increase with both increasingνT andλT . The southward expansion of the plume and its vertical salinity gradient decrease with both increasingνT andλT . The width of the plume bulge decreases with both increasingνT andλT . The width of the coastal current increases with both increasingνT andλT . Studies are also made of the responses of the dispersal and mixing processes to the river discharge, the longitudinal bottom slope, the Coriolis force, steady winds, and the M2 tidal constituent. (a) The horizontal expansions of the plume in all directions increase with increasing river discharge. (b) The northward and seaward expansions of the plume increase with increasing longitudinal bottom slope, while the southward expansion decreases with increasing longitudinal bottom slope. (c) The Coriolis force deflects the symmetrical plume southward. (d) The southeast-northwesterly directed M2 tidal constituent suppresses the horizontal expansion of the plume, but strengthens the vertical mixing of the plume water with sea water. (e) Under 6 m/s of south-southeasterly steady winds, the plume expands northeastwards. Under 4 m/s of northwester steady winds, the seaward expansion of the plume is suppressed, and strong downwelling currents occur at its seaward edge.
     The second part of this thesis deals with the Changjiang River estuary with its bathymetry being divided into rectangular grids (188×140). The grid cell dimensions are 1045.5 m×1038.5 m. COHERENS is used to model the dispersal processes within the Changjiang River plume in the flood season under the influence of the M2 tidal constituent. (i) The Changjiang River plume spreading seaward in the form of a fresh water tongue is mostly discharged into the South Branch of the Changjiang River estuary. Four fresh water tongues are formed, they occur outside the North Channel, between the North Channel and the North Passage, between the North Passage and the South Passage, and outside the South Passage. The planar shapes of the fresh water tongues are modulated by the M2 tidal constituent. They advance seaward during the maximum ebb tide, while they retreat landward during the maximum flood tide. (ii) Four fresh water tongues within the Changjiang River plume spread eastwards, east-southeastwards, southeastwards and south-southeastwards. On the whole; however, the Changjiang River plume spreads southeastwards. (iii) Horizontal salinity gradients are large outside the North Channel and the North Passage, and apparent plume fronts are formed there. Both the location of the plume and its frontal intensity, being modulated by the M2 tidal constituent, display tidal variability patterns. At low tide, the plume front is farthest from the mouth of the Changjiang River estuary, while one hour after high tide, it is closest to the mouth of the
     Changjiang River estuary. Maximum plume frontal intensity occurs around the high slack water, while minimum plume frontal intensity occurs around the low slack water. There is one hour lag between maximum plume frontal intensity and the landward movement of the plume, and between minimum plume frontal intensity and the seaward movement of the plume.
     The third part of this thesis deals with the plume within the Changjiang River estuary with its bathymetry being divided into orthogonal curvilinear grids (149×69). The grid cell dimensions range from 283 m to 5583 m. An improved COHERENS model in orthogonal curvilinear coordinates is used to model the dispersal and mixing processes within the Changjiang River plume under the forces driven by M2, S2, K1, and O1 tidal constituents in the flood and dry seasons, respectively. (i) Depending on the Changjiang River discharge and tidal regime, the Changjiang River plume spreads southeastwards in the form of jet flow, or a circular bulge, or a fresh water tongue. (ii) There is a two-layer structure along the longitudinal section within the Changjiang River plume: the upper buoyant plume and the lower vertically homogeneous layer. The thickness of the upper buoyant plume is smaller in the flood season than in the dry season, larger during the spring tide than the neap tide, and smaller at the maximum flood tide than that at the maximum ebb tide. (iii) The salinity stratification within the Changjiang River plume appears to be controlled by tidal mixing, and estuarine circulation resulting from interaction between the Changjiang river discharge and tides. The salinity stratification is stronger in the flood season than in the dry season, weaker during the spring tide than the neap tide, and stronger at the maximum flood tide than at the maximum ebb tide. The salinity stratification displays seasonal/fortnightly/tidal variability patterns within the Changjiang River plume. The improved COHERENS model is also used to model the dispersal and mixing processes within the Changjiang River plume under the action of combined tidal constituent and steady winds in the flood and dry seasons. (i) Under 6 m/s of south-southeasterly steady winds, a part of the surface Changjiang River plume expands eastwards in the form of cloudy patches during the spring tide in the flood season, while the Changjiang River plume expands east-northeastwards as a whole during the neap tide. Under 4 m/s of northwestly steady winds, the seaward dispersion of the Changjiang River plume is suppressed in the dry season, and it expands southeastwards in the form of a fresh water tongue. (ii) Under 6 m/s of south-southeasterly steady winds, the thickness of the upper buoyant plume within the Changjiang River plume increases in the flood season. Under 4 m/s of northwesterly steady winds, the vertical salinity gradient within the upper and lower layers of the Changjiang River plume is small, and thus the plume is nearly vertically homogeneous, except at the maximum flood tide during the neap tide in the dry season. (iii) Under 6 m/s of south-southeasterly steady winds, the stratification within the Changjiang River plume is enhanced. Vertical stratification was estimated by using Simpson’s stratification parameter (φ). The stratification parameter increases about 20-80﹪more than without wind in the flood season. Under 4 m/s of northwesterly steady winds, the stratification at the upwind side of the Changjiang River plume is enhanced, while destratification occurs in other parts of the plume in the dry season. It is suggested that the stratification or destratification within the Changjiang River plume appears to be controlled by the direction of the wind. Furthermore, the upwelling-favourable wind drives the plume to disperse seawards and tends to enhance the stratification, while the downwelling-favourable wind drives the plume to move landwards and causes destratification within the Changjiang River plume.
