外源亚精胺提高黄瓜幼苗耐盐性的生理调节功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施土壤次生盐渍化是目前国内外设施栽培中的主要土壤障碍因子,严重制约着设施蔬菜的可持续发展。设施土壤发生盐害时,对黄瓜植株生长、产量和品质造成一系列不良影响,阻碍了黄瓜设施栽培的优质高效生产。多胺是生物代谢过程中产生的一类具有强烈生物活性的低分子量脂肪族含氮碱,研究表明多胺在植物抗逆境胁迫中发挥着重要作用。然而,关于多胺代谢变化与蔬菜作物耐盐性的关系以及多胺发挥的生理调节功能至今尚未阐明。
     本文以耐盐性具有明显差异的两个黄瓜(Cucumis sativus L.)品种(耐盐性较强的‘长春密刺'和耐盐性较弱的‘津春2号')为试材,采用营养液栽培,通过营养液中添加外源Spd和多胺代谢抑制剂(MGBG和o-phen),研究盐(50 mmol·L~(-1)NaCl)胁迫下黄瓜植株生长、多胺代谢、活性氧代谢、质子泵活性、氮代谢、渗透调节物质积累等方面的变化,探讨黄瓜叶片和根系中多胺代谢变化、细胞器结合态多胺含量变化与植株耐盐性的关系,并探讨外源Spd在提高黄瓜耐盐性中发挥的生理调节功能。主要研究结果如下:
     盐胁迫下,黄瓜幼苗叶片和根系中多胺代谢发生明显变化:‘长春密刺'幼苗中ADC、ODC、SAMDC和DAO活性升高幅度明显大于‘津春2号',而PAO活性升高幅度明显小于‘津春2号',引起‘津春2号'(游离态Spd+游离态Spm)/游离态Put比值显著降低、游离态Put/总游离态多胺比值显著升高,而‘长春密刺'变化不明显,且‘津春2号'体内结合态和束缚态尤其是束缚态多胺含量增加幅度明显小于‘长春密刺'。盐胁迫下外源0.1 mmol·L~(-1)Spd处理进一步提高了黄瓜叶片和根系中SAMDC和DAO活性,降低了PAO活性,引起(游离态Spd+游离态Spm)/游离态Put比值升高以及游离态Put/总游离态多胺比值降低,也引起结合态和束缚态尤其是束缚态多胺含量的显著增加,同时明显缓解了盐胁迫对黄瓜幼苗生长的抑制。外源MGBG处理能显著降低盐胁迫下幼苗体内游离态Spd和Spm含量,增加游离态Put含量,同时加重盐胁迫对幼苗生长的抑制,而外源Spd和Spm能缓解MGBG的伤害作用,且以Spd的缓解效果更明显。外源o-phen处理能显著降低盐胁迫下幼苗体内束缚态多胺含量,同时加重盐胁迫对幼苗生长的抑制。表明黄瓜幼苗叶片和根系中游离态Put迅速向游离态Spd和Spm转化,进而提高(游离态Spd+游离态Spm)/游离态Put比值、降低游离态Put/总游离态多胺比值,以及游离态Put迅速向结合态和束缚态多胺转化,尤其是向束缚态多胺转化,进而提高束缚态多胺含量,有利于提高黄瓜幼苗的耐盐性。
     盐胁迫下,黄瓜细胞器结合态多胺含量变化与植株耐盐性密切相关:盐胁迫下,‘长春密刺'叶绿体TGase活性、结合态Put和Spd含量显著增加,而‘津春2号'变化不明显;‘长春密刺'叶绿体抗氧化酶活性和抗氧化剂含量增加幅度大于‘津春2号',而叶绿体H_2O_2和MDA含量升高幅度、净光合速率降低幅度小于‘津春2号'。暗示了叶绿体结合态Put和Spd含量的升高有利于阻止盐胁迫对叶绿体的伤害。外源Spd显著提高了盐胁迫下黄瓜叶绿体TGase活性、结合态多胺含量、抗氧化酶活性、抗氧化剂含量和净光合速率,降低了H_2O_2和MDA含量。盐胁迫下,‘长春密刺'根系线粒体结合态Spd含量、线粒体抗氧化酶活性和抗氧化剂含量增加幅度大于‘津春2号',而线粒体H_2O_2和MDA含量升高幅度小于‘津春2号'。暗示了线粒体结合态Spd含量的升高有利于阻止盐胁迫对线粒体的伤害。外源Spd显著提高了盐胁迫下黄瓜根系线粒体结合态多胺含量、抗氧化酶活性和抗氧化剂含量,降低了H_2O_2和MDA含量升高幅度。盐胁迫下,‘长春密刺'根系质膜结合态Spd含量、质膜H~+-ATPase活性显著升高,而‘津春2号'变化不明显;外源Spd显著提高了质膜结合态Spd含量,同时显著提高了质膜H~+-ATPase活性。表明黄瓜根系质膜结合态Spd通过提高质膜H~+-ATPase活性从而增强幼苗耐盐性。盐胁迫下,‘长春密刺'根系液泡膜结合态Put和Spd含量、液泡膜H~+-ATPase、H~+-PPase活性下降幅度小于‘津春2号';外源Spd显著提高了液泡膜结合态Spd含量,同时显著提高了液泡膜H~+-ATPase活性。表明黄瓜根系液泡膜结合态Spd通过提高液泡膜H~+-ATPase活性从而增强幼苗耐盐性。
     Spd参与盐胁迫下黄瓜体内活性氧代谢的调节:外源Spd能进一步提高盐胁迫下黄瓜叶片和根系中SOD、POD和CAT等抗氧化酶活性,降低O_2~-产生速率、H_2O_2和MDA含量及电解质渗漏率。并且叶片和根系中束缚态Spd含量与SOD、POD和CAT活性间呈显著正相关。而外源o-phen能显著降低盐胁迫下幼苗体内束缚态Spd含量,同时降低抗氧化酶活性,提高活性氧水平和膜脂伤害程度。表明外源Spd通过提高盐胁迫下黄瓜幼苗内源多胺尤其是内源束缚态Spd含量,从而提高抗氧化酶活性,降低活性氧水平以及膜脂伤害。
     Spd参与盐胁迫下黄瓜体内氮代谢的调节:外源Spd显著抑制了盐胁迫下黄瓜叶片和根系中DNA、RNA等核酸含量的降低;抑制了蛋白酶活性的升高,进而减缓了可溶性蛋白质含量的下降以及总游离氨基酸含量的升高;外源Spd促进了盐胁迫下黄瓜植株对NO_3~--N的吸收和转运,诱导叶片和根系中NR活性提高,促进NO_3~--N的还原,通过促进NH_4~+-N的同化,缓解过量NH_4~+-N积累造成的氨毒害,最终缓解盐胁迫引起的氮代谢紊乱。
     Spd诱导盐胁迫下黄瓜体内有机渗透调节物质的积累:外源Spd显著提高了盐胁迫下黄瓜叶片和根系中吡咯啉-5-羧酸合成酶(P5CS)活性,但对脯氨酸脱氢酶(ProDH)活性无明显影响,通过促进脯氨酸合成进而引起脯氨酸含量增加;外源Spd对可溶性糖含量无明显影响。表明外源Spd通过诱导脯氨酸的积累进行渗透调节,提高植株水分含量,同时进一步缓解氨毒害和活性氧伤害,最终缓解幼苗生长抑制。
Soil secondary salinization in protected cultivation is one of the major soil barrier factors which are seriously restricting the sustainable development of vegetable crops in greenhouse.Cucumber is an important horticultural crop.When cucumber plants are subjected to soil secondary salinization,the plant growth,yield and quality of cucumber is reduced.Polyamines are ubiquitous low-molecular-weight aliphatic amines that are involved in regulation of plant growth and development.It was reported that polyamines were involved in the defense reaction of higher plants to various environmental stresses. However,the relationship between polyamine metabolism and salt tolerance of vegetables and the physiological regulation function of polyamines is still not well known.
     In the present study,two cultivars of cucumber(Cucumis sativus L.),cvs.Changchun mici and Jinchun No.2,were used.It has been reported that cv.Jinchun No.2 is salinity-sensitive as in most cucumber cultivars,whereas cv.Changchun mici is comparatively tolerant to high salinity.By using exogenous Spd and polyamine metabolism inhibitor,MGBG and o-phen,we investigated the effects of salt stress(50 mmol·L~(-1)NaCl) on plant growth,polyamine metabolism,reactive oxygen metabolism,proton pump activity, nitrogen metabolism,osmo-compatible solute accumulation.The objectives of the present study were to elucidate the relationship between the changes of the polyamine metabolism in leaves and roots of cucumber and salt tolerance,the relationship between the contents of organelle bound polyamines and salt tolerance,and the physiology regulation function of exogenous Spd in improving salt tolerance of cucumber plants.Main research results were as follows:
     Salt stress disturbed the polyamine metabolism homeostasis in leaves and roots of cucumber:During exposure to salt stress,the activities of ADC,ODC,SAMDC and DAO increased significantly,which were greater in cv.Changchun mici than in cv.Jinchun No.2. Salt stress also caused a significant increase in PAO activity,which was more marked in cv. Jinchun No.2 than in cv.Changchun mici.As a result,the ratios of(free-Spd+free-Spm) /free-Put decreased and the ratios of free-Put/total free-polyamines increased significantly in cv.Jinchun No.2,but not in cv.Changchun mici.Moreover,the salt stress-induced the increase of conjugated and bound polyamines,especially bound polyamines,was greater in cv.Changchun mici than in cv.Jinchun No.2.Under salt stress,exogenous Spd increased SAMDC and DAO activities,but decreased PAO activity.As a result,exogenous Spd induced the increase of the ratios of(free-Spd+free-Spm)/free-Put and the decrease of the ratios of free-Put/total free-polyamines.Exogenous Spd also induced the increase of conjugated and bound polyamines,especially bound polyamines.In addition,exogenous Spd reversed the detrimental effects of salt stress on plant growth of cucumber.Compared to the NaCl treatment,exogenous MGBG decreased significantly the contents of free Spd and Spm,but increased significantly the contents of free Put,and aggravated the salt stress-induced plant growth inhibition.The inhibiting effect of MGBG could be reversed partly by the combination with exogenous Spd and Spm,and Spd was the more effective. Compared to the NaCl treatment,exogenous o-phen decreased significantly the contents of bound polyamines,and aggravated the salt stress-induced plant growth inhibition.These results indicate that the alleviation of salt injury could be achieved by increasing the conversion of free Put to free Spd and Spm,resulting in the increase of the ratios of(free Spd+free Spm)/free Put and the decrease of the ratios of free-Put/total free polyamines,and by increasing the conversion of free Put to soluble conjugated and insoluble bound polyamines,especially bound polyamines.
     The contents of organelle bound polyamines plays important roles in improving salt tolerance of cucumber:During exposure to salt stress,the activity of TGase,the contents of bound Put and Spd in chloroplast of cucumber increased significantly in cv.Changchun mici,but not in cv.Jinchun No.2.The increase of antioxidant enzymes activities and the antioxidant contents was greater in cv.Changchun mici than in cv.Jinchun No.2,but the increase of H_2O_2 and MDA contents and the decrease of net photosynthetic rates were greater in cv.Jinchun No.2 than in cv.Changchun mici.These results indicate that the alleviation of chloroplast injury could be achieved by increasing the content of bound Put and Spd in chloroplast.Exogenous Spd increased the activities of TGase and antioxidant enzymes,the contents of bound polyamines and antioxidant,and net photosynthetic rates, and decreased the contents of H_2O_2 and MDA.During exposure to salt stress,the contents of bound Spd,the activities of antioxidant enzymes and the contents of antioxidant in mitochondria of cucumber roots increased greater in cv.Changchun mici than in cv. Jinchun No.2,but the increase of H_2O_2 and MDA contents was greater in cv.Jinchun No.2 than in cv.Changchun mici.These results indicate that the alleviation of mitochondria injury could be achieved by increasing the content of bound Spd in mitochondria. Exogenous Spd increased the activities of antioxidant enzymes,the contents of bound polyamines and the antioxidant,and decreased the contents of H_2O_2 and MDA.During exposure to salt stress,the content of plasma membrane bound Spd and the activity of H~+-ATPase in plasma membrane of cucumber roots increased significantly in cv. Changchun mici,but not in cv.Jinchun No.2.Exogenous Spd increased significantly the content of plasma membrane bound Spd and the activity of H~+-ATPase in plasma membrane of cucumber roots.These results indicate that plasma membrane bound Spd in roots might enhance the salt tolerance of cucumber plants via maintenance the activity of plasma membrane H~+-ATPase.During exposure to salt stress,the decrease of the content of tonoplast bound Put and Spd and the activities of H~+-ATPase and H~+-PPase in tonoplast of cucumber roots was greater in cv.Jinchun No.2 than in cv.Changchun mici.Exogenous Spd increased significantly the content of tonoplast bound Spd and the activities of H~+-ATPase and H~+-PPase in tonoplast of cucumber roots.These results indicate that tonoplast bound Spd in roots might enhance the salt tolerance of cucumber plants via maintenance the activity of tonoplast H~+-ATPase.
     Spermidine takes part in the regulation of reactive oxygen metabolism of cucumber plants under salt stress:Exogenous Spd elevated the activities of antioxidant enzymes, SOD,POD and CAT,suppressed O_2~(-·) and H_2O_2 production,decreased the MDA content and leakage of electrolytes.A positive correlation was found between the contents of bound Spd and the activities of SOD,POD and CAT.Compared to the NaCl treatment,exogenous o-phen decreased significantly the contents of bound Spd and the activities of antioxidant enzymes,and aggravated the salt stress-induced reactive oxygen production and membrane damage.These results indicate that exogenous Spd can enhance antioxidant enzyme activities and reduce reactive oxygen production and membrane damage by increasing the bound Spd content,resulting in the improvement of the salt tolerance of cucumber plants.