引文
毛汉礼、甘子钧、蓝淑芳1963长江冲淡水及其混合问题的初步探讨。海洋与湖沼,5 (3): 183-206。
    陈宗镛1980潮汐学。北京:科学出版社。
    浦泳修1981关于东海北部表层的水系和环流。海洋科技资料,5: 23-35。
    吴望一1982流体力学。北京:北京大学出版社。
    袁耀初、苏纪兰、赵金三1982东中国海陆架环流的单层模式。海洋学报,4 (1): 1-11。
    浦泳修1983夏季长江冲淡水扩展机制的初析。东海海洋,1: 43-51。
    浦泳修、许小云1983从径流、水位和海区盐度的变化看长江水的扩展。海洋通报,2 (3): 1-7。
    崔茂常1984长江冲淡水转向研究。海洋与湖沼,15 (3): 222-229。
    乐肯堂1984长江冲淡水路径的初步研究—I.模式。海洋与湖沼,15 (2): 157-167。
    顾玉荷1985长江冲淡水转向原因的探讨。海洋与湖沼,16 (5): 354-363。
    王思杰、隋永年1985黄海南部和东海北部海区盐度分布与变化状况的初步分析。海洋湖沼通报,4: 8-17。
    陈中原、周长振、杨文达、吴志国1986长江口外现代水下地貌与沉积。东海海洋,4 (2): 28-37。
    方国洪、郑文振、陈宗镛、王骥1986潮汐和潮流的分析和预报。北京:海洋出版社。
    上海市海岸带和海涂资源综合调查报告1988上海:上海科学技术出版社。
    张庆华、Pietrafasa L.J.、Janowitz G.S. 1988河口卷流与沿岸海水的相互作用。中国科学,A辑,6: 610-624。
    刘风岳1989黄河冲淡水及其混合锋面的观测研究。海洋科学,5: 33-36。
    乐肯堂1989长江冲淡水路径问题的初步研究——Ⅱ.风场对路径的作用。海洋与湖沼,20 (2): 139-148。
    赵保仁1991长江冲淡水的转向机制问题。海洋学报,13 (5): 600-610。
    国家海洋局东海分局1993东海区海洋站海洋水文气候志。北京:海洋出版社。
    袁业立、郭炳火、孙湘平1993泛黄海海区的物理海洋特征。黄渤海海洋,11 (3): 1-5。
    张庆华、董昌明1993长江冲淡水与邻近海域生态环境的关系。黄渤海海洋,11 (3): 27-29。
    张庆华、乔方利、陈水明1993海底地形和沿岸流对长江冲淡水分布的影响。海洋学报,15 (6): 1-15。
    胡方西、胡辉、谷国传、苏诚、顾学俊1995长江河口盐度锋。海洋与湖沼增刊,26 (5): 23-31。
    胡辉、胡方西1995长江口的水系和锋面。中国水产科学,2 (1): 81-90。
    乐肯堂1995黄河口的变迁对黄河冲淡水分布的影响。海洋科学集刊,36: 81-92。
    茅志昌1995长江河口盐水入侵锋研究。海洋与湖沼,26 (6): 643-649。
    朱兰部、赵保仁、刘克修1997黄河冲淡水转向问题的初步探讨。海洋科学集刊,38: 61-67。
    朱建荣、李永平、沈焕庭1997a夏季风场对长江冲淡水扩展影响的数值模拟。海洋与湖沼,28 (1): 72-79。
    朱建荣、沈焕庭1997b长江冲淡水扩展机制。上海:华东师范大学出版社。
    朱建荣、沈焕庭、周健1997c夏季苏北沿岸流对长江冲淡水扩展影响的数值模拟。华东师范大学学报(自然科学版),2: 62-67。
    朱建荣、沈焕庭、朱首贤1997d三维陆架模式及其应用——一个三维陆架模式及其在长江口外海区的应用。青岛海洋大学学报,27 (2): 145-156。
    王保栋1998长江冲淡水的扩展及其营养盐的输运。黄渤海海洋,16 (2): 41-47。
    朱建荣、肖成猷、沈焕庭1998a夏季长江冲淡水扩展的数值模拟。海洋学报,20 (5): 13-22。
    朱建荣、肖成猷、沈焕庭、朱首贤1998b黄海冷水团对长江冲淡水扩展的影响。海洋与湖沼,29 (4): 389-394。
    诸裕良、严以新、茅丽华1998大江河口三维非线性斜压水流盐度数学模型。水利水运科学研究,2: 129-138。
    朱首贤、朱建荣、沙文钰1999 M2分潮对夏季长江冲淡水扩展影响的数值研究。海洋与湖沼, 30 (6): 711-718。
    李禔来、窦希萍、黄晋鹏2000长江口边界拟合坐标的三维潮流数学模型。水利水运科学研究,3: 1-6。
    林珲、闾国年、宋志尧、贾建军、王建、严以新、陈钟明、龚建华、钱亚东2000东中国海潮波系统与海岸演变模拟研究。北京:科学出版社。
    史峰岩、朱首贤、朱建荣、丁平兴2000杭州湾、长江口余流及其物质输运作用的模拟研究Ⅰ.杭州湾、长江口三维联合模型。海洋学报,22 (5): 1-12。
    唐启升、苏纪兰2000中国海洋生态系统动力学研究Ⅰ.关键科学问题与研究发展战略。北京:科学出版社。
    时钟2001长江口水动力过程的研究进展(1979-1999)。海洋科学,25 (6):54-57。
    陈沈良、谷国传、胡方西2001长江口外羽状锋的屏障效应及其对水下三角洲塑造的影响。海洋科学,25 (5): 55-57。
    廖启煜、郭炳火、刘赞沛2001夏季长江冲淡水转向机制分析。黄渤海海洋,19 (3): 19-25。
    魏皓、武建平、张平2001海洋湍流模式应用研究。青岛海洋大学学报,31 (1): 7-13。
    杨陇慧、朱建荣、朱首贤2001长江口杭州湾及邻近海区潮汐潮流场三维数值模拟。华东师范大学学报,3: 74-84。
    郑金海、诸裕良2001长江河口盐淡水混合的数值模拟计算。海洋通报,20 (4): 1-10。
    胡方西、胡辉、谷国传2002长江口锋面研究。上海:华东师范大学出版社。
    浦泳修2002夏季东海30°N断面的盐度分布类型。东海海洋,20 (1): 1-13。
    浦泳修、黄韦艮、许建平2002长江冲淡水扩展方向的周、旬时段变化。东海海洋,20 (2): 1-5。
    时钟、王云、汪友军、江鲲2002长江口南部水域次级羽状锋。海洋通报,21 (6): 1-8。
    白学志、王凡2003夏季长江冲淡水转向机制的数值试验。海洋与湖沼,34 (6): 593-603。
    程江、何青、王元叶、车越、张经2003长江口徐六泾洪季水沙特性观测研究。海洋通报,22 (5): 86-91。
    沈焕庭、茅志昌、朱建荣2003长江河口盐水入侵。北京:海洋出版社。
    朱建荣、丁平兴、胡敦欣2003 2000年8月长江口外海区冲淡水和羽状锋的观测。海洋与湖沼,34 (3): 249-255。
    朱建荣、朱首贤2003 ECOM模式的改进及长江河口、杭州湾及邻近海区的应用。海洋与湖沼,34 (4): 364-374。
    陈祖军、韦鹤平、陈美发2004长江口水域三维水动力数值模拟研究。海洋预报,21 (3): 37-44。
    程和琴、时钟、Kostaschuk R.、董礼先2004长江口南支-南港沙波的稳定域。海洋与湖沼,35 (3) : 214-220。