     Spermidine takes part in the regulation of nitrogen metabolism of cucumber plants under salt stress:Exogenous Spd inhibited significantly the decrease of DNA and RNA. Exogenous Spd also inhibited the increase of proteinase activity,alleviated the decrease of soluble protein content and the increase of free amino acids.Exogenous Spd improved the absorption and translocation of NO_3~--N in cucumber plants under salt stress,induced the increase of NR activity,and improved the deoxidization of NO_3~--N.Exogenous Spd also improved the assimilation of NH_4~+-N and decreased the accumulation of NH_4~+-N.As a result,the homeostasis of nitrogen metabolism in cucumber plants was alleviated.
     Spermidine induces the accumulation of osmo-compatible solute in cucumber plants under salt stress:Exogenous Spd induced the increase of P5CS activity but not ProDH, resulting in the significant increase of proline level in cucumber plants under salt stress. Exogenous Spd has no effect on soluble sugar content in cucumber plants under salt stress. These results indicate that exogenous Spd can maintain high water content,alleviate ammonia and reactive oxygen injury in salt stressed cucumber seedlings by increasing the internal proline content,resulting in the alleviation of plant growth.
引文
1.曹敏.多胺及其植物生理学作用.植物生理学通讯,1984,(6):1-5
    2.陈德明,杨劲松.土壤盐渍环境与养分管理.土壤学进展,1995,23(5):7-13
    3.陈菊培.盐胁迫下植物细胞吸收Na~+的可能途径.海南大学学报(自然科学版),2005,23(4):383-390.
    4.陈坤明,张承烈.干旱期间春小麦叶片多胺含量与作物抗旱性的关系.植物生理学报,2000,26(5):381-386
    5.陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系.植物生理学报,1999,25(1):49-56
    6.陈沁,刘友良.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用.作物学报,2000,26(3):365-371
    7.陈如凯,张木清.甘蔗耐盐生理研究Ⅳ:NaCI胁迫对甘蔗多胺代谢影响.作物学报,1995,21(4):479-484
    8.陈因.硝态氮与铵态氮的测定.现代植物生理学实验指南.中国科学院上海植物生理研究所,上海市生理学会编.北京:科学出版社,1999.138-140
    9.崔凤芝,张运涛.多胺与园艺植物生长发育的关系.河北农业大学学报,1996,19,(3):94-98
    10.刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响.植物生理学报,1997,23(2):105-110
    11.段昌群,王焕校,姜汉桥.蚕豆在重金属污染条件下数量性状的分化研究.生态学报,1997,17(2):133-144
    12.段辉国,黄作喜,卿东红,齐泽民.水分胁迫下亚精胺对小麦幼苗蛋白质含量与蛋白酶活性的影响.内江师范学院学报,2006,21(2):69-72
    13.范浩定,吴爱芳,周仕龙.大棚蔬菜土壤盐渍化治理技术研究.长江蔬菜,2004,(4):48-49
    14.高玲,叶茂炳,张荣铣,徐朗莱.小麦旗叶老化期间的内肽酶.植物生理学报,1998,24(2):183-188
    15.高秀兰,肖千明,娄春荣.日光温室栽培番茄引起生理障碍NO_3~--N浓度的研究.辽宁农业科学,1997,(1):8-12
    16.龚月桦,王俊儒,荆家海.高等植物对多胺的吸收和运转.植物生理学通讯,1998,34(1):64-68
    17.郭凤鸣,刘永春,赵福顺.保护地栽培中土壤盐渍化回避法.北方园艺,1996,(2):3-5
    18.郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27(6):461-466
    19.郭文忠,刘声锋,李丁仁,赵顺山.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36(1):25-29
    20.何生根,黄学林,傅家瑞.植物的多胺氧化酶.植物生理学通讯,1998,34(3):213-218
    21.贺岩,李志岗,陈云昭,王玉国.外源脯氨酸对盐胁迫下大豆离体胚再生植株生理特征及线粒体结构的影响.大豆科学,2000,19(4):314-319
    22.侯彩霞.游离脯氨酸的测定.现代植物生理学实验指南.中国科学院上海植物生理研究所,上海市植物生理学会编.北京:科学出版社,1999.303
    23.胡炳义,牛明功,王启明,李潮海,刘怀攀.渗透胁迫与大豆幼苗叶片多胺含量的关系.植物营养与肥料学报,2006,12(6):881-886
    24.华春,王仁雷,刘友良.外源AsA对盐胁迫下水稻叶绿体活性氧清除系统的影响.作物学报,2004,30(7):692-696
    25.黄芳,石兰馨,曹仪植.植物对NH_4~+毒害的敏感性及与多胺和乙烯的关系.兰州大学学报(自然科学版),1996,32(1):102-107
    26.黄月圆.多胺提高黄瓜耐盐性的生理机制研究.浙江大学硕士学位论文.2006
    27.江行玉,赵可夫,窦君霞,史仁玖.NaCl胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响.植物生理学通讯,2001,37(1):6-9
    28.姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应.江苏农业学报,1992,8(4):13-171
    29.李海云,王秀峰,魏珉,宋春凤.不同阴离子对黄瓜光合特性及产量的影响.中国蔬菜,2003,(4):4-6
    30.李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术.北京:高等教育出版社,2000.119-120
    31.李俊英,闻颖达,蒋嫦英,李峰,高才昌.一种简便快捷的植物线粒体质粒DNA的提取方法.南开大学学报(自然科学),2000,33(4):49-52
    32.李磊,赵檀方,胡延吉.大麦苗期耐盐性鉴定指标的研究.莱阳农学院学报,1998,15(4):253-257
    33.李明启.光呼吸.见:余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社,1998.248-261
    34.李明霞.保护地土壤营养障碍与治理途径.蔬菜,1999,(10):4-5
    35.李廷轩,张锡洲,王昌全,何艳.保护地土壤次生盐渍化的研究进展.西南农业大学学报,2001,14(增刊):103-107
    36.李延.刘星辉,庄卫民.缺镁胁迫对龙眼苗期氮代谢的影响.植物营养与肥料学报,2001,7(2):218-222
    37.李子银,张劲松,陈受宜.水稻盐胁迫应答基因的克隆、表达及染色体定位.中国科学(C), 1999,29(6):561-570
    38.林栖凤.耐盐植物研究.北京:科学出版社,2004.144-146
    39.林植芳,李双顺,林桂珠,郭俊彦.衰老叶片和叶绿体中H_2O_2的累积与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    40.刘海龙,关军锋,李广敏.精胺和甲基乙二醛(双脒基腙)对小麦幼苗抗旱性的影响.华北农学报,2003,18(3):41-43
    41.刘怀攀,胡炳义,刘天学,李潮海.渗透胁迫对玉米幼苗类囊体膜上结合态多胺含量的影响.华北农学报,2007a,22(2):86-89
    42.刘怀攀,纪秀娥,杜红阳.渗透胁迫与大豆幼苗类囊体膜上结合态亚精胺的关系.安徽农业科学,2007b,35(9):2537-2539
    43.刘怀攀,朱自学,刘友良.小麦幼苗类囊体膜上结合态多胺对渗透胁迫的响应.种子,2007c,26(3):58-60
    44.刘怀攀.渗透胁迫下小麦幼苗体内多胺形态、定位与功能.南京农业大学博士学位论文.2004
    45.刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法.植物生理学通讯,2002,38(6):596-598
    46.刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系.植物生理与分子生物学学报,2004,30(2):141-146
    47.刘俊,张艳艳,章文华,刘友良.大麦根中多胺含量和转化与耐盐性的关系.南京农业大学学报,2005,(2):7-11
    48.刘俊,周一峰,章文华,刘友良.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响.西北植物学报,2006,26(2):0254-0258
    49.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.见:余叔文,汤章城主编.植物生理和分子生物学.北京:科学出版社,1998.752-769
    50.刘玉芝,刘佳莹.大棚土壤理化性状综合分析及改良方法.北方园艺,1996,(4):35-36
    51.罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182
    52.马丽焱.线粒体膜间隙蛋白在细胞凋亡中的作用.细胞生物学杂志,2004,26(1):29-33
    53.门中华,李生秀.钼对冬小麦硝态氮代谢的影响.植物营养与肥料学报,2005,11(2):205-210
    54.缪曼珉,曹碚生.黄瓜花药和花粉高温伤害与多胺和脯氨酸含量的关系.园艺学报,2002,29(3):233-237
    55.潘瑞炽.多胺是植物生长发育的调节物.植物生理学通讯,1985,(6):63-68
    56.齐永青,肖凯,李雁鸣.作物在渗透胁迫下脯氨酸积累的研究进展.河北农业大学学报,2003,26(增):24-27
    57.邵桂花,常汝镇,陈一舞.大豆耐盐性研究进展.大豆科学,1993,12(3):244-248
    58.沈惠娟,谢寅峰.多胺(PAs)与植物的几种胁迫反应.南京林业大学学报,1997,21(4):26-30
    59.沈伟其.测定叶绿素含量的混合液提取法.植物生理学通讯,1988,(3):62-64
    60.施秀珠,奚振邦,朱建萍.上海郊区蔬菜朔料大棚土壤障碍问题.上海农业科技,1991,(1):28-30
    61.史庆华,朱祝军,Khalid Al-aghabary,刘慧英,喻景权.等渗胁迫对番茄抗氧化酶和ATP酶及焦磷酸酶活性的影响.植物生理与分子生物学学报,2004,30(3):311-316
    62.斯琴巴特尔,吴红英.不同逆境对玉米幼苗根系活力及硝酸还原酶活性的影响.干旱地区农业研究,2001,19(2):67-70
    63.宋士清,刘微,郭世荣,尚庆茂,张志刚.化学诱抗剂诱导黄瓜抗盐性及其机理.应用生态学报,2006,17(10):1871-1876
    64.苏国兴,宋卫平,洪法水.盐胁迫对桑树NH_4~+同化和谷氨酰胺合成酶活性的影响.蚕业科学,2003,29(1):90-94
    65.谈建康,安树青.钠盐胁迫对小麦叶片核酸损伤和多胺积累的影响.农业环境科学学报,2004,23(3):428-431
    66.覃凤云,吕金印,梁宗锁.外源精胺对水分胁迫下小麦幼苗蛋白酶和核糖核酸酶活性的影响.干旱地区农业研究,2004,22(2):95-99
    67.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    68.汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990,(1):1-7
    69.汪天,郭世荣,刘俊,高洪波.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用.植物生理学通讯,2004,40(3):358-360
    70.汪天,李娟,郭世荣,高洪波,王素平.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H~+-ATP 酶和H~+-焦磷酸酶活性的影响.植物生理与分子生物学学报,2005,31(6):637-642
    71.汪天,王素平,郭世荣,孙艳军.外源亚精胺对根际低氧胁迫下黄瓜幼苗光合作用的影响.应用生态学报,2006,17(9):1609-1612
    72.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,(6):55-57
    73.王宝山,邹琦.NaCl胁迫对高梁根、叶鞘和叶片液泡膜酶ATP酶和焦磷酸酶活性的影响.植物生理学报,2000,26(3):181-188
    74.王金胜,冀满祥,赵如意,程玉香.盐胁迫时铈保护小麦线粒体功能的研究.中国稀土学报,1999,17(2):187-190
    75.王素平,郭世荣,李璟,胡晓辉,段九菊.盐胁迫对不同基因型黄瓜幼苗生长的影响.江苏农业科学,2006a,(2):76-79
    76.王素平,贾永霞,郭世荣,周国贤.多胺对盐胁迫下黄瓜(Cucumis sativus L.)幼苗体内K~+、Na~+和Cl~-含量及器官间分布的影响.生态学报,2007,27(3):1122-1129
    77.王素平,李娟,郭世荣,胡晓辉,李璟,汪天.NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响.西北植物学报,2006b,26(3):0455-0461
    78.王文平.植物样品中游离氨基酸总量测定方法的改进.北京农学院学报,1998,13(3):9-13
    79.王绪奎,陈光亚.设施农业中的土壤问题及对策.江苏农业科学,2001,(6):39-42
    80.王学,施国新,马广岳,徐勤松,拉非克,胡金朝.外源亚精胺对荇菜抗Hg~(2+)胁迫能力的影响.植物生理与分子生物学学报,2004,30(1):69-74
    81.王学,施国新,徐勤松,马广岳,拉非克,张小兰,周红卫.外源亚精胺缓解荇菜(Nymphoides peltatum)Cr~(6+)毒害的生理研究.环境科学学报,2003,23(5):689-693
    82.王学征,韩文灏,高春艳,于广建.哈尔滨市郊设施土壤次生盐渍化状况分析.北方园艺,2004,(4):62-63
    83.韦存虚,王建军,周卫东,孙国荣,梁建生.Na_2CO_3胁迫对星星草叶肉细胞超微结构的影响.生态学报,2006,26(1):108-114
    84.魏国强,朱祝军,方学智,李娟,程俊.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学,2004,37(11):1754-1759
    85.武维华.植物生理学.北京:科学出版社,2003.313
    86.肖祥希,刘星辉,杨宗武,万泉,郑蓉,王志洁.铝胁迫对龙眼幼苗蛋白质和核酸含量的影响.林业科学,2006,42(10):24-30
    87.谢寅峰,沈慧娟,李梅枝.酸胁迫对林木内源多胺及活性氧代谢的影响.林业科学,1999,35(1):117-121
    88.徐仰仓,王静,刘华,王根轩.外源精胺对小麦幼苗抗氧化酶活性的促进作用.植物生理学报,2001,27(4):349-352
    89.徐云岭,余叙文.植物适应盐逆境过程中的能量消耗.植物生理学通讯,1990,6(26):54-55
    90.许振柱.土壤干旱对冬小麦旗叶乙烯释放多胺积累和细胞质膜的影响.植物生理学报,1995,21(3):95-301
    91.薛继澄,毕德义,李家金,殷永娴,吴志行.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994,(1):4-9
    92.杨莉,郭蔼光,汪沛洪.小麦返白系叶片核酸含量及核酸酶活性的研究.西北农业学报,2001,10(2):32-35
    93.姚静,邹志荣,杨猛,冯嘉玥.设施栽培中土壤次生盐渍化问题及解决途径.陕西农业科学,2003,(4):39-41
    94.於丙军,吉晓佳,刘俊,刘友良.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应 用生态学报,2004,15(7):1223-1226
    95.於丙军,章文华,刘友良.NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响.西北植物学报,1997,17(4):439-445
    96.於新建,张振清.植物材料中可溶性糖的测定.植物生理学实验手册.上海:上海科学技术出版社.1985
    97.岳艳玲,李广敏.多胺延缓水分胁迫下小麦幼苗衰老机制的探讨.华北农学报,1997,12(2):71-75
    98.张古文,朱月林,杨立飞,刘正鲁,胡春梅.NaCl胁迫对番茄嫁接苗根系多胺含量的影响.园艺学报,2007,34(4):1011-1014
    99.张其德.盐胁迫对植物及其光合作用的影响.植物杂志,2000,(1):28-29
    100.张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    101.张玉龙,张继宁,张恒明,杨丽娟.保护地蔬菜栽培不同灌水方法对表层土壤盐分含量的影响.灌溉排水学报,2003,22(1):41-44
    102.赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感.植物生理学报,2000,26(4):343-348
    103.赵福庚,束怀瑞.NaCl处理下大麦根系质膜微囊结合多胺与Na~+/H~+逆向运输的关系.植物生理与分子生物学学报,2002a,28(5):333-338
    104.赵福庚,束怀瑞.脂肪酸对盐胁迫大麦根系质膜结合多胺含量和膜上Na~+/H~+逆向运输的影响.科学通报,2002b,47(8):608-612
    105.赵福庚,孙诚,刘友良,章文华,刘兆普.ABA和NaCl对碱蓬多胺和脯氨酸代谢的影响.植物生理与分子生物学学报,2002,28(2):117-120
    106.赵福庚,张国珍,张正钫,王晓云.花生叶片衰老中多胺代谢酶活性及游离多胺含量变化.植物生理学通讯,1996,32(5):351-353
    107.赵可夫,卢元芳,张宝泽,衣建龙.Ca对小麦幼苗降低盐害效应的研究.植物学报,1993,35(1):51-56
    108.赵世杰,许长成,邹琦,盂庆伟.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    109.Aldesuquy HS,Abdel-Fattah GM,Baka ZA.Changes in chlorophyll,polyamines and chloroplast ultrastructure of Puccinia striiformis induced 'green islands' on detached leaves of Triticum aestivum.Plant Physiology and Biochemistry,2000,38:613-620
    110.Allen RD.Dissection of oxidative stress tolerance using transgenic plants.Plant Physiology,1995,107:1049-1054
    111.Alvatez I,Tomato ML,Benavides MP.Changes in polyamines,proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissue Organ Culture, 2003, 74: 51-59
    