    龚政、张长宽、张东生、金勇2004长江口正压、斜压诊断及斜压预报模式—三维流场数值模拟。海洋工程,22 (2) : 39-45。
    孔亚珍、贺松林、丁平兴、胡克林2004长江口盐度的时空变化特征及其指示意义。海洋学报,26 (4) : 9-18。
    张耀良、朱卫兵2005张量分析及其在连续介质力学中的应用。哈尔滨:哈尔滨工程大学出版社。
    Armoux-Chiavassa, S., Rey, V. and Fraunié, P. 2003 Modeling 3D Rh?ne river plume using a higher order advection scheme. Oceanologica Acta 26: 299-309.
    Arnau, P., Liquete, C. and Canals, M. 2004 River mouth plume events and their dispersal in the northwestern Mediterranean Sea. Oceanography 17 (3): 22-31.
    Bang, I. and Lie, H.-J. 1999 A numerical experiment on the dispersion of the Changjiang River plume. Journal of the Korean Society of Oceanography 34 (4): 185-199.
    Beardsley, R.C., Limeburner, R., Hu, D.X., Le, K.T., Cannon, G.A. and Pashinski, D.J. 1983 Structure of the Changjiang River Plume in the East China Sea during June 1980. Proceedings of International Symposium on Sedimentation on the Continental Shelf, with Special Reference to the East China Sea, April 12-16, 1983. Hangzhou, China, Volume 1, China Ocean Press, Beijing: 243-260.
    Beardsley, R.C., Limeburner, R., Yu, H. and Cannon, G.A. 1985 Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research 4 (1-2): 57-76.
    Berdeal, I.G., Hickey, B.M. and Kawase, M. 2002 Influence of wind stress and ambient flow on a high discharge river plume. Journal of Geophysical Research 107 (C9): 13/1-13/24.
    Blackadar, A.K. 1962 The vertical distribution of wind and turbulent exchange in a neutral atmosphere.Journal of Geophysical Research 67: 3095-3102.
    Blumberg, A.F. and Mellor, G.L. 1987 A description of a three-dimensional coastal ocean circulation model. In: N.S. Heaps (Ed.), Three Dimensional Coastal Ocean Models. Coastal and Estuarine Sciences, Vol. 4, American Geophysical Union, Washington D.C.: 1-16.
    Bowman, M.J. and Iverson, R.L. 1978 Estuarine and plume fronts. In: M.J. Bowman and W.E. Esaias (Eds.), Oceanic Fronts in Coastal Processes. Springer-Verlag, Berlin: 87-104.
    Broche, P., Devenon, J.-L., Forget, P., de Maistre, J.-C., Naudin, J.-J. and Cauwet, G. 1998 Experimental study of the Rhone plume. Part I: physics and dynamics. Ocenologica Acta 21 (6): 725-738.
    Brubaker, J.M. and Simpson, J.H. 1999 Flow convergence and stability at a tidal estuarine front: acoustic Doppler current observations. Journal of Geophysical Research 104 (C8): 18257-18268.
    Burchard, H., Bolding, K. and Villarreal, M.R. 2004 Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dynamics 54: 250-265.
    Burchard, H. and Petersen, O. 1997 Hybridization betweenσ-and z -co-ordinates for improving the internal pressure gradient calculation in marine models with steep bottom slopes. International Journal for Numerical Methods in Fluids 25: 1003-1023.
    Burrage, D.M., Heron, M.L., Hacker, J.M., Stieglitz, T.C., Steinberg, C.R. and Prytz, A. 2002 Evolution and dynamics of tropical river plumes in the Great Barrier Reef: an integrated remote sensing and in situ study. Journal of Geophysical Research 107 (C12): 17/1-17/22.
    Cameron, W.M. and Pritchard, D.W. 1963 Estuaries. In: M.N. Hill (Ed.), The Sea. Vol. 2. John Wiley and Sons, New York: 306-324.
    Chang, P.-H. and Isobe, A. 2003 A numerical study on the Changjiang diluted water in the Yellow and East China Seas. Journal of Geophysical Research 108 (C9): 1-17.
    Chao, S.Y. 1988a River-forced estuarine plumes. Journal of Physical Oceanography 18 (1): 72-88.
    Chao, S.Y. 1988b Wind-driven motion of estuarine plumes. Journal of Physical Oceanography 18 (8): 1144-1166.
    Chao, S.Y. 1990 Tidal modulation of estuarine plumes. Journal of Physical Oceanography 20 (7): 1115-1123.
    Chapman, D.C. and Lentz, S.J. 1994 Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography 24: 1464-1479.
    Chen, C.S., Zheng, L.Y. and Blanton, J.O. 1999 Physical processes controlling the formation, evolution, and perturbation of the low-salinity front in the inner shelf off the southeastern United States: a modeling study. Journal of Geophysical Research 104 (C1): 1259-1288.
    Coriolis, M.G. 1831 Mémoire sur le principe des forces vives dans les mouvements relatifs des machines. Journal de I’Ecole Polytechnique 13: 268-302.
    Coriolis, M.G. 1835 Mémoire sur leséquations du mouvement relatif des systémes de corps. Journal de I’Ecole Polytechnique 15: 142-154.
    Csanady, G.T. 1978 The arrested topographic wave. Journal of Physical Oceanography 8: 47-62.
    Cugier, P. and Le Hir, P. 2002 Development of a 3D hydrodynamic model for coastal ecosystem modeling. Application to the plume of the Seine River (France). Estuarine, Coastal and Shelf Science 55: 673-695.
    Czitrom, S.P.R., Budéus, G. and Krause, G. 1988 A tidal mixing front in an area influenced by land runoff. Continental Shelf Research 8 (3): 225-237.
    Davies, A.M. and Xing, J.X. 1999 Sensitivity of plume dynamics to the parameterization of vertical mixing. International Journal for Numerical Methods in Fluids 30: 357-405.
    De Boer, G.J., Pietrzak, J.D., and Winterwerp, J.C. 2006 On the vertical structure of the Rhine region of freshwater influence. Ocean Dynamics 56 (3-4): 198-216.
    De Kok, J.M. 1996 A two-layer model of the Rhine plume. Journal of Marine Systems 8 (3-4): 269-284.
    De Kok, J.M. 1997 Baroclinic eddy formation in a Rhine plume model. Journal of Marine Systems 12 (1-4): 35-52.
    De Kok, J.M., de Valk, C., van Kester, J.H.Th.M., de Goede, E. and Uittenbogaard, R.E. 2001 Salinity and
    temperature stratification in the Rhine plume. Estuarine, Coastal and Shelf Science 53: 467-475.
    Delcroix, T. and Murtugudde, R. 2002 Sea surface salinity changes in the East China Sea during 1997-2001: influence of the Yangtze River. Journal of Geophysical Research 107 (C12): 9/1-9/11.
    De Ruijter, W.P.M., Visser, A.W. and Bos, W.G. 1997 The Rhine outflow: a prototypical pulsed discharge plume in a high energy shallow sea. Journal of Marine Systems 12: 263-276.
    Dippner, J.W. 1998 Vorticity analysis of transient shallow water eddy fields at the river plume front of the River Elbe in the German Bight. Journal of Marine Systems 14: 117-133.
    Dong, L.X., Su, J.L., Wong, L.A., Cao, Z.Y. and Chen, J.C. 2004 Seasonal variation and dynamics of the Pearl River plume. Continental Shelf Research 24: 1761-1777.
    Doodson, A.T. 1921 Harmonic development of the tide-generating potential. Proceedings of Royal Society of London Series A 100, 305-329.
    Dzwonkowski, B. and Yan, X.-H. 2005 Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data. Continental Shelf Research 25: 1942-1958.
    Ekman, V.W. 1905 On the influence of the earth’s rotation on ocean currents. Arkiv for Matematik, Astronomi Och Fysik 2 (11): 1-53.
    Estournel, C., Kondrachoff, V., Marsaleix, P. and Vehil, R. 1997 The plume of the Rhone: numerical simulation and remote sensing. Continental Shelf Research 17 (8): 899-924.
    Estournel, C., Broche, P., Marsaleix, P., Devenon, J.-L., Auclair, F. and Vehil, R. 2001 The Rhone River plume in unsteady conditions: numerical and experimental results. Estuarine, Coastal and Shelf Science 53: 25-38.
    Fennel, W. and Mutzke, A. 1997 The initial evolution of a buoyant plume. Journal of Marine Systems 12: 53-68.
    Ferrier, G. and Anderson, J.M. 1997 The application of remotely sensed data in the study of frontal systems in the Tay Estuary, Scotland, U.K. International Journal of Remote Sensing 18 (9): 2035-2065.
    Fischer, H.B. 1976 Mixing and dispersion in estuaries. Annual Review of Fluid Mechanics: 8: 107-133.
    Fong, D.A. and Geyer, W.R. 2001 Response of a river plume during an upwelling favorable wind event. Journal of Geophysical Research 106 (C1): 1067-1084.
    Fong, D.A. and Geyer, W.R. 2002 The alongshore transport of freshwater in a surface-trapped river plume. Journal of Physical Oceanography 32: 957-972.
    Fong, D.A., Geyer, W.R. and Signell, R.P. 1997 The wind-forced response on a buoyant coastal current: observations of the western Gulf of Maine plume. Journal of Marine Systems 12: 69-81.