    112. Antony T, Thomas T, Shirahata A. Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiestor and phosphorothioate oligodeoxyribonucleotides. Biochemistry, 1999,28:10775-10784
    
    113. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Annual Review Plant Biology, 2004, 55: 373-399
    
    114. Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-1,10-phenanthroline. Agricultural and Biological Chemestry, 1981,45:1289-1290
    
    115. Asada K. Ascorbate peroxidase-a hydrogen peroxide-scavening enzyme in plant. Physiologia Plantarum, 1995, 85: 235-246
    
    116. Athwal GS, Huber SC. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins,modulating their interaction with phosphorylated nitrate reductase. The Plant Journal, 2002, 29:119-130
    
    117. Aziz A, Larher F. Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Science, 1995,112:175-186
    
    118. Aziz A, Martin-Tanguy J, Larher F. Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Science,1999,145: 83-91
    
    119. Aziz A, Martin-Tanguy J, Larher F. Salt-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiologia Plantarum, 1998, 104: 195-202
    
    120. Bagni N, Tassoni A. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids, 2001,20: 301-317
    
    121. Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML. Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant and Soil, 2005,270:343-353
    
    122. Ballesteros E, Donaire JP, Belver A. Effect of salt stress on H~+-ATPase and H~+-PPase activities of tonoplast-enriched vesicels isolated from sunflower roots. Physiologia Plantarum, 1996, 97:259-268
    
    123. Baysal G, Tipirdamaz R. The effect of salt stress on lipid peroxidation and antioxidative enzyme activities in two cucumber cultivars. Hacettepe Journal of Biology and Chemistry, 2004, 33:119-129
    