    Garvine, R.W. 1974a Physical features of the Connecticut River outflow during high discharge. Journal of Geophysical Research 79 (6): 831-846.
    Garvine, R.W. 1974b Dynamics of small-scale oceanic fronts. Journal of Physical Oceanography 4 (4): 557-569.
    Garvine, R.W. 1977a Observations of the motion field of the Connecticut River plume. Journal of Geophysical Research 82 (3): 441-454.
    Garvine, R.W. 1977b River plumes and estuary fronts. In: Estuaries, Geophysics and the Environment, National Academy of Sciences, Washington D.C.: 30-35.
    Garvine, R.W. 1982 A steady state model for buoyant surface plume hydrodynamics in coastal waters. Tellus 34: 293-306.
    Garvine, R.W. 1987 Estuary plumes and fronts in shelf waters: a layer model. Journal of Physical Oceanography 17 (11): 1877-1896.
    Garvine, R.W. 1996 Buoyant discharge on the inner continental shelf: a frontal model. Journal of Marine Research 54 (1): 1-33.
    Garvine, R.W. and Monk, J.D. 1974 Frontal structure of a river plume. Journal of Geophysical Research 79 (15): 2251-2259.
    Gelfenbaum, G. and Stumpf, R.P. 1993 Observations of currents and density structure across a buoyant plume front. Estuaries 16 (1): 40-52.
    Geyer, W.R. 1995 Tide-induced mixing in the Amazon frontal zone. Journal of Geophysical Research 100 (C2): 2341-2353.
    Geyer, W.R. and Kineke, G.C. 1995 Observations of currents and water properties in the Amazon frontal zone. Journal of Geophysical Research 100 (C2): 2321-2339.
    Hallock, Z.R. and Marmorino, G.O. 2002 Observations of the response of a buoyant estuarine plume to upwelling favorable winds. Journal of Geophysical Research 107 (C7): 3/1-3/13.
    Hanely, R.L. 1991 On the pressure gradient force over steep topography in sigma coordinate models. Journal of Physical Oceanography 21: 610-619.
    Hedstrom, G.W. 1979 Nonreflecting boundary conditions for nonlinear hyperbolic systems. Journal of Computational Physics 30: 222-237.
    Hellweger, F.L., Blumberg, A.F., Schlosser, P., Ho, D.T., Caplow, T., Lall, U. and Li, H. 2004 Transport in the Hudson estuary: a modeling study of estuarine circulation and tidal trapping. Estuaries 27 (3): 527-538.
    Hessner, K., Rubino, A., Brandt, P. and Alpers, W. 2001 The Rhine outflow plume studied by the analysis of synthetic aperture radar data and numerical simulations. Journal of Physical Oceanography 31:3030-3044.
    Hetland, R.D. 2005 Relating river plume structure to vertical mixing. Journal of Physical Oceanography 35 (9): 1667-1688.
    Hickey, B.M., Pietrafesa, L.J., Jay, D.A. and Boicourt, W.C. 1998 The Columbia River plume study: subtidal variability in the velocity and salinity fields. Journal of Geophysical Research 103 (C5): 10339-10368.
    Hitchcock, G.L., Wiseman Jr, W.J., Boicourt, W.C., Mariano, A.J., Walker, N., Nelsen, T.A. and Ryan, E. 1997 Property fields in an effluent plume of the Mississippi river. Journal of Marine Systems 12: 109-126.
    Horn, W. 1969 Tables of astronomical arguments V 0 +u and corrections j , v for use in the harmonic analysis and prediction of tides for the years 1900 to 1999. Proceedings of the Symposium on Tides, the International Hydrographic Bureau, Monaco. 28-29 April 1967. UNESCO, Paris, France: 167-168.
    Hu, K.L., Ding, P.X., Zhu, S.X. and Cao, Z.Y. 2000 2-D current field numerical simulation integrating Yangtze Estuary with Hangzhou Bay. China Ocean Engineering 14 (1): 89-102.
    Huzzey, L.M. and Brubaker, J.M. 1988 The formation of longitudinal fronts in a coastal plain estuary. Journal of Geophysical Research 93 (C2): 1329-1334.
    Hyatt, J. and Signell, R.P. 2000 Modeling surface trapped river plumes: a sensitivity study. In: M.L. Spaulding and A.F. Blumberg (Eds.), Proceedings of the 6th International Conference on Estuarine and Coastal Modeling, ASCE, New York, U.S.A.: 452-465.
    James, I.D. 1984 A three-dimensional numerical shelf-sea front model with variable eddy viscosity and diffusivity. Continental Shelf Research 3 (1): 69-98.
    Johnson, D.R., Weidemann, A., Arnone, R. and Davis, C.O. 2001 Chesapeake Bay outflow plume and coastal upwelling events: physical and optical properties. Journal of Geophysical Research 106 (C6): 11613-11622.
    Kuo, A.Y., Byrne, R.J., Brubaker, J.M. and Posenau, J.H. 1988 Vertical transport across an estuary front. In: J. Dronkers and W. Van Leussen (Eds.), Physical Processes in Estuaries. Springer-Verlag, Berlin Heidelberg: 93-109.
    Kourafalou, V.H. 1999 Process studies on the Po River plume, North Adriatic Sea. Journal of Geophysical Research 104 (C12): 29963-29985.
    Kourafalou, V.H. 2001 River plume development in semi-enclosed Mediterranean regions: North Adriatic Sea and Northwestern Aegean Sea. Journal of Marine Systems 30: 181-205.
    Kourafalou, V.H., Oey, L.-Y., Wang, J.D. and Lee, T.N. 1996a The fate of river discharge on the continental shelf 1. modeling the river plume and the inner shelf coastal current. Journal of Geophysical Research 101 (C2): 3415-3434.
    Kourafalou, V.H., Lee, T.N., Oey, L.-Y. and Wang, J.D. 1996b The fate of river discharge on the continental shelf 2. Transport of coastal low-salinity waters under realistic wind and tidal forcing. Journal of Geophysical Research 101 (C2): 3435-3455.
    Lacroix, G., Ruddick, K., Ozer, J. and Lancelot, C. 2004 Modelling the impact of the Scheldt and Rhine/Meuse plumes on the salinity distribution in Belgian waters (southern North Sea). Journal of Sea Research 52: 149-163.
    Lagadeuc, Y., Brylinski, J.M. and Aelbrecht, D. 1997 Temporal variability of the vertical stratification of a front in a tidal Region Of Freshwater Influence (ROFI) system. Journal of Marine Systems 12: 147-155.
    Lazure, P. and Girardot, J.P. 1990 Hydrodynamics of the Changjiang Estuary area. In: G.H. Yu, J.-M. Martin, and J.Y. Zhou (Eds.), Biogeochemical Study of the Changjiang Estuary. China Ocean Press, Beijing: 38-61.
    Lazure, P. and Jegou, A.-M. 1998 3D modelling of seasonal evolution of Loire and Gironde plumes on Biscay Bay continental shelf. Oceanologica Acta 21 (2): 165-177.
    Lentz, S.J. 1995a The Amazon River plume during AMASSEDS: subtidal current variability and the importance of wind forcing. Journal of Geophysical Research 100 (C2): 2377-2390.
    Lentz, S.J. 1995b Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. Journal of Geophysical Research 100 (C2): 2391-2400.
    Lentz, S.J. 2004 The response of buoyant coastal plumes to upwelling-favorable winds. Journal of Physical Oceanography 34: 2458-2469.
    Lentz, S.J. and Limeburner, R. 1995 The Amazon River plume during AMASSEDS: spatial characteristics and salinity variability. Journal of Geophysical Research 100 (C2): 2355-2375.
    Lewis, R. 1997 Dispersion in Estuaries and Coastal Waters. John Wiley & Sons, West Sussex, England. pp.312.
    Lie, H.-J., Cho, C.-H., Lee, J.-H. and Lee, S. 2003 Structure and eastward extension of the Changjiang River plume in the East China Sea. Journal of Geophysical Research 108 (C3): 22/1-22/14.
    Luketina, D.A. and Imberger, J. 1989 Turbulence and entrainment in a buoyant surface plume. Journal of Geophysical Research 94 (C9): 12619-12636.
    Luyten, P. J., Jones, J. E., Proctor, R., Tabor, A., Tett, P. and Wild-Allen, K., 1999 COHERENS-A COupled Hydrodynamical-Ecological Model for Regional and Shelf Seas: User Documentation. MUMM Report, Management Unit of the Mathematical Methods of the North Sea: pp. 914.
    MacDonald, D.G., Goodman, L. and Hetland, R.D. 2007 Turbulent dissipation in a near-field river plume: a comparison of control volume and microstructure observations with a numerical model. Journal of Geophysical Research 112, C07026, doi: 10.1029/2006JC004075.
    Madala, R.V. and Piacsek, S.A. 1977 A semi-implicit numerical model for baroclinic oceans. Journal of Computational Physics 23: 167-178.
    Magome, S. and Isobe, A. 2003 Current structure and behavior of the river plume in Suo-Nada. Journal of Oceanography 59: 833-843.
    Marmorino, G.O. and Trump, C.L. 2000 Gravity current structure of the Chesapeake Bay outflow plume. Journal of Geophysical Research 105 (C12): 28847-28861.
    Marmorino, G.O., Donato, T.F., Sletten, M.A. and Trump, C.L. 2000 Observations of an inshore front associated with the Chesapeake Bay outflow plume. Continental Shelf Research 20: 665-684.
    Marsaleix, P., Estournel, C., Kondrachoff, V. and Vehil, R. 1998 A numerical study of the formation of the Rh?ne River plume. Journal of Marine Systems 14: 99-115.
    McCreary Jr., J.P., Zhang, S. and Shetye, S.R. 1997 Coastal circulations driven by river outflow in a variable-density 11/2-layer model. Journal of Geophysical Research 102 (C7): 15535-15554.
    Mellor, G.L. and Yamada, T. 1974 A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences 31: 1791-1806.
    Mellor, G.L. and Yamada, T. 1982 Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics 20: 851-875.
    Mestres, M., Sierra, J.P. and Sánchez-Arcilla, A. 2007 Factors influencing the spreading of a low-discharge river plume. Continental Shelf Research 27: 2116-2134.
    Mestres, M., Sierra, J.P., Sánchez-Arcilla, A., Río, J.G.D., Wolf, T., Rodríguez, A. and Ouillon, S. 2003 Modelling of the Ebro River plume. Validation with field observations. Scientia Marina 67 (4): 379-391.
    Murota, A. and Nakatsuji, K. 1988 Spreading of a river plume: field observations, integral model analyses and numerical experiments. In: J. Dronkers and W. Van Leussen (Eds.), Physical Processes in Estuaries. Springer-Verlag, Berlin Heidelberg: 110-129.
    Nahas, E.L., Pattiaratchi, C.B. and Ivey, G.N. 2005 Processes controlling the position of frontal systems in Shark Bay, Western Australia. Estuarine, Coastal and Shelf Science 65: 463-474.
    Narayanan, C. and Garvine, R.W. 2002 Large scale buoyancy driven circulation on the continental shelf. Dynamics of Atmospheres and Oceans 36: 125-152.