    124. Bethke P, Malcolm C, Drew C. Stomatal and nonstomatal compents to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity.Plant Physiology,1992,99:219-226
    125.Bortolotti C,Cordeiro A,Alcazar R,Borrell A,Culiaiiez-Macia FA,Tiburcio AF,Altabella T.Localization of arginine decarboxylase in tobacco plants.Physiologia Plantarum,2004,120:84-82
    126.Bouchereau A,Aziz A,Larher F,Martin-Tanguy J.Polyamines and environmental challenges:recent development.Plant Science,1999,140:103-125
    127.Bradford MM.A rapid and sensitive method for the quantification of microgram quantities of protein in utilizing the principle of protein-dye bingding.Analytical Biochemistry,1976,72(7):248-254
    128.Burton K.A study for the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid.Biochemistry,1962,62:315-323
    129.Carrasco P,Carbonell J.Changes in the level of peptidase activities in pea ovaries during senescence and fruit set induced by gibberellic acid.Plant Physiology,1990,92:1070-1074
    130.Casero RA,Pegg AE.Spermine/spermidine N'-acetyltransferase-the turning point in polyamine metabolism.The FASEB Journal,1993,7:653-661
    131.Chaitanya KV,Sundar D.Mulberry leaf metabolism under high temperature stress.Biologia Plantarum,2001,44:37-92
    132.Chattopadhyay MK,Tiwari BS,Chattopadhyay G,Bose A,Sengupta DN,Ghosh B.Protective role of exogenous polyamines on salinity-stressed rice(Oryza sativa) plants.Physiologia Plantarum,2002,116:192-199
    133.Cheeseman JM.Mechanism of salinity tolerance in plants.Plant Physiology,1988,87:547-550
    134.Cona A,Cenci F,Cervelli M,Federico R,Mariottini P,Moreno S,Angelini R.Polyamine oxidase,a hydrogen peroxide-producing enzyme,is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl.Plant Physiology,2003,131(2):803-813
    135.Cvikrova M,Mala J,Hrubcova M,Eder J,Zon J,Machackova I.Effect of inhibition of biosynthesis of phenylprooanoids on sessile oak somatic embryogenesis.Plant Physiology and Biochemistry,2003,41:251-259
    136.Das S,Bose A,Ghosh B.Effect of salt stress on polyamine metabolism in Brassica Campestris.Phytochemistry,1995,39:283-285
    137.Del-Duca S,Beninati S,Serafini-Fracassini D.Polyamines in chloroplasts:identification of their glutamyl and acetyl derivatives.Biochemistry Journal,1995,305:233-237
    138.Demetriou G,Neonaki C,Navakoudis E,Kotzabasis K.Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochimica et biophysica acta-Bioenergetics, 2007, 1767: 272-280
    
    139. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32: 93-101
    
    140. Dondini L, Bonazzi S, Del-Duca S, Bregoli AM, Serafini-Fracassini D. Acclimation of chloroplast transglutaminase to high NaCl concentration in a polyamine-deficient variant strain in Dunaliella salina and in its wild type. Journal of Plant Physiology, 2001,158:185-97
    
    141. Drolet G, Dumbrff EB, Legge RL, Thompson JE. Radical scavenging properties of polyamines.Phytochemistry, 1986, 25 (2): 367- 371
    
    142. Erdei L, Szegletes Z, Barabas K, Pestenacz A. Response in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. Journal of Plant Physiology, 1996,147: 599-603
    
    143. Facchini PJ, Hagel J, Zulak KG. Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Canadian Journal of Botany, 2002, 80: 577-589
    
    144. Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 1976,133: 21-25
    
    145. Frederik LD, Jean-Pierre B, Thomas G, Claude H. Disturbed nitrogen metabolism associated with the hyperhydric status of fully habituated callus of sugarbeet. Physiologia Plantarum, 1993, 88:129-134
    
    146. Gong M, Ding NC, He ZY, Liu YL. Correlation between lipid preoxidation damage and ultrastructural changes of mesophyll cells in barley and wheat seedling during salt stress. Journal of Integrative Plant Biology, 1989, 31 (11): 841 -846
    
    147. Gong M, Li YJ, Chen SZ. Abscisic acid-induced the rmotolerance in maize seedlings is mediated by calcium and associated with antioxidant system. Journal of Plant Physiology, 1998, 153(4):488-496
    
    148. Gorhar J, Wyn-Jones RG, Donnell EMC. Some mechanism of salt tolerance in crop plants. Plant and Soil, 1985, 89: 15-40
    
    149. Griffiths OW. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 1980,106:207-212
    
    150. Guye MG, Vigh L, Wilson JM. Polyamine titre in relation to chilling sensitivity in plaselous. Journal of Experimental Botany, 1986,37: 1034-1043
    
    151.He LX, Nada K, Kasukabe Y, Tachibana S. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant and Cell Physiology,2002a,43(2):196-206
    152.He LX,Nada K,Tachibana S.Effect of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plant(Cucumis sativus L.).Journal of the Japan Society for Horticultural Science,2002b,71:490-498
    153.Hossain MA,Asada K.Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme.Plant and Cell Physiology,1984,25:85-92
    154.Jan K,Kazywanski Z.Changes in polyamine concentration and proteases activity in spring bariey during increasing water stress.Acta Physiologica Plantarum,1991,13:13-20
    155.Jiang XY,Song J,Fan H,Zhao KF.Regulation of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress.Acta Phytophysiolocica Sinica,2000,26(6):539-544
    156.Kakkar PK,Bhaduri S,Ral VK,Kumar S.Amelioration of NaCl stress by arginine in rice seedlings:changes in endogenous polyamines.Biologia Plantarum,2000,43:419-422
    157.Kakkar RK,Sawhney VK.Polyamine research in plants-a changing perspective.Physiologia Plantarum,2002,116:281-292
    158.Kar M,Mishra D.Protease activity during rice leaf senescence.Biologia Plantarum,1977,19(5):365-369
    159.Kasinathan V,Wingler A.Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana.Physiologia Plantarum,2004,121:101-107
    160.Kasukabe Y,He LX,Nada K,Misawa S,Ihara I,Tachibana S.Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenie Arabidopsis thaliana.Plant and Cell Physiology,2004,45:712-722
    161.Kasukabe Y,He LX,Watakabe Y,Otani M,Shimada T,Tachibana S.Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase.Plant Biotechnology,2006,23:75-83
    162.Kaur-Sawhney R.Flores HE,Galston AW.Polyamine oxidase in oat leaves:A cell wall-located enzyme.Plant Physiology,1981,68:494-498
    163.Kaur-Sawhney R,Shih LM.Inhibition of protease activity by polyamines.FEBS Letters,1982,145:345-349
    164.Khan NA,Quemener V,Moulinoux JP.Polyamine membrane transport regulation.Cell Biology International Reports,1991,15:9-24
    165. Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic 'Shamouti' orange ovular callus lines. Plant and Cell Physiology, 1977,18: 463-467
    
    166. Koening H, Goldston A, Chuang YL. Polyamines regulate calcium fluxes in rapid plasma membrane response. Nature, 1983,305: 530-534
    
    167. Kramer GF, Norman HA, Krizek DT, Mirecki RM. Influence of UV-B radiation on polyamines,lipid peroxidation and membrane lipid in cucumber. Phytochemistry, 1991,30: 2101—2108
    
    168. Krishnamurthy R, Bhagwat KA. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 1984,91: 500-504
    
    169. Krishnamurthy R. Amelioration of salinity effect in salt tolerant rice (Oryza sativa L.) by foliar application of putrescine. Plant and Cell Physiology, 1991, 32: 699-703
    
    170. Kumar A, Altabella T, Taylor MA, Tiburio AF. Recent advances in polyamine research. Trends in Plant Science, 1997, 2(4): 124-130
    
    171.Kumria R, Rajam MV. Ornithine decarboxylase transgene in tobbaco affects polyamines, in vitro-morphogenesis and response to salt stress. Journal of Plant Physiology, 2002,159: 983-990
    
    172. Laureazi M, Rea G, Federico R, Tavladoraki P, Angelini R. De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl: a role iri the photomodulation of growth and cell wall differentiation.Planta, 1999,208:146-154
    
    173. Lee TM, Lur HS, Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.)seedlings: II. Modulation of free polyamine levels. Plant Science, 1997,126: 1-10
    
    174. Liu HP, Dong BH, Zhang YY, Liu ZP, Liu YL. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Science,,2004a, 166:1261-1267
    
    175. Liu HP, Ji XE, Liu TX, Shi LG, Li CH. Effect of osmotic stress on the contents of different form polyamines in leaves of maize seedlings. ActaAgronomica Sinica, 2006a, 32(10): 1430-1436
    
    176. Liu HP, Ji XE, Yu BJ, Liu YL. Relationship between osmotic stress and polyamines conjugated to the deoxyribonucleic acid-protein in wheat seedling roots. Science in China: Series C Life Sciences,2006b, 49(1): 12-17
    
    177. Liu HP, Liu J, Zhang YY, Liu YL. Relationship between ATPase activity and conjugated polyamines in mitochondrial membrane from wheat seedling roots under osmotic stress. Journal of Environmental Science, 2004b, 16(5): 712-716
    
    178. Liu HP, Liu YL, Yu BJ. Increased polyamines conjugated to tonoplast vesicles correlate with maintenance of the H~+-ATPase and H~+-PPase activities and enhanced osmotic stress tolerance in wheat.Journal of Plant Growth Regulation,2004c,23(2):156-165
    179.Liu liP,Yu BJ,Zhang WH,Liu YL.Effect of osmotic stress on the activity of H~+-ATPase and the level of covalently and nocovalently polyamines in plasma membrane preparation from wheat seedling roots.Plant Science,2005,168(6):1599-1607
    180.Liu HP,Zhu ZX,Liu TX,Li CZ.Effects of osmotic stress on the kinds,forms and levels of polyamines in wheat coleoptiles.Journal of Plant Physiology and Molecular Biology,2006c,32(3):293-299
    181.Liu JH,Nada K,Honda C,Kitashiba H,Wen XP,Pang XM,Moriguchi T.Polyamine biosynthesis of apple callus under salt stress:importance of the arginine decarboxylase pathway in stress response.Journal of Experimental Botany,2006d,57:2589-2599
    182.Lutts S,Majerus V,Kinet JM.NaCl effects on proline metabolism in rice(Oryza sativa) seedlings.Physiologia Plantarum,1999,105:450-458
    183.Lutz C,Navakoudis E,Seidlitz HK,Kotzabasis K.Simulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine changes for UV-B protection.Biochimica et biophysica acta-Bioenergetics,2005,1710:24-33
    184.Martin-Tanguy J.Conjugated polyamines and reproductive development:biochemical,molecular and physiological approaches.Physiologia Plantarum,1997,100:675-688
    185.Matsuda H.Some properties of arginine decarboxylase in Vicia faba leaves.Plant and Cell Physiology,1984,25:523-530
    186.Mauricio HM,Jesus NR,Catalina R.Changes in polyamine content are related to low temperature resistance in potato plants.Acta Biologica Colombiana,1999,4:27-47
    187.Millenaar FF,Gonzalez-Meler MA,Siedow JN,Wagner AM,Lambers H.Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua roots.Journal of Experimental Botany,2002,53:1081-1088
    188.Miyake C,Asada K.Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product of monodehydroascorbate radicals inthylakoids.Plant and Cell Physiology,1992,33:541-553
    189.Mullet JE.The amino acid sequence of the polypeptide segment which regulates msmbrane adhesion in chloroplasts.Journal of Biological Chemistry,1983,258:9941-9953
    190.Murkowski A.Heat stress and spermidine:effect on chlorophyll fluorescence in tomato plants.Biologia Plantarum,2001,44:53-57
    191.Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981,22: 867-880
    192. Navakoudis E, Lutz C, Langebartels C, Lutz-Meindl U, Kotzabasis K. Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochimica et biophysica acta-Bioenergetics, 2003,1621(2): 156-165
    193.Ndayiragije A, Lutts S. Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl. Plant and Soil, 2007, 29: 225-38
    194. Oh TJ, Kim IG. Polyamines protect against DNA strand breaks and aid cell survival against irradiation in Escherichia coli. Biotechnology Techniques, 1998,12: 755-758
    195.Panicot M, Masgrau C, Borrell A, Cordeiro A, Tiburcio AF, Altabella T. Effects of putrescine accumulation in tobacco transgenic plants with different expression levels of oat arginine decarboxylase. Physiologia Plantarum, 2002,114: 281-287
    
    196. Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005,60(3): 324-349
    
    197. Qiu QS. The influence of osmotic stress on the lipid physical states of plasma membranes from wheat roots. Acta Botanica Sinica, 1999,41: 161-165
    
    198. Rabiti AL, Pistocchi R, Bagni N. Putrescine uptake and translocation in high plants. Plant Physiology, 1989, 77: 225-230
    
    199. Rao R, Gnanam A. Inhibition of nitrate and nitrite reductase activities by salinity stress in sorghum vulgare. Phytochemistry, 1990,29:10472-10491
    
    200. Reggiani R, Bozo S, Bertani A. Changes in polyamine metabolism in seedlings of three wheat (Triticum aestivum L.) cultivars differing in salt sensitivity. Plant Science, 1994, 102: 121-126
    
    201. Richard W, Alexardra C. Polyamine: small molecules triggering pathways in plant growth and development. Plant Physiology, 1997, 113:241-248
    
    202. Roberts DR, Dumbroff ED, Thompson JE. Exogenous polyamines alter membrane fluidity in bean leaves-bsis for potential misinterpretation of their true physiological role. Planta, 1986, 167:395-401
    
    203. Roussos PA, Pontikis CA. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. Journal of Plant Physiology, 2007, 164: 895-903
    
    204. Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science, 2001,160: 869-875
    