    Nash, J.D. and Moum, J.N. 2005 River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature 437: 400-403.
    Neill, S.P., Copeland, G.J.M., Ferrier, G. and Folkard, A.M. 2004 Observations and numerical modeling of a non-buoyant front in the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 59 (1): 173-184.
    Nunes, R.A. and Simpson, J.H. 1985 Axial convergence in a well mixed estuary. Estuarine, Coastal and Shelf Science 20 (5): 637-649.
    O’Donnell, J. 1990 The formation and fate of a river plume: a numerical model. Journal of Physical Oceanography 20: 551-569.
    O’Donnell, J. 1993 Surface fronts in estuaries: a review. Estuaries 16 (1): 12-39.
    O’Donnell, J. 1997 Observations of near-surface currents and hydrography in the Connecticut River plume with the surface current and density array. Journal of Geophysical Research 102 (C11): 25021-25033.
    O’Donnell, J. and Garvine, R.W. 1983 A time dependent, two-layer frontal model of buoyant plume dynamics. Tellus 35A: 73-80.
    O’Donnell, J., Marmorino, G.O. and Trump, C.L. 1998 Convergence and downwelling at a river plume front. Journal of Physical Oceanography 28: 1481-1495.
    Oey, L.-Y. and Mellor, G.L. 1993 Subtidal variability of estuarine outflow, plume, and coastal current: a model study. Journal of Physical Oceanography 23: 164-171.
    Orton, P.M. and Jay, D.A. 2005 Observations at the tidal plume front of a high-volume river outflow.Geophysical Research Letters 32: L11605.
    Park, K. 1966 Columbia River plume identification by specific alkalinity. Limnology and Oceanography 11 (1): 118-120.
    Pin?ones, A., Valle-Levinson, A., Narváez, D.A., Vargas, C.A., Navarrete, S.A., Yuras, G. and Castilla, J.C. 2005 Wind-induced diurnal variability in river plume motion. Estuarine, Coastal and Shelf Science 65: 513-525.
    Prandtl, L. 1925über die ausgebildete turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik 5 (2): 136-139.
    Pritchard, D.W. 1952 Salinity distribution and circulation in the Chesapeake Bay estuarine system. Journal of Marine Research 11: 106-123.
    Rennie, S.E., Largier, J.L. and Lentz, S.J. 1999 Observations of a pulsed buoyant current downstream of Chesapeake Bay. Journal of Geophysical Research 104 (C8): 18227-18240.
    R?ed, L.P. and Cooper, C.K. 1987 A study of various open boundary conditions for wind-forced barotropic numerical ocean models. In: J.C.J. Nihoul and B.M. Jamart (Eds.), Three-dimensional Models of Marine and Estuarine Dynamics. Elsevier, Amsterdam: 305-335.
    Rodi, W. 1980 Turbulence Models and Their Application in Hydraulics. International Association for Hydraulic Research, Delft, The Netherlands, pp. 104.
    Rodi, W. 1987 Examples of calculation methods for flow and mixing in stratified fluids. Journal of Geophysical Research 92: 5305-5328.
    Ruddick, K.G., Deleersnijder, E., de Mulder, T. and Luyten, P.J. 1994a A model study of the Rhine discharge front and downwelling circulation. Tellus 46A: 149-159.
    Ruddick, K.G., Lahousse, L. and Donnay, E. 1994b Location of the Rhine plume front by airborne remote sensing. Continental Shelf Research 14 (4): 325-332.
    Sanders, T.M. and Garvine, R.W. 1996 Frontal observations of the Delaware Coastal Current source region. Continental Shelf Research 16 (8): 1009-1021.
    Sarabun Jr., C.C. 1993 Observations of a Chesapeake Bay tidal front. Estuaries 15 (1): 68-73.
    Siegel, H., Gerth, M. and Mutzke, A. 1999 Dynamics of the Oder river plume in the Southern Baltic Sea: satellite data and numerical modeling. Continental Shelf Research 19: 1143-1159.
    Simons, T.J. 1974 Verification of numerical models of Lake Ontario, Part I. Circulation in spring and early summer. Journal Physical Oceanography 4: 507-523.
    Simpson, J.H. and James, I.D. 1986 Coastal and Estuarine Fronts. In: C.N.K. Mooers (Ed.), Coastal and Estuarine Science 3, Baroclinic Processes on Continental Shelves. American Geophysical Union, Washington D.C.: 63-94.
    Simpson, J.H. and Nunes, R.A. 1981 The tidal intrusion front: an estuarine convergence zone. Estuarine, Coastal and Shelf Science 13: 257-266.
    Sletten, M.A., Marmorino, G.O., Donato, T.F., McLaughlin, D.J. and Twarog, E. 1999 An airborne, real aperture radar study of the Chesapeake Bay outflow plume. Journal of Geophysical Research 104 (C1): 1211-1222.
    Sl?rdal, L.H. 1997 The pressure gradient force in sigma-co-ordinate ocean models. International Journal for Numerical Methods in Fluids 24: 987-1017.
    Smagorinsky, J. 1963 General circulation experiments with the primitive equations - I. the basic experiment. Monthly Weather Review 91: 99-165.
    Smolarkiewicz, P.K. and Szmelter J. 2005 MPDATA: an edge-based unstructured-grid formulation. Journal of Computational Physics, 206 (2): 624-649.
    Stelling, G.S. and Van Kester, J.A.Th.M. 1994 On the approximation of horizontal gradients in sigma co-ordinates for bathymetry with steep bottom slopes. International Journal for Numerical Methods in Fluids 18: 915-935.
    Stommel, H. and Farmer, H.G. 1953 Control of salinity in an estuary by a transition. Journal of Marine Research 12: 13-20.
    Su, J.L. and Wang, K.S. 1989 Changjiang river plume and suspended sediment transport in Hangzhou Bay. Continental Shelf Research 9 (1): 93-111.
    Sundqvist, H. 1975 On truncation errors in sigma-system models. Atmosphere 13: 81-95.
    Takano, K. 1954a On the velocity distribution off the mouth of a river. Journal of the Oceanographical Society of Japan 10 (2): 60-64.
    Takano, K. 1954b On the salinity and the velocity distributions off the mouth of a river. Journal of the Oceanographical Society of Japan 10 (3): 92-98.
    Takano, K. 1955 A complementary note on the diffusion of the seaward river flow off the mouth. Journal ofthe Oceanographical Society of Japan 11 (4): 147-149.
    Thompson, J.F. 1980 Numerical solution of flow problem using body-fitted coordinate system. In: W. Kollmann (Ed.). Computational Fluid Dynamics. Hemisphere, Washington, D.C.: 1-98.
    Thompson, J.F., Thames, F.C., and Mastin, C.W. 1974 Automatic numerical generation of body-Fitted Curvilinear Coordinate Systems for field containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics 15: 299-319.
    Thompson, J.F., Thames, F.C., and Mastin, C.W. 1977 Boundary-Fitted Curvilinear Coordinate Systems for Solution of Partial Differential Equations on Fields Containing Any Number of Arbitrary Two Dimensional Bodies, NASA CR-2729, p. 225.
    Turrell, W.R. and Simpson, J.H. 1988 The measurement and modeling of axial convergence in shallow well-mixed estuaries. In: J. Dronkers and W. Van Leussen (Eds.). Physical Processes in Estuaries. Springer-Verlag, Berlin Heidelberg: 130-145.
    Van Alphen, J.S.L.J., De Ruijter, W.P.M. and Borst, J.C. 1988 Outflow and three-dimensional spreading of Rhine River water in the Netherlands coastal zone. In: J. Dronkers and W. Van Leussen (Eds.). Physical Processes in Estuaries. Springer-Verlag, Berlin Heidelberg: 70-92.
    Walker, N.D. 1996 Satellite assessment of Mississippi River plume variability: causes and predictability. Remote Sensing of Environment 58: 21-35.
    Wang, Z., Chen, Z., Okamura, K., Gao, J., Xu, K., Koshikawa, H. and Watanabe, M. 2004 Anomalous current recorded at lower low water off the Changjiang River mouth, China. Geo-Marine Letters 24: 252-258.
    Warrick, J.A., Mertes, L.A.K., Washburn, L. and Siegel, D.A. 2004 Dispersal forcing of southern California river plumes, based on field and remote sensing observations. Geo-Marine Letters 24: 46-52.
    Whitney, M.M. and Garvine, R.W. 2005 Wind influence on a coastal buoyant outflow. Journal of Geophysical Research 110, C03014, doi: 10.1029/2003JC002261.
    Wiseman Jr., W.J. and Garvine, R.W. 1995 Plumes and coastal currents near large river mouths. Estuaries 18 (3): 509-517.
    Wolanski, E., Spagnol, S., King, B. and Ayukai, T. 1999 Patchiness in the Fly River plume in Torres Strait. Journal of Marine Systems 18: 369-381.
    Wong, L.A., Chen, J.C. and Dong, L.X. 2004 A model of the plume front of the Pearl River Estuary, China and adjacent coastal waters in the winter dry season. Continental Shelf Research 24: 1779-1795.
    Wong, L.A., Chen, J.C., Xue, H., Dong, L.X., Su, J.L. and Heinke, G. 2003a A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. simulations and comparison with observations. Journal of Geophysical Research 108 (C5), 3156, doi: 10.1029/2002JC001451.
    Wong, L.A., Chen, J.C., Xue, H., Dong, L.X., Guan, W.B. and Su, J.L. 2003b A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 2. sensitivity experiments. Journal of Geophysical Research 108 (C5), 3157, doi: 10.1029/2002JC001452.
    Xing, J. and Davies, A.M. 1996 Application of turbulence energy models to the computation of tidal currents and mixing intensities in shelf edge regions. Journal of Physical Oceanography 26: 417-447.
    Yankovsky, A.E., Hickey, B.M. and Münchow, A.K. 2001 Impact of variable inflow on the dynamics of a coastal buoyant plume. Journal of Geophysical Research 106 (C9): 19809-19824.
    Zhang, Q.H., Janowitz, G.S. and Pietrafesa, L.J. 1987 The interaction of estuarine and shelf waters: a model and applications. Journal of Physical Oceanography 17: 455-469.
    Zhang, Q.H., Pietrafesa, L.J. and Janowitz, G.S. 1988 Interaction between estuarine plumes and coastal waters. Scentia Sinica (Series A) 31 (10): 1222-1239.
    Zheng, Q., Clemente-Colón, P., Yan, X.-H., Liu, W.T. and Huang, N.E. 2004 Satellite synthetic aperture radar detection of Delaware Bay plumes: jet-like feature analysis. Journal of Geophysical Research 109: C03031.
    Zhu, J.R., Qi, D.M. and Xiao, C.Y. 2004 Simulated circulations off the Changjiang (Yangtze) River mouth in spring and autumn. Chinese Journal of Oceanology and Limnology 22 (3): 286-291.
    Zhu, J.R., Wang, J.H., Shen, H.T. and Wu, H. 2005 Observation and analysis of the diluted water and red tide in the sea off the Changjiang River mouth in middle and late June 2003. Chinese Science Bulletin 50 (3): 1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700