    205. Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 2002,163: 987-992
    
    206. Roy P, Niyogi K, SenGupta DN, Ghosh B. Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H~+-ATPase in salt-tolerant and salt-sensitive rice cultivars.Plant Science,2005,168:583-591
    207.Sairam RK,Rao KV,Srivastava GC.Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress,antioxidant activity and osmolyte concentration.Plant Science,2002,163:1037-1046
    208.Sanchez DH,Cuevas JC,Chiesa MA,Ruiz OA.Free spermidine and spermine content in Lotus glaber under long-term salt stress.Plant Science,2005,168:541-546
    209.Santa-Cruz A,Acosta M,Peres-Alfocea F,Bolarin MC.Changes in free polyamine levels induced by salt stress leaves of cultivated and wild tomato species.Physiologia Plantarum,1997,101:341-346
    210.Santa-Cruz A,Acosta M,Rus A,Bolarin MC.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species.Plant Physiology and Biochemistry,1999,37(1):65-71
    211.Santa-Cruz A,Perez-Alfocea F,Caro M,Acosta M.Polyamines as short-term salt tolerance traits in tomato.Plant Science,1998,138:9-16
    212.Serafini-Fracssini D,Del-Duca S.Plant transglutaminase.Phytochemistry,1995,40:355-365
    213.Shabala S,Cuin TA,Pottosin I.Polyamines prevent NaCl-induced K~+ efflux from pea mesophyll by blocking non-selective cation channels.FEBS Letters,2007,581:1993-1999
    214.Shen WY,Nada K,Tachibana S.Involvement of polyamines in the chilling tolerance of cucumber cultivars.Plant Physiology,2000,124:431-439
    215.Shiratake K,Kanayama Y,Maeshima M,Yamaki S.Changes in H~+-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit.Plant and Cell Physiology,1997,38:1039-1045
    216.Shoemaker RC,Atherhy AG,Palmer RG.Inhibition of deoxyri-bonuclease activity associated with soybean chloroplasts.Plant Cell Reports,1983,2:98-100
    217.Smith TA.The di and polyamine oxidase of higher plants.Biochemical Society Transactions,1985,13:319-322
    218.Song SQ,Lei YB,Tian XR.Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds.Russian Journal of Plant Physiology,2005,52(6):793-800
    219.Stanley BA,Shantz LM,Pegg AE.Expression of mammalian S-adenosylmethionine decarboxylase in Escherichia Coll.Journal of Biological Chemistry,1994,269:7901-7907
    220.Tachibana S,Konishi N.Diurnal variation of in vivo and in vitro reduetase activity in cucumber plants.Journal of the dapan Society for Horticultural Science,1991,60:593-599
    221.Tadolini B.Polyamine inhibition of lipoperoxidation.The influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochemical Journal,1988,249:33-36
    
    222. Takeda K, Otaubo T, Kondu N. Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzyme in SO_2-furmugated spinach leaves. Plant and Cell Physiology, 1982, 23:1009-1018
    
    223. Tang W, Newton RJ. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation,2005,46:31-43
    
    224. Tassoni A, Van Buren M, Franceschitti M, Fornale S, Bagni N. Plyamine content and metabolism in Arabidopsis thaliana and effect of spermideine on plant development. Plant Physiology and Biochemistry, 2000,38(5): 383-393
    
    225. Tiburcio AF, Campos JL, Figueras X, Bisford R. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation, 1993,12: 331-340
    
    226. Tiburcio AF, Kaur-Sawhney R, Galston AW. Polyamine metabolism, in: Miflin BJ, Lea PJ (Eds),The Biochemistry of Plants, Intermediary Nitrogen Fixation, New York: Academic Press, 1990,16:283-325
    
    227. Todorova D, Sergiev I, Alexieva V, Karanov E, Smith A, Hall M. Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments. Plant Growth Regulation, 2007, 51:185-191
    
    228. Tononl G, Kevers G, Faivre-Rampant O, Grazianil M, Gaspar T. Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. Journal of Plant Physiology, 2004,161:701- 708
    
    229. Trotel P, Bouchereau A, Niogret MF, Larher F. The fate of osmo-accumulated proline in leaf discs of rape (Brassica napus L.) incubated in a medium of low osmolarity. Plant Science, 1996, 118:31-45
    
    230. Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications, 2004, 313(2): 369-375
    
    231. Van Emmerik W, Wagner AM, Vander LHW. A quantitative comparison of respiration in cells and mitochondria from Petunia hybrida suspension culture. Journal of Plant Physiology, 1992, 139:390-396
    
    232. Verma S, Mishra SN. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology, 2005,162:669-677
    233.Villalobos E,Torne JM,Rigau J,Olles I,Claparols I,Santos M.Immunogold localization of a transglutaminase related to grana development in different maize cell types.Protopasma,2001,216:155-163
    234.Waie B,Rajam MV.Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene.Plant Science,2003,164:727-734
    235.Wang X,Shi GX,Xu QS,Hu JZ.Exogenous polyamines enhance copper tolerance of Nymphoides peltatum.Journal of Plant Physiology,2007:1062-1070
    236.Wei J.Post-harvest changes of EFE activity,ACC and polyamine contents cortex and pith of pear fruits and its relation to ethylene production.Acta Phytophysiololgica Sinica,1995,21(2):136-142
    237.Wi SJ,Kim WT,Park KY.Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants.Plant Cell Reports,2006,25:1111-1121
    238.Willekens H,Vancamp W,Lnze D.Ozone,sulfurdioxide,and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in Nicotianaplum baginifolia L.Plant Physiology,1984,224:569-573
    239.Yang YL,Guo JK,Zhang F,Zhao LX.NaCl induced changes of the H~+-ATPase in root plasma membrane of two wheat cultivars.Plant Science,2004,166:913-918
    240.Yoshiba Y,Kiyosue T.Regulation of levels of proline as osmolyte in plants under water stress.Plant and Cell Physiology,1997,83:1095-1102
    241.Zeid IM.Response of bean(Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress.Pakistan Journal of Biological Sciences,2004,7(2):219-225
    242.Zhang WH,Liu YL.Relationship between tonoplast H~+-ATPase activity,ion uptake and calcium in barley roots under NaCl stress.Acta Botanica Sinica,2002,44(6):667-672
    243.Zhao FG,Qin P.Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings.Plant Growth Regulaiton,2004,42(2):97-103
    244.Zhao FG,Sun C,Liu YL,Liu ZP.Effects of salinity stress on the levels of convalently and nonconvalently conjugated polyamines in plasma membrane and tonoplast isolated from barely seedlings.Acta Botanica Sinica,2000,42(9):920-926
    245.Zhao FG,Sun C,Liu YL,Zhang WH.Relationship between polyamines metabolism in roots and salt tolerance of barley seedlings.Acta Botanica Sinica,2003,45(3):295-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700